Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inflammopharmacology ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753221

ABSTRACT

Inflammatory bowel diseases (IBDs) are prevalent and debilitating diseases with limited clinical treatment strategies. Mesenchymal stem cell (MSCs) are pluripotent stem cells with self-renewal capability and multiple immunomodulatory effects, which make them a promising therapeutic approach for IBDs. Thus, optimization of MSCs regimes is crucial for their further clinical application. Wogonin, a flavonoid-like compound with extensive immunomodulatory and adjuvant effects, has been investigated as a potential pretreatment for MSCs in IBD treatment. In this study, we employed the DSS-induced acute colitis mouse model to compare the therapeutic effectiveness of MSCs in pretreated with or without wogonin and further explore the underlying mechanism. Compared to untreated MSCs, MSCwogonin (pretreated with wogonin) showed greater effectiveness in the treatment of colitis. Further experiments revealed that wogonin treatment activated the AKT signaling pathway, resulting in higher cellular glycolysis. Inhibition of AKT phosphorylation by perifosine not only decreased glycolysis but impaired the therapeutic efficiency of MSCwogonin. Consistent with these results, qPCR data indicated that wogonin treatment induced the expression of immunomodulatory molecules IL-10, IDO, and AGR1, which were reduced by perifosine. Together, our data demonstrated that wogonin preconditioning strategy further augmented the therapeutic efficacy of MSCs via promoting glycolysis, which should be a promising strategy for optimizing MSCs therapy in IBDs.

2.
J Adv Res ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38070595

ABSTRACT

INTRODUCTION: Numerous studies demonstrated that NLRP3 has been implicated in the pathogenesis of inflammatory bowel disease (IBD). Mesenchymal stem cells (MSCs) regulated the NLRP3 inflammasome, which has emerged as a novel therapeutic approach for treating IBD. OBJECTIVES: The exact role of NLRP3 in regulating MSCs' function is unclear. Our study aimed to explore how NLRP3 affects the therapeutic effects of MSCs in colitis. METHODS: We extracted MSCs from the bone marrow of C57BL/6 mice and Nlrp3 KO mice, and identified them using differentiation assays and flow cytometry. In vitro, Both WT MSCs and Nlrp3 KO MSCs were stimulated with inflammatory factor Lipopolysaccharide (LPS), and only WT MSCs were stimulated with varying concentrations of the NLRP3 inhibitor MCC950, then, quantified IL-10 levels in the supernatant. RNA-seq was performed to examine gene expression patterns and Seahorse was used to assess oxidative phosphorylation (OXPHOS) and glycolysis levels. Western blot was used to evaluate protein expression. In vivo, we treated DSS-induced colitis with either WT or Nlrp3 KO MSCs, monitoring weight, measuring colon length, and further evaluation. We also treated DSS-induced colitis with pretreated MSCs (BAY876, oe-Glut1, or oe-NLRP3), following the same experimental procedures as described above. RESULTS: Our results demonstrate that Nlrp3 deletion did not affect MSC phenotypes, but rather promoted osteogenic differentiation. However, the absence of Nlrp3 reduced IL-10 production in MSCs in the presence of LPS, leading to impaired protection on DSS-induced colitis. Conversely, overexpression of NLRP3 promotes the production of IL-10, enhancing therapeutic effects. Further investigation revealed that Nlrp3 deficiency downregulated Glut1 expression and glycolysis activation in MSCs, resulting in decreased IL-10 production. Notably, overexpressing Glut1 in Nlrp3 KO MSCs restored their therapeutic effect that was previously dampened due to Nlrp3 deletion. CONCLUSION: Our findings demonstrate that NLRP3 heightens the therapeutic effects of MSC treatment on DSS-induced colitis.

SELECTION OF CITATIONS
SEARCH DETAIL
...