Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Opt Express ; 31(10): 16010-16024, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157689

ABSTRACT

To improve color conversion performance for color display application, we study the near-field-induced nanoscale-cavity effects on the emission efficiency and Förster resonance energy transfer (FRET) under the condition of surface plasmon (SP) coupling by inserting colloidal quantum dots (QDs) and synthesized Ag nanoparticles (NPs) into surface nano-holes fabricated on a GaN template and an InGaN/GaN quantum-well (QW) template. In the QW template, the inserted Ag NPs are close to either QWs or QDs for producing three-body SP coupling to enhance color conversion. Time-resolved and continuous-wave photoluminescence (PL) behaviors of the QW- and QD-emitting lights are investigated. The comparison between the nano-hole samples and the reference samples of surface QD/Ag NP shows that the nanoscale-cavity effect of the nano-hole leads to the enhancements of QD emission, FRET between QDs, and FRET from QW into QD. The SP coupling induced by the inserted Ag NPs can enhance the QD emission and FRET from QW into QD. Its result is further enhanced through the nanoscale-cavity effect. The relative continuous-wave PL intensities among different color components also show the similar behaviors. By introducing SP coupling to a color conversion device with the FRET process in a nanoscale cavity structure, we can significantly improve the color conversion efficiency. Simulation results confirm the basic observations in experiment.

2.
Opt Express ; 31(4): 6327-6341, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36823892

ABSTRACT

To improve the color conversion performance, we study the nanoscale-cavity effects on the emission efficiency of a colloidal quantum dot (QD) and the Förster resonance energy transfer (FRET) from quantum well (QW) into QD in a GaN porous structure (PS). For this study, we insert green-emitting QD (GQD) and red-emitting QD (RQD) into the fabricated PSs in a GaN template and a blue-emitting QW template, and investigate the behaviors of the photoluminescence (PL) decay times and the intensity ratios of blue, green, and red lights. In the PS samples fabricated on the GaN template, we observe the efficiency enhancements of QD emission and the FRET from GQD into RQD, when compared with the samples of surface QDs, which is attributed to the nanoscale-cavity effect. In the PS samples fabricated on the QW template, the FRET from QW into QD is also enhanced. The enhanced FRET and QD emission efficiencies in a PS result in an improved color conversion performance. Because of the anisotropic PS in the sample surface plane, the polarization dependencies of QD emission and FRET are observed.

3.
Opt Express ; 30(17): 31322-31335, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36242217

ABSTRACT

Although the method of inserting colloidal quantum dots (QDs) into deep nano-holes fabricated on the top surface of a light-emitting diode (LED) has been widely used for producing effective Förster resonance energy transfer (FRET) from the LED quantum wells (QWs) into the QDs to enhance the color conversion efficiency, an important mechanism for enhancing energy transfer in such an LED structure was overlooked. This mechanism, namely, the nanoscale-cavity effect, represents a near-field Purcell effect and plays a crucially important role in enhancing the color conversion efficiency. Here, we demonstrate the results of LED performance, time-resolved photoluminescence (TRPL), and numerical simulation to elucidate the nanoscale-cavity effect on color conversion by inserting a photoresist solution of red-emitting QDs into the nano-holes fabricated on a blue-emitting QW LED. Based on the TRPL study of the inserted QDs in a nano-hole structure fabricated on an un-doped GaN template of no QW, it is found that the emission efficiency of the inserted QDs is significantly increased due to the nanoscale-cavity effect. From the simulation study, it is confirmed that this effect can also increase the FRET efficiency, particularly for those radiating dipoles in the QWs oriented perpendicular to the sidewalls of the nano-holes. In the nanoscale-cavity effect, the enhanced near field distribution inside a nano-hole excited by a light emitter modifies its own radiation behavior through the Purcell effect such that its far-field emission becomes stronger.

4.
Polymers (Basel) ; 14(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35631885

ABSTRACT

Developing a biomaterial suitable for adipose-derived stem cell (ADSCs)-laden scaffolds that can directly bond to cartilage tissue surfaces in tissue engineering has still been a significant challenge. The bioinspired hybrid hydrogel approaches based on hyaluronic acid methacryloyl (HAMA) and gelatin methacryloyl (GelMA) appear to have more promise. Herein, we report the cartilage tissue engineering application of a novel photocured hybrid hydrogel system comprising HAMA, GelMA, and 0~1.0% (w/v) acrylate-functionalized nano-silica (AFnSi) crosslinker, in addition to describing the preparation of related HAMA, GelMA, and AFnSi materials and confirming their related chemical evidence. The study also examines the physicochemical characteristics of these hybrid hydrogels, including swelling behavior, morphological conformation, mechanical properties, and biodegradation. To further investigate cell viability and chondrogenic differentiation, the hADSCs were loaded with a two-to-one ratio of the HAMA-GelMA (HG) hybrid hydrogel with 0~1.0% (w/v) AFnSi crosslinker to examine the process of optimal chondrogenic development. Results showed that the morphological microstructure, mechanical properties, and longer degradation time of the HG+0.5% (w/v) AFnSi hydrogel demonstrated the acellular novel matrix was optimal to support hADSCs differentiation. In other words, the in vitro experimental results showed that hADSCs laden in the photocured hybrid hydrogel of HG+0.5% (w/v) AFnSi not only significantly increased chondrogenic marker gene expressions such as SOX-9, aggrecan, and type II collagen expression compared to the HA and HG groups, but also enhanced the expression of sulfated glycosaminoglycan (sGAG) and type II collagen formation. We have concluded that the photocured hybrid hydrogel of HG+0.5% (w/v) AFnSi will provide a suitable environment for articular cartilage tissue engineering applications.

5.
Opt Express ; 29(3): 4067-4081, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33770994

ABSTRACT

Förster resonance energy transfer (FRET) from a green-emitting quantum dot (GQD) into a red-emitting quantum dot (RQD) is an important mechanism in a multiple-color conversion process, particularly under the surface plasmon (SP) coupling condition for enhancing color conversion efficiency. Here, the dependencies of FRET efficiency on the relative concentrations of GQD and RQD in their mixtures and their surface molecule coatings for controlling surface charges are studied. Also, the SP coupling effects induced by two kinds of Ag nanoparticles on the emission behaviors of GQD and RQD are demonstrated, particularly when FRET is involved in the coupling process. FRET efficiency is reduced under the SP coupling condition. SP coupling can enhance the color conversion efficiency of either GQD or RQD. The combination of SP coupling and FRET can be used for controlling the relative converted light intensities in a multiple-color conversion process.

6.
Nanotechnology ; 32(13): 135206, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33271517

ABSTRACT

By forming nanodisk (ND) structures on a blue-emitting InGaN/GaN quantum-well (QW) template, the QWs become close to the red-emitting quantum dots (QDs) and Ag nanoparticles (NPs) attached onto the sidewalls of the NDs such that Förster resonance energy transfer (FRET) and surface plasmon (SP) coupling can occur to enhance the efficiency of blue-to-red color conversion. With a larger ND height, more QWs are exposed to open air on the sidewall for more QD/Ag NP attachment through QD self-assembly and Ag NP drop casting such that the FRET and SP coupling effects, and hence the color conversion efficiency can be enhanced. A stronger FRET process leads to a longer QD photoluminescence (PL) decay time and a shorter QW PL decay time. It is shown that SP coupling can enhance the FRET efficiency.

7.
ACS Med Chem Lett ; 9(12): 1170-1174, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30613321

ABSTRACT

BMS-823778 (2), a 1,2,4-triazolopyridinyl-methanol derived analog, was identified as a potent and selective inhibitor of human 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD-1) enzyme (IC50 = 2.3 nM) with >10,000-fold selectivity over 11ß-HSD-2. Compound 2 exhibits robust acute pharmacodynamic effects in cynomolgus monkeys (ED50 = 0.6 mg/kg) and in diet-induced obese (DIO) mice (ED50 = 34 mg/kg). Compound 2 also showed excellent inhibition in an ex vivo adipose DIO mouse model (ED50 = 5.2 mg/kg). Oral bioavailability ranges from 44% to 100% in preclinical species. Its favorable development properties, pharmacokinetics, high adipose-to-plasma concentration ratio, and preclinical pharmacology profile have prompted the evaluation of 2 for the treatment of type 2 diabetes and metabolic syndrome in phase 2 clinical trials.

8.
J Med Chem ; 60(12): 4932-4948, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28537398

ABSTRACT

BMS-816336 (6n-2), a hydroxy-substituted adamantyl acetamide, has been identified as a novel, potent inhibitor against human 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) enzyme (IC50 3.0 nM) with >10000-fold selectivity over human 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2). 6n-2 exhibits a robust acute pharmacodynamic effect in cynomolgus monkeys (ED50 0.12 mg/kg) and in DIO mice. It is orally bioavailable (%F ranges from 20 to 72% in preclinical species) and has a predicted pharmacokinetic profile of a high peak to trough ratio and short half-life in humans. This ADME profile met our selection criteria for once daily administration, targeting robust inhibition of 11ß-HSD1 enzyme for the first 12 h period after dosing followed by an "inhibition holiday" so that the potential for hypothalamic-pituitary-adrenal (HPA) axis activation might be mitigated. 6n-2 was found to be well-tolerated in phase 1 clinical studies and represents a potential new treatment for type 2 diabetes, metabolic syndrome, and other human diseases modulated by glucocorticoid control.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Adamantane/analogs & derivatives , Azetidines/pharmacology , Enzyme Inhibitors/pharmacology , 11-beta-Hydroxysteroid Dehydrogenase Type 1/chemistry , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Actins/antagonists & inhibitors , Adamantane/administration & dosage , Adamantane/chemistry , Adamantane/pharmacology , Administration, Oral , Animals , Azetidines/administration & dosage , Azetidines/chemistry , Biological Availability , Crystallography, X-Ray , Dogs , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Female , Half-Life , Humans , Hypothalamo-Hypophyseal System/drug effects , Inhibitory Concentration 50 , Macaca fascicularis , Male , Mice, Obese , Rats , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 25(6): 1196-205, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25686852

ABSTRACT

The design, synthesis and structure-activity relationships of a novel series of 3,4-disubstituted pyrrolidine acid analogs as PPAR ligands is outlined. In both the 1,3- and 1,4-oxybenzyl pyrrolidine acid series, the preferred stereochemistry was shown to be the cis-3R,4S isomer, as exemplified by the potent dual PPARα/γ agonists 3k and 4i. The N-4-trifluoromethyl-pyrimidinyl pyrrolidine acid analog 4i was efficacious in lowering fasting glucose and triglyceride levels in diabetic db/db mice.


Subject(s)
Hypoglycemic Agents/chemical synthesis , PPAR alpha/agonists , PPAR gamma/agonists , Pyrrolidines/chemistry , Animals , Blood Glucose/analysis , Diabetes Mellitus, Type 2/drug therapy , Drug Design , Female , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use , Ligands , Mice , Mice, Obese , PPAR alpha/metabolism , PPAR gamma/metabolism , Pyrrolidines/chemical synthesis , Pyrrolidines/therapeutic use , Stereoisomerism , Structure-Activity Relationship , Triglycerides/blood
10.
Bioorg Med Chem Lett ; 24(21): 5045-9, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25266782

ABSTRACT

A previous disclosure from this lab highlighted the discovery of pyridyl amides as potent 11ß-HSD1 inhibitors. In order to build additional novelty and polarity into this chemotype, replacement of the hydrogen-bonding carbonyl (CO) pharmacophore with the bioisosteric sulfonyl (SO2) group was examined. Despite initial comparisons suggesting the corresponding sulfonamides exhibited weaker activity versus their carbonyl counterparts, further optimization was performed in an effort to identify various potent and unique leads for the program. Judicious incorporation of polar moieties resulted in the identification of compounds with enhanced potency and lipophilicity profiles, resulting in leads with superior aqueous solubility and liver microsomal stability.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Metabolic Diseases/drug therapy , Sulfonamides/chemistry , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 2/antagonists & inhibitors , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , Binding Sites , Drug Evaluation, Preclinical , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/therapeutic use , Humans , Microsomes, Liver/metabolism , Molecular Docking Simulation , Protein Binding , Protein Structure, Tertiary , Structure-Activity Relationship , Sulfonamides/metabolism , Sulfonamides/therapeutic use
11.
BMC Gastroenterol ; 14: 133, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-25066384

ABSTRACT

BACKGROUND: Although pyogenic liver abscess (PPLA) fatalities are decreasing owing to early diagnosis and effective treatments, PPLA-associated complications still exist. The purpose of this study was to analyze the characteristic features of initial presentations and final outcomes of PPLA caused by different pathogens. METHODS: This retrospective study collected and analyzed information regarding initial presentations and final outcomes in patients diagnosed with PPLA at admitted at Changhua Christian Hospital from January 1 to December 31, 2010. RESULTS: During the study period, we analyzed the records of a total of 134 patients with documented PPLA. There were no significant causative pathogen-related differences in symptoms at initial presentation. Compared with the survivor group, patients in the mortality group were characterized by male gender (p < 0.001), malignancy (p < 0.001), respiratory distress (p =0.007), low blood pressure (p = 0.024), jaundice (p = < 0.001), rupture of liver abscess (p < 0.001), endophthalmitis (p = 0.003), and multiple organ failure (p < 0.001). No patients received liver transplantation or were diagnosed with HIV during the study period. According to univariate logistic regression analysis, gender (OR = 1.185, 95% CI: 0.284-11.130, p = 0.006), malignancy (OR = 2.067, 95% CI: 1.174-13.130, p = 0.004), respiratory distress (OR = 1.667, 95% CI: 1.164-14.210, p = 0.006), low blood pressure (OR = 2.167, 95% CI: 2.104-13.150, p = 0.003), jaundice (OR = 1.9, 95% CI: 1.246-3.297, p = 0.008), rupture of liver abscess (OR = 5.167, 95% CI: 2.194-23.150, p = 0.003), endophthalmitis (OR = 2.167, 95% CI: 1.234-13.140, p = 0.005), and multiple organ failure (OR = 3.067, 95% CI: 1.184-15.150, p = 0.001) differed significantly between the mortality and survivor groups. CONCLUSION: Although the initial presentations of PPLA caused by different pathogens were similar, there were significant differences in mortality in cases involving: (1) male patients, (2) malignancy, (3) initial respiratory distress, (4) initial low blood pressure, (5) jaundice, (6) rupture of liver abscess, (7) endophthalmitis, , and (8) multiple organ failure. We strongly recommend using a severity score of the disease to determine the risk of mortality for each patient with PPLA. In order to prevent complications and reduce mortality, more attention must be paid to high-risk PPLA patients.


Subject(s)
Escherichia coli Infections/diagnosis , Fusobacterium Infections/diagnosis , Klebsiella Infections/diagnosis , Liver Abscess, Pyogenic/diagnosis , Liver/diagnostic imaging , Staphylococcal Infections/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Child , Cross-Sectional Studies , Endophthalmitis/complications , Escherichia coli Infections/complications , Escherichia coli Infections/mortality , Female , Fusobacterium Infections/complications , Fusobacterium Infections/mortality , Humans , Hypotension/complications , Jaundice/complications , Klebsiella Infections/complications , Klebsiella Infections/mortality , Liver Abscess, Pyogenic/complications , Liver Abscess, Pyogenic/mortality , Logistic Models , Male , Middle Aged , Neoplasms/complications , Prognosis , Radiography , Respiratory Distress Syndrome/complications , Retrospective Studies , Rupture, Spontaneous , Sex Factors , Staphylococcal Infections/complications , Staphylococcal Infections/mortality , Taiwan , Ultrasonography , Young Adult
12.
Bioorg Med Chem Lett ; 23(18): 5239-43, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23927973

ABSTRACT

In this Letter, we describe the synthesis of several nonamidine analogs of biaryl acid factor VIIa inhibitor 1 containing weakly basic or nonbasic P1 groups. 2-Aminoisoquinoline was found to be an excellent surrogate for the benzamidine group (compound 2) wherein potent inhibition of factor VIIa is maintained relative to most other related serine proteases. In an unanticipated result, the m-benzamide P1 (compounds 21a and 21b) proved to be a viable benzamidine replacement, albeit with a 20-40 fold loss in potency against factor VIIa.


Subject(s)
Carboxylic Acids/chemistry , Drug Discovery , Factor VIIa/antagonists & inhibitors , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology , Benzamidines , Crystallography, X-Ray , Dose-Response Relationship, Drug , Factor VIIa/metabolism , Humans , Models, Molecular , Molecular Structure , Serine Proteinase Inhibitors/chemical synthesis , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 21(22): 6693-8, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21983444

ABSTRACT

Derived from the HTS hit 1, a series of hydroxyisoquinolines was discovered as potent and selective 11ß-HSD1 inhibitors with good cross species activity. Optimization of substituents at the 1 and 4 positions of the isoquinoline group in addition to the core modifications, with a special focus on enhancing metabolic stability and aqueous solubility, resulted in the identification of several compounds as potent advanced leads.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Isoquinolines/chemistry , Isoquinolines/pharmacology , Animals , Cell Line , Diabetes Mellitus, Type 2/drug therapy , Enzyme Inhibitors/pharmacokinetics , Humans , Isoquinolines/pharmacokinetics , Mice , Mice, Inbred BALB C , Structure-Activity Relationship
14.
J Med Chem ; 53(7): 2854-64, 2010 Apr 08.
Article in English | MEDLINE | ID: mdl-20218621

ABSTRACT

An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) alpha agonist, with an EC(50) of 10 nM for human PPARalpha and approximately 410-fold selectivity vs human PPARgamma in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPARdelta. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystal structures of the early lead compound 12 and compound 2 in complex with PPARalpha ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPARalpha in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.


Subject(s)
Drug Discovery , Glycine/analogs & derivatives , Oxazoles/chemistry , Oxazoles/pharmacology , PPAR alpha/agonists , Animals , Cell Line , Cricetinae , Crystallography, X-Ray , Drug-Related Side Effects and Adverse Reactions , Glycine/chemical synthesis , Glycine/chemistry , Glycine/pharmacology , Glycine/toxicity , Humans , Male , Mice , Models, Molecular , Oxazoles/chemical synthesis , Oxazoles/toxicity , PPAR alpha/chemistry , PPAR alpha/genetics , Protein Structure, Tertiary , Substrate Specificity , Transcriptional Activation/drug effects
15.
Bioorg Med Chem Lett ; 18(11): 3168-72, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18485702

ABSTRACT

Several series of pyridine amides were identified as selective and potent 11beta-HSD1 inhibitors. The most potent inhibitors feature 2,6- or 3,5-disubstitution on the pyridine core. Various linkers (CH(2)SO(2), CH(2)S, CH(2)O, S, O, N, bond) between the distal aryl and central pyridyl groups are tolerated, and lipophilic amide groups are generally favored. On the distal aryl group, a number of substitutions are well tolerated. A crystal structure was obtained for a complex between 11beta-HSD1 and the most potent inhibitor in this series.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Amides/chemical synthesis , Amides/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , Amides/chemistry , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Drug Design , Humans , Inhibitory Concentration 50 , Molecular Conformation , Molecular Structure , Pyridines/chemistry , Structure-Activity Relationship
16.
Biochim Biophys Acta ; 1774(9): 1184-91, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17707701

ABSTRACT

11beta-hydroxysteroid dehydrogenase 1 regulates the tissue availability of cortisol by interconverting cortisone and cortisol. It is capable of functioning as both a reductase and a dehydrogenase depending upon the surrounding milieu. In this work, we have studied the reaction mechanism of a soluble form of human 11beta-hydroxysteroid dehydrogenase 1 and its mode of inhibition by potent and selective inhibitors belonging to three different structural classes. We found that catalysis follows an ordered addition with NADP(H) binding preceding the binding of the steroid. While all three inhibitors tested bound to the steroid binding pocket, they differed in their interactions with the cofactor NADP(H). Compound A, a pyridyl amide bound more efficiently to the NADPH-bound form of 11beta-hydroxysteroid dehydrogenase 1. Compound B, an adamantyl triazole, was unaffected by NADP(H) binding and the sulfonamide, Compound C, showed preferential binding to the NADP+ -bound form of 11beta-hydroxysteroid dehydrogenase 1. These differences were found to augment significant selectivity towards inhibition of the reductase reaction versus the dehydrogenase reaction. This selectivity may translate to differences in the in vivo effects of 11beta-hydroxysteroid dehydrogenase 1 inhibitors.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 11-beta-Hydroxysteroid Dehydrogenases/metabolism , Pyridines/pharmacology , Sulfonamides/pharmacology , Triazoles/pharmacology , Humans , Kinetics , NADP/metabolism
17.
J Med Chem ; 50(13): 2967-80, 2007 Jun 28.
Article in English | MEDLINE | ID: mdl-17536795

ABSTRACT

There remains a high unmet medical need for a safe oral therapy for thrombotic disorders. The serine protease factor Xa (fXa), with its central role in the coagulation cascade, is among the more promising targets for anticoagulant therapy and has been the subject of intensive drug discovery efforts. Investigation of a hit from high-throughput screening identified a series of thiophene-substituted anthranilamides as potent nonamidine fXa inhibitors. Lead optimization by incorporation of hydrophilic groups led to the discovery of compounds with picomolar inhibitory potency and micromolar in vitro anticoagulant activity. Based on their high potency, selectivity, oral pharmacokinetics, and efficacy in a rat venous stasis model of thrombosis, compounds ZK 814048 (10b), ZK 810388 (13a), and ZK 813039 (17m) were advanced into development.


Subject(s)
Amides/chemical synthesis , Aminopyridines/chemical synthesis , Anticoagulants/chemical synthesis , Factor Xa Inhibitors , Thiophenes/chemical synthesis , ortho-Aminobenzoates/chemical synthesis , Amides/pharmacokinetics , Amides/pharmacology , Aminopyridines/pharmacokinetics , Aminopyridines/pharmacology , Animals , Anticoagulants/pharmacokinetics , Anticoagulants/pharmacology , Crystallography, X-Ray , Dogs , Humans , In Vitro Techniques , Male , Models, Molecular , Prothrombin Time , Rats , Rats, Wistar , Structure-Activity Relationship , Thiophenes/pharmacokinetics , Thiophenes/pharmacology , Venous Thrombosis/drug therapy , ortho-Aminobenzoates/pharmacokinetics , ortho-Aminobenzoates/pharmacology
18.
Acta Anaesthesiol Taiwan ; 45(1): 15-20, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17424754

ABSTRACT

BACKGROUND: Infraclavicular brachial plexus block has been widely used for surgical procedures below the mid humerus owing to its excellent anesthetic quality and ease of practice. However, what is the optimal upper arm position for carrying out the procedure still lacks consensus of opinion. The primary goal of this study was to determine the optimal upper arm position for coracoid infraclavicular block by ultrasonographic examination. METHODS: High-frequency (5-10 MHz) ultrasonographic examination on the vertical line 2 cm medial to the coracoid process was performed in 40 volunteers. We assessed the influence of four different upper arm positions on the topographic anatomy of the infraclavicular region. Ultrasonography-derived distances and morphometric measurements were applied to evaluate the optimal puncture site. The deviation of coracoid puncture site from the ultrasonographically modified ideal puncture site in distance was also recorded. RESULTS: When the upper arm was abducted 900, the brachial plexus was much closer to the skin (1.67 cm) and farther from the pleura (1.15 cm) as compared with other positions. In this position, the revealation of anterosuperior plexus relative to artery, identification of all three cords and pleura were 53.8%, 64.1% and 87.2%, respectively. We also found that as the upper arm was drawing from abduction to adduction the ideal puncture site tended to shift more inferiorly. CONCLUSIONS: We recommend the most optimal position for carrying out coracoid infraclavicular brachial plexus block is to abduct the upper arm 90 degrees with external rotation of the shoulder. Though ultrasonographic guidance is suggested for infraclaricular brachial plexus block, an optimal position for puncture site determined by anatomical landmark is also acceptable.


Subject(s)
Brachial Plexus , Nerve Block/methods , Shoulder/diagnostic imaging , Adult , Arm , Female , Humans , Male , Nerve Block/adverse effects , Pneumothorax/etiology , Posture , Shoulder/anatomy & histology , Ultrasonography
19.
Drug Metab Dispos ; 34(3): 427-39, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16381667

ABSTRACT

The metabolism and disposition of 14C-labeled muraglitazar (Pargluva), a novel dual alpha/gamma peroxisome proliferator-activated receptor activator, was investigated in eight healthy male subjects with and without bile collection (groups 1 and 2) after a single 20-mg oral dose. Bile samples were collected for 3 to 8 h after dosing from group 2 subjects in addition to the urine and feces collection. In plasma, the parent compound was the major component, and circulating metabolites, including several glucuronide conjugates, were minor components at all time points. The exposure to parent drug (Cmax and area under the plasma concentration versus time curve) in subjects with bile collection was generally lower than that in subjects without bile collection. The major portion of the radioactive dose was recovered in feces (91% for group 1 and 51% for group 2). In addition, 40% of the dose was recovered in the bile from group 2 subjects. In this 3- to 8-h bile, the glucuronide of muraglitazar (M13, 15% of dose) and the glucuronides of its oxidative metabolites (M17a,b,c, M18a,b,c, and M20, together, 16% of dose) accounted for approximately 80% of the biliary radioactivity; muraglitazar and its O-demethylated metabolite (M15) each accounted for approximately 4% of the dose. In contrast, fecal samples only contained muraglitazar and its oxidative metabolites, suggesting hydrolysis of biliary glucuronides in the intestine before fecal excretion. Thus, the subjects with and without bile collection showed different metabolic profiles of muraglitazar after oral administration, and glucuronidation was not observed as a major pathway of metabolic clearance from subjects with the conventional urine and fecal collection, but was found as a major elimination pathway from subjects with bile collection.


Subject(s)
Bile/chemistry , Glucuronides/metabolism , Glycine/analogs & derivatives , Oxazoles/pharmacokinetics , Carbon Radioisotopes , Glycine/blood , Glycine/chemistry , Glycine/pharmacokinetics , Glycine/urine , Humans , Male , Metabolic Clearance Rate , Metabolic Detoxication, Phase II , Molecular Structure , Oxazoles/blood , Oxazoles/chemistry , Oxazoles/urine , PPAR alpha/agonists , PPAR gamma/agonists
20.
Drug Metab Dispos ; 34(2): 267-80, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16280454

ABSTRACT

Muraglitazar (Pargluva), a dual alpha/gamma peroxisome proliferator-activated receptor activator, is currently in clinical development for treatment of type 2 diabetes. This study describes the structural elucidation of the human oxidative metabolites of muraglitazar through the use of a combination of microbial bioreactors, NMR and accurate mass analyses, and organic synthesis. Plasma, urine, and feces were collected from six healthy subjects following oral administration of 14C-labeled muraglitazar (10 mg, 100 microCi) and pooled samples were analyzed. Approximately 96% of the recovered radioactive dose was found in the feces and 3.5% in the urine. The parent compound represented >85% of the radioactivity in plasma. The fecal radioactivity was distributed among 16 metabolites (M1-M12, M14-M16, and M8a) and the parent drug, of which hydroxylation and O-demethylation metabolites (M5, M10, M11, M14, and M15) represented the prominent human metabolites. The urinary radioactivity was distributed into several peaks including muraglitazar glucuronide (M13) and the parent drug. Low concentrations of metabolites in human samples prevented direct identification of metabolites beyond liquid chromatographic (LC)-mass spectrometric analysis. Microbial strains Cunninghamella elegans and Saccharopolyspora hirsuta produced muraglitazar metabolites that had the same high performance liquid chromatography retention times and the same tandem mass spectrometric (MS/MS) properties as the corresponding human metabolites. The microbial metabolites M9, M10, M11, M14, M15, and M16 were isolated and analyzed by NMR. Based on these LC-MS/MS and NMR analyses, and organic synthesis, the structures of 16 human oxidative metabolites were identified. The oxidative metabolism of muraglitazar was characterized by hydroxylation, O-demethylation, oxazolering opening, and O-demethylation/hydroxylation, as well as O-dealkylation and carboxylic acid formation. This study demonstrated the utility of microbial bioreactors for the identification of metabolites.


Subject(s)
Cunninghamella/metabolism , Glycine/analogs & derivatives , Oxazoles/pharmacokinetics , Saccharopolyspora/metabolism , Bioreactors , Biotransformation , Feces/chemistry , Glycine/blood , Glycine/metabolism , Glycine/pharmacokinetics , Glycine/urine , Humans , Oxazoles/blood , Oxazoles/metabolism , Oxazoles/urine , Oxidation-Reduction , PPAR alpha/agonists , PPAR gamma/agonists
SELECTION OF CITATIONS
SEARCH DETAIL
...