Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Clinics (Sao Paulo) ; 79: 100336, 2024.
Article in English | MEDLINE | ID: mdl-38325020

ABSTRACT

BACKGROUND: Xuebijing (XBJ) is widely applied in the treatment of Acute Lung Injury (ALI). This study focused on the potential mechanism of XBJ in Lipopolysaccharide (LPS)-induced ALI. METHODS: The rat ALI model was established by injection of LPS (10 mg/kg) and pretreated with XBJ (4 mL/kg) three days before LPS injection. BEAS-2B cell line was stimulated with LPS (1 µg/mL) and ATP (5 mM) to induce pyroptosis, and XBJ (2 g/L) was pretreated 24h before induction. The improvement effects of XBJ on pulmonary edema, morphological changes, and apoptosis in ALI lung tissue were evaluated by lung wet/dry weight ratio, HE-staining, and TUNEL staining. Inflammatory cytokines in lung tissue and cell supernatant were determined by ELISA. pyroptosis was detected by flow cytometry. Meanwhile, the expressions of miR-181d-5p, SPP1, p-p65, NLRP3, ASC, caspase-1, p20, and GSDMD-N in tissues and cells were assessed by RT-qPCR and immunoblotting. The relationship between miR-181d-5p and SPP1 in experimental inflammation was reported by dual luciferase assay. RESULTS: XBJ could improve inflammation and pyroptosis of ALI by inhibiting contents of inflammatory cytokines, and levels of inflammation- and pyroptosis-related proteins. Mechanistically, XBJ could up-regulate miR-181d-5p and inhibit SPP1 in ALI. miR-181d-5p can target the regulation of SPP1. Depressing miR-181d-5p compensated for the ameliorative effect of XBJ on ALI, and overexpressing SPP1 suppressed the attenuating effect of XBJ on LPS-induced inflammation and pyroptosis. CONCLUSION: XBJ can regulate the miR-181d-5p/SPP1 axis to improve inflammatory response and pyroptosis in ALI.


Subject(s)
Acute Lung Injury , Drugs, Chinese Herbal , MicroRNAs , Rats , Animals , Pyroptosis , Lipopolysaccharides , MicroRNAs/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Inflammation/drug therapy , Cytokines
2.
Clinics ; Clinics;79: 100336, 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1534247

ABSTRACT

Abstract Background Xuebijing (XBJ) is widely applied in the treatment of Acute Lung Injury (ALI). This study focused on the potential mechanism of XBJ in Lipopolysaccharide (LPS)-induced ALI. Methods The rat ALI model was established by injection of LPS (10 mg/kg) and pretreated with XBJ (4 mL/kg) three days before LPS injection. BEAS-2B cell line was stimulated with LPS (1 μg/mL) and ATP (5 mM) to induce pyroptosis, and XBJ (2 g/L) was pretreated 24h before induction. The improvement effects of XBJ on pulmonary edema, morphological changes, and apoptosis in ALI lung tissue were evaluated by lung wet/dry weight ratio, HE-staining, and TUNEL staining. Inflammatory cytokines in lung tissue and cell supernatant were determined by ELISA. pyroptosis was detected by flow cytometry. Meanwhile, the expressions of miR-181d-5p, SPP1, p-p65, NLRP3, ASC, caspase-1, p20, and GSDMD-N in tissues and cells were assessed by RT-qPCR and immunoblotting. The relationship between miR-181d-5p and SPP1 in experimental inflammation was reported by dual luciferase assay. Results XBJ could improve inflammation and pyroptosis of ALI by inhibiting contents of inflammatory cytokines, and levels of inflammation- and pyroptosis-related proteins. Mechanistically, XBJ could up-regulate miR-181d-5p and inhibit SPP1 in ALI. miR-181d-5p can target the regulation of SPP1. Depressing miR-181d-5p compensated for the ameliorative effect of XBJ on ALI, and overexpressing SPP1 suppressed the attenuating effect of XBJ on LPS-induced inflammation and pyroptosis. Conclusion XBJ can regulate the miR-181d-5p/SPP1 axis to improve inflammatory response and pyroptosis in ALI.

3.
BMC Genomics ; 20(1): 658, 2019 Aug 17.
Article in English | MEDLINE | ID: mdl-31419932

ABSTRACT

BACKGROUND: Inflorescence architecture is denoted by the spatial arrangement of various lateral branches and florets formed on them, which is shaped by a complex of regulators. Unveiling of the regulatory mechanisms underlying inflorescence architecture is pivotal for improving crop yield potential. Quinoa (Chenopodium quinoa Willd), a pseudo cereal originated from Andean region of South America, has been widely recognized as a functional super food due to its excellent nutritional elements. Increasing worldwide consumption of this crop urgently calls for its yield improvement. However, dissection of the regulatory networks underlying quinoa inflorescence patterning is lacking. RESULTS: In this study, we performed RNA-seq analysis on quinoa inflorescence samples collected from six developmental stages, yielding a total of 138.8 GB data. We screened 21,610 differentially expressed genes (DEGs) among all the stages through comparative analysis. Weighted Gene Co-Expression Network Analysis (WGCNA) was performed to categorize the DEGs into ten different modules. Subsequently, we placed emphasis on investigating the modules associated with none branched and branched inflorescence samples. We manually refined the coexpression networks with stringent edge weight cutoffs, and generated core networks using transcription factors and key inflorescence architecture related genes as seed nodes. The core networks were visualized and analyzed by Cytoscape to obtain hub genes in each network. Our finding indicates that the specific occurrence of B3, TALE, WOX, LSH, LFY, GRAS, bHLH, EIL, DOF, G2-like and YABBY family members in early reproductive stage modules, and of TFL, ERF, bZIP, HD-ZIP, C2H2, LBD, NAC, C3H, Nin-like and FAR1 family members in late reproductive stage modules, as well as the several different MADS subfamily members identified in both stages may account for shaping quinoa inflorescence architecture. CONCLUSION: In this study we carried out comparative transcriptome analysis of six different stages quinoa inflorescences, and using WGCNA we obtained the most highly potential central hubs for shaping inflorescence. The data obtained from this study will enhance our understanding of the gene network regulating quinoa inflorescence architecture, as well will supply with valuable genetic resources for high-yield elite breeding in the future.


Subject(s)
Chenopodium quinoa/genetics , Gene Expression Regulation, Plant , Inflorescence/genetics , Chenopodium quinoa/anatomy & histology , Chenopodium quinoa/metabolism , Edible Grain/genetics , Gene Regulatory Networks/physiology , Inflorescence/anatomy & histology , Inflorescence/metabolism , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , RNA-Seq , South America , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Electron. j. biotechnol ; Electron. j. biotechnol;39: 42-51, may. 2019. graf, tab
Article in English | LILACS | ID: biblio-1052010

ABSTRACT

BACKGROUND: Common buckwheat (Fagopyrum esculentum) is an important staple food crop in southwest China, where drought stress is one of the largest limiting factors that lead to decreased crop production. To reveal the molecular mechanism of common buckwheat in response to drought stress, we performed a comprehensive transcriptomics study to evaluate gene expression profiles of common buckwheat during PEG-mediated drought treatment. RESULTS: In total, 45 million clean reads were assembled into 53,404 unigenes with an average length of 749 bp and N50 length of 1296 bp. A total of 1329 differentially expressed genes (DEGs) were identified by comparing wellwatered and drought-treated plants, out of which 666 were upregulated and 663 were downregulated. Furthermore, we defined the functional characteristics of DEGs using GO and KEGG classifications. GO enrichment analysis showed that the DEGs were significantly overrepresented in four categories, namely, "oxidoreductase activity," "oxidation­reduction process," "xyloglucan:xyloglucosyl transferase activity," and "apoplast." Using KEGG pathway analysis, a large number of annotated genes were overrepresented in terms such as "plant hormone signal transduction," "phenylpropanoid biosynthesis," "photosynthesis," and "carbon metabolism." Conclusions: These results can be further exploited to investigate the molecular mechanism of common buckwheat in response to drought treatment and could supply with valuable molecular sources for abiotic-tolerant elite breeding programs in the future.


Subject(s)
Stress, Physiological/genetics , Fagopyrum/genetics , Transcription Factors , Transferases , Signal Transduction , Gene Expression , Sequence Analysis, RNA , Droughts , Chlorophyll Binding Proteins , Real-Time Polymerase Chain Reaction , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL