Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters











Publication year range
1.
J Am Chem Soc ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39316737

ABSTRACT

Direct recycling is considered to be the next-generation recycling technology for spent lithium-ion batteries due to its potential economic benefits and environmental friendliness. For the spent layered oxide cathode materials, an irreversible phase transition to a rock-salt structure near the particle surface impedes the reintercalation of lithium ions, thereby hindering the lithium compensation process from fully restoring composition defects and repairing failed structures. We introduced a transition-metal hydroxide precursor, utilizing its surface catalytic activity produced during annealing to convert the rock-salt structure into a layered structure that provides fast migration pathways for lithium ions. The material repair and synthesis processes share the same heating program, enabling the spent cathode and added precursor to undergo a topological transformation to form the targeted layered oxide. This regenerated material exhibits a performance superior to that of commercial cathodes and maintains 88.4% of its initial capacity after 1000 cycles in a 1.3 Ah pouch cell. Techno-economic analysis highlights the environmental and economic advantages of surface catalytic repair over pyrometallurgical and hydrometallurgical methods, indicating its potential for practical application.

2.
BMC Med Educ ; 24(1): 832, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090597

ABSTRACT

BACKGROUND: Medical school learning environment (MSLE) has a holistic impact on students' psychosomatic health, academic achievements, and personal development. Students in different grades perceive MSLE in different ways. Thus, it is essential to investigate the specific role of student's grade in the perception of MSLE. METHODS: Using the Johns Hopkins Learning Environment Scale (JHLES) as a quantification instrument for the perception level of MSLE, 10,901 medical students in 12 universities in China were categorized into low or high JHLES group according to their questionnaires. We investigated the relationship between student's grade and JHLES category by univariate analysis employing Pearson Chi-square test and Welch's ANOVA. Then multivariable logistic regression analysis confirmed the predictive efficacy of student's grade. A nomogram concerning the prediction of low JHLES score probability in medical students was also constructed. RESULTS: A significant difference between two JHLES categories among students in different grades was observed (p < 0.001), with the proportion of the high JHLES group dominating in grade 1, 5, and the graduate subgroups (p < 0.001). The mean JHLES score declined especially in the third and fourth graders compared to freshmen (p < 0.001), while the mean score among the fifth graders had a remarkable rebound from the third graders (p < 0.001). Most imperatively, identified by multivariable logistic regression analysis, students in grade 3 (OR = 1.470, 95% CI = 1.265-1.709, p < 0.001) and 4 (OR = 1.578, 95% CI = 1.326-1.878, p < 0.001) perceived more negatively than freshmen. The constructed nomogram provided a promising prediction model for student's low JHLES score probability, with accuracy, accordance, and discrimination (area under the curve (AUC) = 0.627). CONCLUSION: The student's grade was a significant influencing factor in medical students' perception of MSLE. The perceptions among the third and fourth graders got worse, probably due to the worrying changes in various aspects of MSLE during that period. The relevant and appropriate interventions to improve medical students' perceptions are urgently needed.


Subject(s)
Students, Medical , Humans , Students, Medical/psychology , Cross-Sectional Studies , China , Female , Male , Learning , Surveys and Questionnaires , Schools, Medical , Young Adult , Perception , Education, Medical, Undergraduate , Adult
3.
Front Med (Lausanne) ; 11: 1299805, 2024.
Article in English | MEDLINE | ID: mdl-39144657

ABSTRACT

Background: Study engagement is regarded important to medical students' physical and mental wellbeing. However, the relationship between learning environment of medical schools and the study engagement of medical students was still unclear. This study was aimed to ascertain the positive effect of learning environment in study engagement. Methods: We collected 10,901 valid questionnaires from 12 medical universities in China, and UWES-S was utilized to assess the study engagement levels. Then Pearson Chi-Square test and Welch's ANOVA test were conducted to find the relationship between study engagement and learning environment, and subgroup analysis was used to eradicate possible influence of confounding factors. After that, a multivariate analysis was performed to prove learning environment was an independent factor, and we constructed a nomogram as a predictive model. Results: With Pearson Chi-Square test (p < 0.001) and Welch's ANOVA test (p < 0.001), it proved that a good learning environment contributed to a higher mean of UWES scores. Subgroup analysis also showed statistical significance (p < 0.001). In the multivariate analysis, we could find that, taking "Good" as reference, "Excellent" (OR = 0.329, 95%CI = 0.295-0.366, p < 0.001) learning environment was conducive to one's study engagement, while "Common" (OR = 2.206, 95%CI = 1.989-2.446, p < 0.001), "Bad" (OR = 2.349, 95%CI = 1.597-3.454, p < 0.001), and "Terrible" (OR = 1.696, 95%CI = 1.015-2.834, p = 0.044) learning environment only resulted into relatively bad study engagement. Depending on the result, a nomogram was drawn, which had predictive discrimination and accuracy (AUC = 0.680). Conclusion: We concluded that learning environment of school was an independent factor of medical student's study engagement. A higher level of learning environment of medical school came with a higher level of medical students' study engagement. The nomogram could serve as a predictive reference for the educators and researchers.

4.
Front Psychol ; 15: 1407851, 2024.
Article in English | MEDLINE | ID: mdl-39035085

ABSTRACT

The objective of the present study was to analyze the effect of the match between family and school socioeconomic status (SES) on adolescents' aggressive behaviors. Additionally, the moderating roles of gender and the parent-child relationship were examined. A total of 2,823 adolescents completed the Aggressive Behavior Scale, the Parent-Child Relationship Scale, and the Family SES Scale. School SES was measured by the average family SES of all students in the school. SES was categorized as high or low based on one standard deviation above or below the mean. The results showed that when there was a match between family and school SES, adolescents with "Low Family-Low School" SES exhibited more aggressive behaviors compared to those with "High Family-High School" SES. When there was a mismatch between family and school SES, adolescents with "High Family-Low School" SES exhibited higher levels of aggressive behaviors than those with "Low Family-High School" SES. Gender did not moderate these effects. Furthermore, when the parent-child relationship was poor, adolescents exhibited higher levels of aggressive behaviors when family SES exceeded school SES. Conversely, the effects of family and school SES on aggressive behavior were not significant when the parent-child relationship was strong. The present study highlights that the match and mismatch between family and school SES significantly influence adolescents' aggressive behaviors and that a strong parent-child relationship has a protective effect.

5.
J Am Chem Soc ; 146(30): 20814-20822, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39031086

ABSTRACT

The sluggish CO2 reduction and evolution reaction kinetics are thorny problems for developing high-performance Li-CO2 batteries. For the complicated multiphase reactions and multielectron transfer processes in Li-CO2 batteries, exploring efficient cathode catalysts and understanding the interplay between structure and activity are crucial to couple with these pendent challenges. In this work, we applied the CoS as a model catalyst and adjusted its electronic structure by introducing sulfur vacancies to optimize the d-band and p-band centers, which steer the orbital hybridization and boost the redox kinetics between Li and CO2, thus improving the discharge platform of Li-CO2 batteries and altering the deposition behavior of discharge products. As a result, a highly efficient bidirectional catalyst exhibits an ultrasmall overpotential of 0.62 V and a high energy efficiency of 82.8% and circulates stably for nearly 600 h. Meanwhile, density functional theory calculations and multiphysics simulations further elucidate the mechanism of bidirectional activity. This work not only provides a proof of concept to design a remarkably efficient catalyst but also sheds light on promoting the reversible Li-CO2 reaction by tailoring the electronic structure.

6.
Nat Commun ; 15(1): 5451, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937487

ABSTRACT

Shuttling of lithium polysulfides and slow redox kinetics seriously limit the rate and cycling performance of lithium-sulfur batteries. In this study, Fe3O4-dopped carbon cubosomes with a plumber's nightmare structure (SP-Fe3O4-C) are prepared as sulfur hosts to construct cathodes with high rate capability and long cycling life for Li-S batteries. Their three-dimensional continuous mesochannels and carbon frameworks, along with the uniformly distributed Fe3O4 particles, enable smooth mass/electron transport, strong polysulfides capture capability, and fast catalytic conversion of the sulfur species. Impressively, the SP-Fe3O4-C cathode exhibits top-level comprehensive performance, with high specific capacity (1303.4 mAh g-1 at 0.2 C), high rate capability (691.8 mAh gFe3O41 at 5 C), and long cycling life (over 1200 cycles). This study demonstrates a unique structure for high-performance Li-S batteries and opens a distinctive avenue for developing multifunctional electrode materials for next-generation energy storage devices.

7.
J Am Chem Soc ; 146(20): 14036-14047, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38725301

ABSTRACT

The use of nickel-rich layered materials as cathodes can boost the energy density of lithium batteries. However, developing a safe and long-term stable nickel-rich layered cathode is challenging primarily due to the release of lattice oxygen from the cathode during cycling, especially at high voltages, which will cause a series of adverse effects, leading to battery failure and thermal runaway. Surface coating is often considered effective in capturing active oxygen species; however, its process is rather complicated, and it is difficult to maintain intact on the cathode with large volume changes during cycling. Here, we propose an in situ construction of a multifunctional cathode/electrolyte interphase (CEI), which is easy to prepare, repairable, and, most importantly, capable of continuously capturing active oxygen species during the entire life span. This unique protective mechanism notably improves the cycling stability of Li||LiNi0.8Co0.1Mn0.1O2 (NCM811) cells at rigorous working conditions, including ultrahigh voltage (4.8 V), high temperature (60 °C), and fast charging (10 C). An industrial 1 A h graphite||NCM811 pouch cell achieved stable operation of 600 cycles with a capacity retention of 79.6% at 4.4 V, exhibiting great potential for practical use. This work provides insightful guidance for constructing a multifunctional CEI to bypass limitations associated with high-voltage operations of nickel-rich layered cathodes.

8.
Nat Commun ; 15(1): 3914, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724546

ABSTRACT

Solid polymer electrolytes exhibit enhanced Li+ conductivity when plasticized with highly dielectric solvents such as N,N-dimethylformamide (DMF). However, the application of DMF-containing electrolytes in solid-state batteries is hindered by poor cycle life caused by continuous DMF degradation at the anode surface and the resulting unstable solid-electrolyte interphase. Here we report a composite polymer electrolyte with a rationally designed Hofmann-DMF coordination complex to address this issue. DMF is engineered on Hofmann frameworks as tethered ligands to construct a locally DMF-rich interface which promotes Li+ conduction through a ligand-assisted transport mechanism. A high ionic conductivity of 6.5 × 10-4 S cm-1 is achieved at room temperature. We demonstrate that the composite electrolyte effectively reduces the free shuttling and subsequent decomposition of DMF. The locally solvent-tethered electrolyte cycles stably for over 6000 h at 0.1 mA cm-2 in Li | |Li symmetric cell. When paired with sulfurized polyacrylonitrile cathodes, the full cell exhibits a prolonged cycle life of 1000 cycles at 1 C. This work will facilitate the development of practical polymer-based electrolytes with high ionic conductivity and long cycle life.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124410, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38718745

ABSTRACT

Tandem enzyme can catalyze some cascade reactions with high efficiency, and some few tandem enzyme-like mimics have been discovered recently. Further improving the catalytic efficiency of tandem nanoenzymes with facile method may undoubtedly promote and broaden their applications in various fields. In this work, cupric oxide nanoparticles (CuO NPs) with dual-functional enzyme mimics were synthesized using the rapid deposition method in advance, which simultaneously combined with lanthanide infinite coordination polymers (Ln ICPs) during the self-assemble of Tb3+, guanine-5'-triphosphate (GTP) and auxiliary ligand terephthalic acid (TA). Excitingly, the obtained Tb-GTP/TA@CuO ICPs, not only displayed obviously enhanced tandem catalytic activity compared with pure CuO NPs, but also provided a versatile ratiometric platform for ultrahigh selective and sensitive detection of glutathione (GSH) under single-wavelength excitation. A good linear relationship between the ratio signal and the GSH concentration was spanning from 0.001 to 20 µM with an impressive detection limit of 0.50 nM. This study opens a new and universal avenue for preparing integrated multifunctional probes by coupling of nanoenzyme catalytic activity with superior luminescent Ln ICPs through facile method.


Subject(s)
Copper , Glutathione , Lanthanoid Series Elements , Polymers , Spectrometry, Fluorescence , Copper/chemistry , Glutathione/analysis , Glutathione/chemistry , Polymers/chemistry , Lanthanoid Series Elements/chemistry , Spectrometry, Fluorescence/methods , Limit of Detection , Nanoparticles/chemistry , Catalysis , Metal Nanoparticles/chemistry
10.
Adv Mater ; 36(29): e2400115, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38752837

ABSTRACT

All-solid-state lithium metal batteries (ASSLMBs) are considered as the most promising candidates for the next-generation high-safety batteries. To achieve high energy density in ASSLMBs, it is essential that the solid-state electrolytes (SSEs) are lightweight, thin, and possess superior electrochemical stability. In this study, a feasible and scalable fabrication approach to construct 3D supporting skeleton using an electro-blown spinning technique is proposed. This skeleton not only enhances the mechanical strength but also hinders the migration of Li-salt anions, improving the lithium-ion transference number of the SSE. This provides a homogeneous distribution of Li-ion flux and local current density, promoting uniform Li deposition. As a result, based on the mechanically robust and thin SSEs, the Li symmetric cells show outstanding Li plating/stripping reversibility. Besides, a stable interface contact between SSE and Li anode has been established with the formation of an F-enriched solid electrolyte interface layer. The solid-state Li|sulfurized polyacrylonitrile (Li|SPAN) cell achieves a capacity retention ratio of 94.0% after 350 cycles at 0.5 C. Also, the high-voltage Li|LCO cell shows a capacity retention of 92.4% at 0.5 C after 500 cycles. This fabrication approach for SSEs is applicable for commercially large-scale production and application in high-energy-density and high-safety ASSLMBs.

11.
Int J Biol Macromol ; 267(Pt 2): 131538, 2024 May.
Article in English | MEDLINE | ID: mdl-38621572

ABSTRACT

Lignin is continuously investigated by various techniques for valorization due to its high content of oxygen-containing functional groups. Catalytic systems employing hydrolysis­hydrogenolysis, leveraging the synergistic effect of redox metal sites and acid sites, exhibit efficient degradation of lignin. The predominance of either hydrolysis or hydrogenolysis reactions hinges upon the relative activity of acid and metal sites, as well as the intensity of the reductive atmosphere. In this study, the Pd-MoOx/TiO2 catalyst was found to primarily catalyze hydrolysis in the lignin depolymerization process, attributed to the abundance of moderate acidic sites on Pd and the redox-assisted catalysis of MoOx under inert conditions. After subjecting the reaction to 240 °C for 30 h, a yield of 48.22 wt% of total phenolic monomers, with 5.90 wt% consisting of diphenols, was achieved. Investigation into the conversion of 4-propylguaiacol (4-PG), a major depolymerized monomer of corncob lignin, revealed the production of ketone intermediates, a phenomenon closely linked to the unique properties of MoOx. Dehydrogenation of the propyl is a key step in initiating the reaction, and 4-PG could be almost completely transformed, accompanied by an over 97 % of 4-propylcatechol selectivity. This distinctive system lays a new theoretical groundwork for the eco-friendly valorization of lignin.


Subject(s)
Lignin , Palladium , Titanium , Lignin/chemistry , Hydrolysis , Catalysis , Titanium/chemistry , Palladium/chemistry , Hydrogen/chemistry , Molybdenum/chemistry , Oxidation-Reduction , Oxides/chemistry
12.
J Fluoresc ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483693

ABSTRACT

Design and fabrication of integrated multifunctional probes with intrinsic catalytic and detection abilities is of great importance to simplify the operation in biosensing application with high sensitivity. Herein, dual-emitting lanthanide coordination polymers (Ln-CPs) were facilely prepared by self-assembly of guanine diphosphate (GDP), terephthalic acid (TA), Tb3+ and Cu2+ designated as Tb/Cu-GDP/TA CPs. The doped Cu2+ endowed CPs with obviously enhanced peroxidase mimicking activity compared with free Cu2+. In the presence of H2O2, the probe catalyzed the oxidation of TA generating a new blue fluorescent product, while the fluorescence of Tb3+ decreased simultaneously. Therefore, a new sensitive ratiometric fluorescent sensor for H2O2 has been developed with a good linear range from 0.01 to 300 µM and limit of 1.62 nM. Moreover, the proposed platform could be extended to GSH ratiometric assay in the presence of H2O2, and interestingly, the detection performance could be easily adjusted by adding different concentration of H2O2. This work will facilitate the development of luminescent nanoenzymes based on Ln-CPs to construct the simple ratiomatric sensing platform.

13.
Talanta ; 273: 125922, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38503121

ABSTRACT

Rapid and sensitive detection of nucleic acids has become crucial in various fields. However, most current nucleic acid detection methods can only be used in specific scenarios, such as RT-qPCR, which relies on fluorometer for signal readout, limiting its application at home or in the field due to its high price. In this paper, a universal nucleic acid detection platform combing CRISPR/Cas12a and strand displacement amplification (CRISPR-SDA) with multiple signal readout was established to adapt to different application scenarios. Nucleocapsid protein gene of SARS-CoV-2 (N gene) and hepatitis B virus (HBV) DNA were selected as model targets. The proposed strategy achieved the sensitivity of 53.1 fM, 0.15 pM, and 1 pM for N gene in fluorescence mode, personal glucose meter (PGM) mode and lateral flow assay (LFA) mode, respectively. It possessed the ability to differentiate single-base mismatch and the presence of salmon sperm DNA with a mass up to 105-fold of the targets did not significantly interfere with the assay signal. The general and modular design idea made CRISPR-SDA as simple as building blocks to construct nucleic acid sensing methods to meet different requirements by simply changing the SDA template and selecting suitable signal report probes, which was expected to find a breadth of applications in nucleic acids detection.


Subject(s)
Biosensing Techniques , Nucleic Acids , Male , Humans , CRISPR-Cas Systems , Semen , Biological Assay , DNA , Nucleic Acid Amplification Techniques
14.
Angew Chem Int Ed Engl ; 63(21): e202401974, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38470070

ABSTRACT

Despite many additives have been reported for aqueous zinc ion batteries, steric-hindrance effect of additives and its correlation with Zn2+ solvation structure have been rarely reported. Herein, large-sized sucrose biomolecule is selected as a paradigm additive, and steric-hindrance electrolytes (STEs) are developed to investigate the steric-hindrance effect for solvation structure regulation. Sucrose molecules do not participate in Zn2+ solvation shell, but significantly homogenize the distribution of solvated Zn2+ and enlarge Zn2+ solvation shell with weakened Zn2+-H2O interaction due to the steric-hindrance effect. More importantly, STEs afford the water-shielding electric double layer and in situ construct the organic and inorganic hybrid solid electrolyte interface, which effectively boost Zn anode reversibility. Remarkably, Zn//NVO battery presents high capacity of 3.9 mAh ⋅ cm-2 with long cycling stability for over 650 cycles at lean electrolyte of 4.5 µL ⋅ mg-1 and low N/P ratio of 1.5, and the stable operation at wide temperature (-20 °C~+40 °C).

15.
Adv Mater ; 36(23): e2313144, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38441371

ABSTRACT

The direct recycling of cathode materials in lithium-ion batteries is important for environmental protection and resource conservation. The key regeneration processes are composition replenishment and atom rearrangement, both of which depend on the migration and diffusion of atoms. However, for the direct recycling of degraded LiNi0.5Co0.2Mn0.3O2 (D-NCM523) cathode, the irreversible phase transitions that accumulate during the long-term cycles block the Li diffusion channels with a high diffusion energy barrier, making it difficult to fully repair the layered structure and resulting in rapid capacity decay. To address the challenge, fast Li replenishment channels are rebuilt to regulate the surface phase and effectively assist the regeneration process with a reduced energy barrier. This method reduces the amount of Li supplement by >75% and shortens the sintering time (only 2 h) to fully regenerate D-NCM523, compared to general direct recycling methods. The regenerated NCM523 (LCMB-NCM523) exhibits a satisfactory repaired specific capacity of 160 mAh g-1 and excellent cycling stability, retaining 78% of its capacity after 300 cycles. In addition, LCMB-NCM523 is recycled with improved thermal decomposition peak temperature and enables 200 cycles even at 60 °C, greatly improving safety. This work proposes a promising way for the large-scale direct regeneration of layered cathodes.

16.
Cell Biosci ; 14(1): 33, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38462627

ABSTRACT

BACKGROUND: Malignant mesothelioma is a type of infrequent tumor that is substantially related to asbestos exposure and has a terrible prognosis. We tried to produce a fibroblast differentiation-related gene set for creating a novel classification and prognostic prediction model of MESO. METHOD: Three databases, including NCBI-GEO, TCGA, and MET-500, separately provide single-cell RNA sequencing data, bulk RNA sequencing profiles of MESO, and RNA sequencing information on bone metastatic tumors. Dimensionality reduction and clustering analysis were leveraged to acquire fibroblast subtypes in the MESO microenvironment. The fibroblast differentiation-related genes (FDGs), which were associated with survival and subsequently utilized to generate the MESO categorization and prognostic prediction model, were selected in combination with pseudotime analysis and survival information from the TCGA database. Then, regulatory network was constructed for each MESO subtype, and candidate inhibitors were predicted. Clinical specimens were collected for further validation. RESULT: A total of six fibroblast subtypes, three differentiation states, and 39 FDGs were identified. Based on the expression level of FDGs, three MESO subtypes were distinguished in the fibroblast differentiation-based classification (FDBC). In the multivariate prognostic prediction model, the risk score that was dependent on the expression level of several important FDGs, was verified to be an independently effective prognostic factor and worked well in internal cohorts. Finally, we predicted 24 potential drugs for the treatment of MESO. Moreover, immunohistochemical staining and statistical analysis provided further validation. CONCLUSION: Fibroblast differentiation-related genes (FDGs), especially those in low-differentiation states, might participate in the proliferation and invasion of MESO. Hopefully, the raised clinical subtyping of MESO would provide references for clinical practitioners.

17.
Acta Biomater ; 177: 525-537, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38360291

ABSTRACT

TiO2 nanotube topography, as nanomechanical stimulation, can significantly promote osteogenesis and improve the osteointegration on the interface of implants and bone tissue. However, the underlying mechanism has not been fully elucidated. XB130 is a member of the actin filament-associated protein family and is involved in the regulation of cytoskeleton and tyrosine kinase-mediated signalling as an adaptor protein. Whether XB130 is involved in TiO2 nanotubes-induced osteogenic differentiation and how it functions in mechano-biochemical signalling transduction remain to be elucidated. In this study, the role of XB130 on TiO2 nanotube-induced osteogenesis and mechanotransduction was systematically investigated. TiO2 nanotube topography was fabricated via anodic oxidation and characterized. The osteogenic effect was significantly accelerated by the TiO2 nanotube surface in vitro and vivo. XB130 was significantly upregulated during this process. Moreover, XB130 overexpression significantly promoted osteogenic differentiation, whereas its knockdown inhibited it. Filamentous actin depolymerization could change the expression and distribution of XB130, thus affecting osteogenic differentiation. Mechanistically, XB130 could interact with Src and result in the activation of the downstream PI3K/Akt/GSK-3ß/ß-catenin pathway, which accounts for the regulation of osteogenesis. This study for the first time showed that the enhanced osteogenic effect of TiO2 nanotubes could be partly due to the filamentous actin and XB130 mediated mechano-biochemical signalling transduction, which might provide a reference for guiding the design and modification of prostheses to promote bone regeneration and osseointegration. STATEMENT OF SIGNIFICANCE: TiO2 nanotubes topography can regulate cytoskeletal rearrangement and thus promote osteogenic differentiation of BMSCs. However, how filamentous actin converts mechanical stimulus into biochemical activity remains unclear. XB130 is a member of actin filament-associated protein family and involves in the regulation of tyrosine kinase-mediated signalling. Therefore, we hypothesised that XB130 might bridge the mechano-biochemical signalling transduction during TiO2 nanotubes-induced osteogenic differentiation. For the first time, this study shows that TiO2 nanotubes enhance osteogenesis through filamentous actin and XB130 mediated mechanotransduction, which provides new theoretical basis for guiding the design and modification of prostheses to promote bone regeneration and osseointegration.


Subject(s)
Nanotubes , Osteogenesis , Actins , Glycogen Synthase Kinase 3 beta/pharmacology , Mechanotransduction, Cellular , Phosphatidylinositol 3-Kinases , Actin Cytoskeleton , Nanotubes/chemistry , Protein-Tyrosine Kinases , Cell Differentiation , Titanium/pharmacology , Titanium/chemistry
18.
J Am Chem Soc ; 146(5): 3553-3563, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38285529

ABSTRACT

Flexible membranes with ultrathin thickness and excellent mechanical properties have shown great potential for broad uses in solid polymer electrolytes (SPEs), on-skin electronics, etc. However, an ultrathin membrane (<5 µm) is rarely reported in the above applications due to the inherent trade-off between thickness and antifailure ability. We discover a protic solvent penetration strategy to prepare ultrathin, ultrastrong layered films through a continuous interweaving of aramid nanofibers (ANFs) with the assistance of simultaneous protonation and penetration of a protic solvent. The thickness of a pure ANF film can be controlled below 5 µm, with a tensile strength of 556.6 MPa, allowing us to produce the thinnest SPE (3.4 µm). The resultant SPEs enable Li-S batteries to cycle over a thousand times at a high rate of 1C due to the small ionic impedance conferred by the ultrathin characteristic and regulated ionic transportation. Besides, a high loading of the sulfur cathode (4 mg cm-2) with good sulfur utilization was achieved at a mild temperature (35 °C), which is difficult to realize in previously reported solid-state Li-S batteries. Through a simple laminating process at the wet state, the thicker film (tens of micrometers) obtained exhibits mechanical properties comparable to those of thin films and possesses the capability to withstand high-velocity projectile impacts, indicating that our technique features a high degree of thickness controllability. We believe that it can serve as a valuable tool to assemble nanomaterials into ultrathin, ultrastrong membranes for various applications.

19.
Small ; 20(25): e2307250, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38196305

ABSTRACT

A novel all-solid-state thin-film lithium-ion battery (LIB) is presented to address the trade-off issue between the specific capacity and stabilities in a conventional LIB. Different from the conventional one, this LIB device consists of two same LIB components located at the front and back surfaces of the substrate, respectively. These two LIB components form parallel connection by using the conductive through vias distributed in the substrate. Compared with the conventional one, this LIB device doubles the areal specific capacity. More importantly, due to the stress-compensation effect, this device effectively suppresses the stress induced by its volume changes resulting from the lithiation/delithiation processes and thermal expansion. Consequently, this device shows good cycling and thermal stabilities even when working at an industrial-grade high temperature of 125 °C. To further improve the specific capacity without sacrificing the stabilities, a 3D stacked LIB is successfully realized by using this LIB device as the cell, in which each cell is parallelly connected by using the above-mentioned conductive through vias. This 3D stacked LIB is experimentally demonstrated to obtain high specific capacity (79.9 µAh cm-2) and good stabilities (69.3% of retained capacity after 100 cycles at 125 °C) simultaneously.

20.
Int J Mol Sci ; 25(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38203839

ABSTRACT

Larch is widely distributed throughout the world and is an important species for timber supply and the extraction of industrial raw materials. In recent years, the hybrid breeding of Larix kaempferi and Larix olgensis has shown obvious heterosis in quick-growth, stress resistance and wood properties. However, its growth and development cycle is too long to meet general production needs. In order to shorten the breeding cycle, we have for the first time successfully established and optimized a somatic embryogenesis system for Larix kaempferi × Larix olgensis. We found that the highest rate of embryonal-suspensor mass (ESM) induction was observed when late cotyledonary embryos were used as explants. The induced ESMs were subjected to stable proliferation, after which abscisic acid (ABA) and polyethylene glycol (PEG) were added to successfully induce somatic embryos. Treatment with PEG and ABA was of great importance to somatic embryo formation and complemented each other's effect. ABA assisted embryo growth, whereas PEG facilitated the formation of proembryo-like structures. On top of this, we studied in more detail the relationship between redox homeostasis and the efficiency of somatic embryogenesis (frequency of ESM induction). During subculture, we observed the gradual formation of three distinct types of ESM. The Type I ESM is readily able to form somatic embryos. In contrast to type I, the type III ESM suffers from severe browning, contains a higher level of hydrogen peroxide (H2O2) and demonstrates a decreased ability to form somatic embryos. External treatment with H2O2 decreased the somatic embryogenesis efficiency of Type I and type III ESMs, or the higher the exogenous H2O2 content, the lower the resulting somatic embryogenesis efficiency. We found that treatment with the H2O2 scavenger DMTU (dimethylthiourea) could significantly increase the somatic embryogenesis efficiency of the type III ESM, as a result of a decline in endogenous H2O2 content. Overall, these findings have contributed to setting up a successful somatic embryogenesis system for larch production.


Subject(s)
Larix , Hydrogen Peroxide , Plant Breeding , Abscisic Acid/pharmacology , Embryonic Development
SELECTION OF CITATIONS
SEARCH DETAIL