Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Cancer Res Clin Oncol ; 150(7): 373, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073490

ABSTRACT

PURPOSE: Tumor initiating cells (TICs) or cancer stem cells (CSCs) are considered to be the main culprit of hepatocellular carcinoma (HCC) initiation and progression, nevertheless the mechanism by which tumor microenvironment maintains the HCC 'stemness' is not fully understood. This study aims to investigate the effect of regulatory T cells (Tregs) on the TICs characteristics of HCC. METHODS: Immunocytochemistry, flow cytometry, real-time PCR, western blot, in vitro sphere-formation, and in vivo tumorigenesis assay were used to detect HCC 'stemness'. Additionally, after forced expression or inhibition of FoxP3, ß-catenin expression and HCC 'stemness' were investigated. RESULTS: Tregs enhanced the 'stemness' of HCC cells by upregulating TIC-related markers CD133, Oct3/4, Sox2, c-Myc, Klf4, Nanog, CD13, EpCAM, and inducting epithelial to mesenchymal transition (EMT), increasing TICs ratio, as well as promoting tumorigenic ability. Moreover, ß-catenin and c-Myc were upregulated in HCC cells after co-cultured with Tregs. HCC 'stemness' was inhibited after treatment with Wnt/ß-catenin pathway inhibitor. Furthermore, forced expression of FoxP3 resulted in increased GSK3ß, decreased ß-catenin and TIC ratio in HCC. In contrast, FoxP3 interference reduced GSK3ß, enhanced ß-catenin and TIC ratio of HCC. CONCLUSION: This study, for the first time, demonstrated that Tregs increased the population of TICs in HCC by inhibiting FoxP3 as well as promoting ß-catenin expression.


Subject(s)
Carcinoma, Hepatocellular , Forkhead Transcription Factors , Kruppel-Like Factor 4 , Liver Neoplasms , Neoplastic Stem Cells , T-Lymphocytes, Regulatory , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/immunology , Liver Neoplasms/metabolism , Humans , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/immunology , Forkhead Transcription Factors/metabolism , T-Lymphocytes, Regulatory/immunology , Kruppel-Like Factor 4/metabolism , Mice , Animals , Cell Line, Tumor , Tumor Microenvironment/immunology , Epithelial-Mesenchymal Transition , beta Catenin/metabolism , Mice, Nude , Wnt Signaling Pathway , Mice, Inbred BALB C
2.
Sheng Li Xue Bao ; 76(3): 475-486, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38939941

ABSTRACT

The secretory leukocyte protease inhibitor (SLPI) is mainly produced by immune cells and various epithelial cells, and is regulated by a variety of cytokines, such as transforming growth factor ß1, interleukin 1ß and tumor necrosis factor α. In addition to commonly known anti-protease activity, it has been found in recent years that SLPI plays essential roles in anti-apoptosis, regulating cell cycle, cell differentiation and proliferation, and inhibiting inflammatory response. SLPI can also assist the immune system to clear pathogens/damaged cells by enhancing the phagocytic function of phagocytes, so as to ameliorate tissue damage and promote repair. Moreover, recent studies have shown that the change of SLPI level in the serum of patients post cardiovascular surgery has a high diagnostic value in predicting the occurrence of acute kidney injury, suggesting that SLPI is involved in ischemia-reperfusion (IR) induced acute kidney injury. In this review, we summarized the expression, regulation, signaling pathways and associated biological events of SLPI in different organ injury models, and also discussed and evaluated the potential role of SLPI in renoprotection against IR induced acute kidney injury and its potential as a new biomarker.


Subject(s)
Acute Kidney Injury , Reperfusion Injury , Secretory Leukocyte Peptidase Inhibitor , Acute Kidney Injury/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/physiopathology , Humans , Reperfusion Injury/metabolism , Animals , Secretory Leukocyte Peptidase Inhibitor/metabolism , Secretory Leukocyte Peptidase Inhibitor/physiology , Signal Transduction
3.
Bioresour Technol ; 406: 131044, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936679

ABSTRACT

The recovery of biopolymers, particularly alginate-like extracellular polymers, from municipal sludge represents a promising step toward sustainable sludge treatment practices. Originating from wastewater plants in complexly polluted environments, alginate-like extracellular polymers carry potential environmental risks concerning their reuse. This study employs ultrahigh-performance liquid chromatography-tandem mass spectrometry to investigate the distribution coefficients and occurrence of alginate-like extracellular polymers and sulfamethoxazole. Results demonstrate a negative distribution coefficient, suggesting an inhibitory effect on sulfamethoxazole dissolution. The ethanol-extracted alginate-like extracellular polymers exhibits higher sulfamethoxazole levels (approximately 52%) than those obtained via dialysis extraction. Three-dimensional excitation-emission matrix analysis and adsorption studies indicate the absence of tyrosine-like substances in the alginate-like extracellular polymers, unlike in other extracellular polymeric substances. This absence diminishes hydrophobic interactions, highlighting that electrostatic interactions play a more important role. These insights are crucial for understanding the adsorption behavior of alginate-like extracellular polymers and optimizing their large-scale extraction processes.


Subject(s)
Alginates , Sewage , Sulfamethoxazole , Alginates/chemistry , Sewage/chemistry , Adsorption , Glucuronic Acid/chemistry , Chromatography, High Pressure Liquid , Extracellular Polymeric Substance Matrix/chemistry , Extracellular Polymeric Substance Matrix/metabolism , Polymers/chemistry , Tandem Mass Spectrometry
4.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1082-1090, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621915

ABSTRACT

This study aims to investigate the impact of Kuntai Capsules(KTC) on polycystic ovarian syndrome(PCOS) rat models and explore the underlying mechanism. Fifty female SD rats were randomly divided into five groups(10 rats in each group), including control group, model group, low-, medium-, and high-dose KTC group. Except for the control group, the other groups were injected with dehydroepiandrosterone(DHEA) combined with a high-fat diet(HFD) to induce the PCOS rat model for 28 days. 0.315, 0.63, and 1.26 g·kg~(-1)·d~(-1) KTC was dissolved in the same amount of normal saline and given to low-, medium-, and high-dose KTC groups by gavage. Both control group and model group were given the same amount of normal saline for 15 days. After administration, fasting blood glucose(FBG) was measured by a glucose meter. Fasting insulin(FINS), luteinizing hormone(LH), testosterone(T), and follicle-stimulating hormone(FSH) were detected by enzyme-linked immunosorbent assay(ELISA), and LH/FSH ratio and insulin resistance index(HOMA-IR) were calculated. The pathological morphology of ovarian tissue was observed by hematoxylin-eosin(HE) staining. The expression levels of collagen α type Ⅲ 1 chain(COL3A1), apoptotic factors Bax, and Bcl-2 were detected using Western blot and immunofluorescence. The mRNA expressions of COL3A1, Bax, and Bcl-2 in ovarian tissue were performed by real-time PCR(RT-PCR). The results show that compared with the control group, the body weight, serum levels of FBG, FINS, LH, T, LH/FSH, and HOMA-IR are higher in model group(P<0.05 or P<0.01), and the level of FSH is lower(P<0.05). In model group, a large number of white blood cells are found in the vaginal exfoliated cells, mainly in the interictal phase. There are more cystic prominences on the surface of the ovary. The thickness of the granular cell layer is reduced, and oocytes are absent. COL3A1 and Bax protein expression levels are increased(P<0.01), while Bcl-2 protein expression levels are decreased(P<0.05) in the ovarian tissue COL3A1 and Bax mRNA expression levels are increased in ovarian tissue(P<0.05). Compared with the model group, the body weight, FBG, FINS, LH, T, LH/FSH, and HOMA-IR in low-, medium-, and high-dose KTC groups are decreased(P<0.05 or P<0.01), while the levels of FSH in medium-, and high-dose KTC groups are increased(P<0.05 or P<0.01). Low-, medium-, and high-dose KTC groups gradually show a stable interictal phase. The surface of the ovary is smooth. Oocytes and mature follicles can be seen in ovarian tissue, and the thickness of the granular cell layer is increased. The expression level of COL3A1 protein decreases in low-and medium-dose KTC groups(P<0.05 or P<0.01), and that of Bax protein decreases in low-dose KTC group(P<0.05 or P<0.01), and the expression level of Bcl-2 protein increases in low-dose KTC group(P<0.01). The expression levels of COL3A1 and Bax mRNA decreased in the low-dose KTC group(P<0.05), while the expression levels of Bcl-2 mRNA increased(P<0.05). In summary, KTC can inhibit ovarian granulosa cell apoptosis and reduce follicular atresia by regulating the AGE-RAGE signaling pathway. It can promote insulin secretion, reduce blood sugar and body weight, restore serum hormone levels, improve symptoms of PCOS, alleviate morphological damage of the ovary, and restore ovarian function, which is of great value in the treatment of PCOS.


Subject(s)
Polycystic Ovary Syndrome , Humans , Rats , Female , Animals , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/genetics , bcl-2-Associated X Protein , Saline Solution , Rats, Sprague-Dawley , Follicular Atresia , Signal Transduction , Body Weight , Follicle Stimulating Hormone , RNA, Messenger
5.
J Thorac Dis ; 15(12): 6502-6514, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38249857

ABSTRACT

Background: The frequent exacerbator phenotype of acute exacerbations of chronic obstructive pulmonary disease (AECOPD) is characterized by experiencing at least two exacerbations per year, leading to a significant economic burden on healthcare systems worldwide. Although several biomarkers have been shown to be effective in assessing AECOPD severity in recent years, there is a lack of studies on markers to predict the frequent exacerbator phenotype of AECOPD. The current study aimed to develop a new predictive model for the frequent exacerbator phenotype of AECOPD based on rapid, inexpensive, and easily obtained routine markers. Methods: This was a single-center, retrospective study that enrolled a total of 2,236 AECOPD patients. The participants were divided into two groups based on the frequency of exacerbations: infrequent group (n=1,827) and frequent group (n=409). They underwent a complete blood count, as well as blood biochemistry, blood lipid and coagulation testing, and general characteristics were also recorded. Univariate analysis and binary multivariate logistic regression analyses were used to explore independent risk factors for the frequent exacerbator phenotype of AECOPD, which could be used as components of a new predictive model. The receiver operator characteristic (ROC) curve was used to assess the predictive value of the new model, which consisted of all significant risk factors predicting the primary outcome. The nomogram risk prediction model was established using R software. Results: Age, gender, length of stay (LOS), neutrophils, monocytes, eosinophils, direct bilirubin (DBil), gamma-glutamyl transferase (GGT), and the glucose-to-lymphocyte ratio (GLR) were independent risk factors for the frequent exacerbator phenotype of AECOPD. The area under the curve (AUC) of the new predictive model was 0.681 [95% confidence interval (CI): 0.653-0.708], and the sensitivity was 63.6% (95% CI: 58.9-68.2%) and the specificity was 65.0% (95% CI: 60.3-69.6%). Conclusions: A new predictive model based on demographic characteristics and blood parameters can be used to predict the frequency of acute exacerbations in the management of chronic obstructive pulmonary disease (COPD).

6.
Adv Rheumatol ; 62: 25, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1383510

ABSTRACT

Abstract Background: Phospholipase C-like 1 (PLCL1), a protein that lacks catalytic activity, has similar structures to the PLC family. The aim of this research was to find the function and underlying mechanisms of PLCL1 in fibroblast-like synoviocyte (FLS) of rheumatoid arthritis (RA). Methods: In this study, we first analyzed the expression of PLCL1 in the synovial tissue of RA patients and K/BxN mice by immunohistochemical staining. Then silencing or overexpressing PLCL1 in FLS before stimulating by TNF-α. The levels of IL-6, IL-1β and CXCL8 in FLS and supernatants were detected by Western Blot (WB), Real-Time Quantitative PCR and Enzyme Linked Immunosorbent Assay. We used INF39 to specifically inhibit the activation of NLRP3 inflammasomes, and detected the expression of NLRP3, Cleaved Caspase-1, IL-6 and IL-1β in FLS by WB. Result: When PLCL1 was silenced, the level of IL-6, IL-1β and CXCL8 were down-regulated. When PLCL1 was overexpressed, the level of IL-6, IL-1β and CXCL8 were unregulated. The previous results demonstrated that the mechanism of PLCL1 regulating inflammation in FLS was related to NLRP3 inflammasomes. INF39 could counteract the release of inflammatory cytokines caused by overexpression of PLCL1. Conclusion: Result showed that the function of PLCL1 in RA FLS might be related to the NLRP3 inflammasomes. We finally confirmed our hypothesis with the NLRP3 inhibitor INF39. Our results suggested that PLCL1 might promote the inflammatory response of RA FLS by regulating the NLRP3 inflammasomes.

7.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-333469

ABSTRACT

Placentation,which is critical for maternal-fetal exchange of nutrients and gases,is a complicated process comprising stepwise vasculogenesis and angiogenesis.Hypoxia caused by impairedtrophoblast invasion may cause various angiogenic abnormalities in human placenta.The Notchl signaling pathway plays an important role in the regulation of angiogenesis.The angiogenesis of human umbilical vein endothelial cells (HUVECs) under normal/hypoxic conditions and the mRNA/protein level of Notchl/Dell4/Jaggedl were investigated in this study.The effects of DAPT/JAG-1 on the migration of HUVECs were also assessed by cell wound healing assay,so as to discover the possible role of notchl signaling pathway in the angiogenesis of human placenta.The results showed that angiogenic ability of HUVECs was seriously reduced under hypoxic conditions.The mRNA and protein levels of Notchl/Dell4/Jaggedl were decreased in the hypoxic group compared to the control one.In addition,the migration capability of HUVECs was significantly obstructed when treated with DAPT and under hopoxic condition,but promoted when treated with JAG-1.The above results demonstrate that hypoxia downregulates the angiogenesis in human placenta via Notch 1 signaling pathway.

SELECTION OF CITATIONS
SEARCH DETAIL