Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biotechnol ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39190054

ABSTRACT

Colorectal cancer poses a substantial global health burden. Regarding WHO, the global burden of colorectal cancer will be about 3.2 million new cases by the year 2040. Simultaneously, it indicated that this cancer will cause 6 million deaths per year. Despite advancements in chemotherapy and monoclonal antibody therapy, the disease remains a significant challenge due to the resistance of cancer stem cells. This study endeavors to design a multi-epitopic peptide (9-mer epitopes) neoantigen-based vaccine targeting the TLR4/MD2 complex as a potential vaccine candidate. These tumor-specific neoantigens (TSA) are considered novel antigens that can be used for vaccine development against cancer. To develop the neoantigen vaccine candidate, we used the SPENCER database, and 140 lncRNA-derived epitopes were retrieved. From 140 epitopes, we selected seven neoantigens with high antigenic properties for the vaccine construct. A novel vaccine containing epitopes, linkers (EAAAK and CPCPG), and adjuvants (ribosomal [50S] protein L7L12) was formulated utilizing immunoinformatics tools. The vaccine's biophysical properties were evaluated, revealing its antigenicity (0.6469), stability (instability index: 37.05), and potential for immune system interaction. In-depth structural analyses, molecular docking studies, and ML-enabled immune simulation profiling underscored the vaccine's structural integrity, binding affinity with TLR4, and ability to elicit robust immune responses against colorectal cancer antigens. These findings suggest that the multi-epitopic vaccine holds promise as a next-generation approach to combat colorectal cancer. Our in silico studies exhibit potentiality of the vaccine candidate; however, further in vivo and in vitro investigations are crucial to validate immunogenicity, safety, and efficacy before clinical implementation. Our study developed a first-time lncRNA-derived neoantigen-based cancer vaccine.

2.
Curr Issues Mol Biol ; 45(10): 8013-8026, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37886949

ABSTRACT

Concurrent chemoradiotherapy is an effective treatment option for patients with low-grade colorectal cancer (CRC) in the local disease stage. At present, the principle of the Taiwan Medical Center is to treat CRC patients with combination radiotherapy and chemotherapy (high-dose 5-FU) for a period of about five weeks prior to surgery. Radical resection of the tumor is performed at least six to eight weeks after concurrent chemoradiotherapy (CCRT). However, this approach fails to produce the desired therapeutic effect in approximately 20% to 30% of patients, and such patients are unnecessarily exposed to the risks of radiation and drug toxicity posed by this therapy. Therefore, it is crucial to explore new biomarkers to predict the prognosis of CRC. SUMO-activating enzyme subunit 1 (SAE1) plays an important role in SUMOylation, a post-translational modification involved in cellular functions, such as cell proliferation, cell cycle, and apoptosis. In our study, to explore the clinical-pathological role of SAE1 protein in CRC, we evaluated the clinical data and paraffin sections from CRC patients. The expression of SAE1 was evaluated using immunohistochemical analysis, and clinical parameters were analyzed using chi-square and Kaplan-Meier survival tests. The results of in vitro proliferation and radiosensitive assays were compared between control groups and SAE1 siRNA groups. Western blotting was also used to detect the expressions of the SAE1, PARP, cyclin D1, p-NF-κB, and NF-κB proteins. Flow cytometry and colony formation assays were used to detect the effect of SAE-1 on radiosensitivity. In vivo, we detected the growth curve in a mouse xenograft model. The results showed that SAE-1 was revealed to be an independent prognostic biomarker of CRC. SAE1 knockdown inhibited CRC proliferation in vitro and in vivo, and led to the cleavage of PARP, downregulation of cyclin D1 protein expression, and downregulation of p-NF-κB/NF-κB. Additionally, SAE1 knockdown promoted radiosensitivity in CRC cells. Therefore, it was inferred that SAE1 may be used as a potential therapeutic target in CRC treatment.

3.
Clin Case Rep ; 11(7): e7725, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37484758

ABSTRACT

Key Clinical Message: Temporal percutaneous transhepatic duodenum drainage (PTDD) seems to be effective in the treatment of postoperative afferent loop syndrome (ALS) following transverse loop colostomy for obstructive colorectal cancer. Abstract: Management of obstructive colorectal cancer still remains a challenge. There are various options with different risks of mortality and mobility for obstructive colorectal cancer. A rare unexpected postoperative ALS following a low anterior resection and transverse loop colostomy for obstructive colorectal cancer is presented in this report. A 64-year-old man had the acute ALS had been noted 10 days after transverse loop colostomy. An option was temporal PTDD treatment in the patient with history of Billroth's operation II for upper gastrointestinal bleeding 30 years ago. Acute ALS was treated by temporal PTDD. The drainage tube for PTDD was not removed until closure of the transverse colostomy 2 months later. The patient recovered uneventfully. Acute ALS after transverse loop colostomy for obstructive colorectal cancer is rare and has never been reported in the literature. The mechanism of acute ALS after construction of a loop colostomy and the treatment strategy of PTDD for acute ALS is presented.

4.
Environ Pollut ; 327: 121476, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36997141

ABSTRACT

Plasticizers are considered as environmental pollution released from medical devices and increased potential oncogenic risks in clinical therapy. Our previous studies have shown that long-term exposure to di-ethylhexyl phthalate (DEHP)/mono-ethylhexyl phthalate (MEHP) promotes chemotherapeutic drug resistance in colorectal cancer. In this study, we investigated the alteration of glycosylation in colorectal cancer following long-term plasticizers exposure. First, we determined the profiles of cell surface N-glycomes by using mass spectrometry and found out the alterations of α2,8-linkages glycans. Next, we analyzed the correlation between serum DEHP/MEHP levels and ST8SIA6 expression from matched tissues in total 110 colorectal cancer patients. Moreover, clinical specimens and TCGA database were used to analyze the expression of ST8SIA6 in advanced stage of cancer. Finally, we showed that ST8SIA6 regulated stemness in vitro and in vivo. Our results revealed long-term DEHP/MEHP exposure significantly caused cancer patients with poorer survival outcome and attenuated the expression of ST8SIA6 in cancer cells and tissue samples. As expected, silencing of ST8SIA6 promoted cancer stemness and tumorigenicity by upregulating stemness-associated proteins. In addition, the cell viability assay showed enhanced drug resistance in ST8SIA6 silencing cells treated with irinotecan. Besides, ST8SIA6 was downregulated in the advanced stage and positively correlated with tumor recurrence in colorectal cancer. Our results imply that ST8SIA6 potentially plays an important role in oncogenic effects with long-term phthalates exposure.


Subject(s)
Colorectal Neoplasms , Diethylhexyl Phthalate , Humans , Plasticizers/analysis , Diethylhexyl Phthalate/analysis , Glycosylation , Sialyltransferases/metabolism
5.
Int J Med Sci ; 17(3): 403-413, 2020.
Article in English | MEDLINE | ID: mdl-32132875

ABSTRACT

Heparanase cleaves the extracellular matrix by degrading heparan sulfate that ultimately leads to cell invasion and metastasis; a condition that causes high mortality among cancer patients. Many of the anticancer drugs available today are natural products of plant origin, such as hinokitiol. In the previous report, it was revealed that hinokitiol plays an essential role in anti-inflammatory and anti-oxidation processes and promote apoptosis or autophagy resulting to the inhibition of tumor growth and differentiation. Therefore, this study explored the effects of hinokitiol on the cancer-promoting pathway in mouse melanoma (B16F10) and breast (4T1) cancer cells, with emphasis on heparanase expression. We detected whether hinokitiol can elicit anti-metastatic effects on cancer cells via wound healing and Transwell assays. Besides, mice experiment was conducted to observe the impact of hinokitiol in vivo. Our results show that hinokitiol can inhibit the expression of heparanase by reducing the phosphorylation of protein kinase B (Akt) and extracellular regulated protein kinase (ERK). Furthermore, in vitro cell migration assay showed that heparanase downregulation by hinokitiol led to a decrease in metastatic activity which is consistent with the findings in the in vivo experiment.


Subject(s)
Cell Survival/drug effects , Glucuronidase/metabolism , Monoterpenes/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Tropolone/analogs & derivatives , Animals , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cell Survival/genetics , Female , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Signal Transduction/drug effects , Signal Transduction/genetics , Tropolone/therapeutic use
6.
Int J Med Sci ; 16(8): 1107-1115, 2019.
Article in English | MEDLINE | ID: mdl-31523173

ABSTRACT

Astragalus membranaceus has been shown to possess anti-inflammation and antitumor properties. Several studies have indicated that extracts of Astragalus membranaceus (PG2) have growth inhibitory effects on tumor. However, the effect of PG2 on enhancing the chemotherapy, modulating tumor immune escape and their mechanism of action is unknown and need further investigation. Connexin (Cx) 43 is ubiquitous in cells and involved in facilitating the passage of chemotherapeutic drugs to bystander tumor cells. The indoleamine 2, 3-dioxygenase (IDO) depletes tryptophan, reduces the active T cell number and destroys immune surveillance. Herein, we provide evidence that the treatment of PG2 induced Cx43 expression, decreases IDO expression and enhances the distribution of chemotherapeutic drug. However, the effects of combination therapy (PG2 plus cisplatin) in animal models significantly retarded tumor growth and prolonged the survival. We believe that the information provided in this study may aid in the design of future therapy of PG2, suggest suitable combinations with chemotherapies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Astragalus propinquus/chemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Plant Extracts/pharmacology , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Cisplatin/administration & dosage , Connexin 43/metabolism , Drug Screening Assays, Antitumor , Enzyme Inhibitors/pharmacology , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Mice, Inbred C57BL , Plant Extracts/administration & dosage , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Xenograft Model Antitumor Assays
7.
Nutr Cancer ; 69(1): 44-55, 2017 01.
Article in English | MEDLINE | ID: mdl-27880045

ABSTRACT

Autophagy is a self-destructive process that degrades cytoplasmic constituents. In our previous study, Koelreuteria formosana ethanolic extract (KFEE), which is obtained from natural plants endemic to Taiwan, has inhibited cell metastasis in renal carcinoma cells. However, the anticancer effects of KFEE on colon cancer remain unclear. In this study, KFEE exerted a strong cytotoxic effect on DLD-1 and COLO 205 human colorectal cancer cell lines. KFEE effectively inhibited cancer cell proliferation, induced G2/M-phase arrest associated with downregulaton of cyclin E, cyclin B and cdc25C and upregulation of p21, and induced cell death by activating autophagy but did not cause apoptotic cell death. Exposed KFEE cells showed increased levels of acridine orange, autophagic vacuoles, and LC3-II proteins, which are specific autophagic markers. Bcl-2, p-Akt, and p-mTOR levels, which have been implicated in autophagic downregulation, were decreased after KFEE treatment. Autophagy inhibitor 3-methyladenosine and bafilomycin-A1 and genetic silencing of LC3 attenuated KFEE-induced growth inhibition. These findings suggested that KFEE causes cytostatic effect through autophagy. In xenograft studies, oral administration of KFEE had significantly inhibited the tumor growth in nude mice that had received subcutaneous injection of DLD-1 cells. KFEE is a promising candidate in phytochemical-based, mechanistic, and pathway-targeted cancer prevention strategies.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Autophagy/drug effects , Colonic Neoplasms/drug therapy , Sapindaceae/chemistry , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , G2 Phase Cell Cycle Checkpoints/drug effects , M Phase Cell Cycle Checkpoints/drug effects , Mice, Nude , Microtubule-Associated Proteins/metabolism , Plant Extracts/pharmacology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL