Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; : 107623, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39098531

ABSTRACT

Single domain antibodies ("nanobodies") derived from the variable region of camelid heavy-chain only antibody variants have proven to be widely useful tools for research, as well as therapeutic and diagnostic applications. In addition to traditional display techniques, methods to generate nanobodies using direct detection by mass spectrometry and DNA sequencing have been highly effective. However, certain technical challenges have limited widespread application. We have optimized a new pipeline for this approach that greatly improves screening sensitivity, depth of antibody coverage, antigen compatibility, and overall hit rate and affinity. We have applied this improved methodology to generate significantly higher affinity nanobody repertoires against widely used targets in biological research - i.e., GFP, tdTomato, GST, and mouse, rabbit, and goat IgG. We have characterized these reagents in affinity isolations and tissue immunofluorescence microscopy, identifying those that are optimal for these particularly demanding applications, and engineering dimeric constructs for ultra-high affinity. This study thus provides new nanobody tools directly applicable to a wide variety of research problems, and improved techniques enabling future nanobody development against diverse targets.

2.
Cell ; 187(13): 3236-3248.e21, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38772369

ABSTRACT

Leveraging AAVs' versatile tropism and labeling capacity, we expanded the scale of in vivo CRISPR screening with single-cell transcriptomic phenotyping across embryonic to adult brains and peripheral nervous systems. Through extensive tests of 86 vectors across AAV serotypes combined with a transposon system, we substantially amplified labeling efficacy and accelerated in vivo gene delivery from weeks to days. Our proof-of-principle in utero screen identified the pleiotropic effects of Foxg1, highlighting its tight regulation of distinct networks essential for cell fate specification of Layer 6 corticothalamic neurons. Notably, our platform can label >6% of cerebral cells, surpassing the current state-of-the-art efficacy at <0.1% by lentivirus, to achieve analysis of over 30,000 cells in one experiment and enable massively parallel in vivo Perturb-seq. Compatible with various phenotypic measurements (single-cell or spatial multi-omics), it presents a flexible approach to interrogate gene function across cell types in vivo, translating gene variants to their causal function.


Subject(s)
Gene Regulatory Networks , Single-Cell Analysis , Animals , Female , Humans , Mice , Cerebral Cortex/metabolism , Cerebral Cortex/cytology , CRISPR-Cas Systems/genetics , Dependovirus/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Genetic Vectors/metabolism , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Neurons/metabolism , Neurons/cytology , Single-Cell Analysis/methods , Transcriptome/genetics , Cell Line , Transcription, Genetic
3.
Nano Res ; 17(2): 462-475, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38712329

ABSTRACT

Extracellular vesicles are nano- to microscale, membrane-bound particles released by cells into extracellular space, and act as carriers of biomarkers and therapeutics, holding promising potential in translational medicine. However, the challenges remain in handling and detecting extracellular vesicles for disease diagnosis as well as exploring their therapeutic capability for disease treatment. Here, we review the recent engineering and technology advances by leveraging the power of sound waves to address the challenges in diagnostic and therapeutic applications of extracellular vesicles and biomimetic nanovesicles. We first introduce the fundamental principles of sound waves for understanding different acoustic-assisted extracellular vesicle technologies. We discuss the acoustic-assisted diagnostic methods including the purification, manipulation, biosensing, and bioimaging of extracellular vesicles. Then, we summarize the recent advances in acoustically enhanced therapeutics using extracellular vesicles and biomimetic nanovesicles. Finally, we provide perspectives into current challenges and future clinical applications of the promising extracellular vesicles and biomimetic nanovesicles powered by sound.

4.
Cell ; 187(9): 2143-2157.e15, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38670072

ABSTRACT

A central question for regenerative neuroscience is whether synthetic neural circuits, such as those built from two species, can function in an intact brain. Here, we apply blastocyst complementation to selectively build and test interspecies neural circuits. Despite approximately 10-20 million years of evolution, and prominent species differences in brain size, rat pluripotent stem cells injected into mouse blastocysts develop and persist throughout the mouse brain. Unexpectedly, the mouse niche reprograms the birth dates of rat neurons in the cortex and hippocampus, supporting rat-mouse synaptic activity. When mouse olfactory neurons are genetically silenced or killed, rat neurons restore information flow to odor processing circuits. Moreover, they rescue the primal behavior of food seeking, although less well than mouse neurons. By revealing that a mouse can sense the world using neurons from another species, we establish neural blastocyst complementation as a powerful tool to identify conserved mechanisms of brain development, plasticity, and repair.


Subject(s)
Neurons , Animals , Mice , Rats , Neurons/metabolism , Neurons/cytology , Neurons/physiology , Blastocyst/metabolism , Blastocyst/cytology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Brain/cytology , Brain/physiology , Female , Hippocampus/cytology , Hippocampus/physiology , Species Specificity , Mice, Inbred C57BL , Male
5.
PLoS One ; 19(3): e0293856, 2024.
Article in English | MEDLINE | ID: mdl-38551935

ABSTRACT

Light-sheet microscopy has made possible the 3D imaging of both fixed and live biological tissue, with samples as large as the entire mouse brain. However, segmentation and quantification of that data remains a time-consuming manual undertaking. Machine learning methods promise the possibility of automating this process. This study seeks to advance the performance of prior models through optimizing transfer learning. We fine-tuned the existing TrailMap model using expert-labeled data from noradrenergic axonal structures in the mouse brain. By changing the cross-entropy weights and using augmentation, we demonstrate a generally improved adjusted F1-score over using the originally trained TrailMap model within our test datasets.


Subject(s)
Deep Learning , Animals , Mice , Microscopy , Axons , Machine Learning , Brain/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL