Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 133
1.
J Environ Manage ; 359: 121045, 2024 May.
Article En | MEDLINE | ID: mdl-38703653

A multifunctional Ag/AlOOH nanowires (ANW) composite substrate was constructed, which not only accomplishes highly sensitive detection of organic dye molecules, but also has excellent performance in the degradation of pollutants. The ANW in the Ag/ANW substrate possesses a high aspect ratio, which extends the distribution area of Ag and enables a large number of hot spots on the active substrate. Additionally, due to the abundant OH groups on the ANW, there is an increased number of anchor sites for adsorbed metal ions in the Ag/ANW compound, thus contributing to the enhancement and degradation of molecules. Moreover, the constructed multifunctional Ag/ANW nanocomplexes also show great promise for practical applications, providing a reference for the detection and degradation of contaminants.


Nanowires , Spectrum Analysis, Raman , Nanowires/chemistry , Silver/chemistry , Organic Chemicals/chemistry , Organic Chemicals/analysis
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124487, 2024 Oct 05.
Article En | MEDLINE | ID: mdl-38805989

L-cysteine, an indispensable amino acid present in natural proteins, plays pivotal roles in various biological processes. Consequently, precise and selective monitoring of its concentrations is imperative. Herein, we propose a Surface-enhanced Raman Scattering (SERS) sensor for detecting L-cysteine based on the anti-aggregation of 4-mercaptobenzoic acid (4-MBA) and histidine (His) functionalized silver nanoparticles (Ag NPs). The presence of Hg2+ ions can induce the aggregation of Ag NPs@His@4-MBA due to the unique nanostructures of Ag NPs@His@4-MBA, resulting in a robust SERS intensity of 4-MBA. However, in the presence of L-cysteine, the stronger affinity between L-cysteine and Hg2+ reduces the concentration of free Hg2+, causing the dispersion of the aggregated functionalized Ag NPs and the reduction of the SERS signal intensity of 4-MBA. The developed SERS platform demonstrates excellent performance with a low detection limit of 5 nM (S/N = 3) and linear detection capabilities within the range of 0.01-100 µM for L-cysteine. Additionally, the method was successfully employed for the determination of L-cysteine in spiked serum samples, yielding recoveries ranging from 95.0 % to 108.1 % with relative standard deviations of less than 3.3 %. This study not only presents a novel approach for fabricating highly sensitive and specific SERS biosensors for biomolecule detection but also offers a significant strategy for the development and construction of SERS substrates using anti-aggregation design.


Cysteine , Limit of Detection , Metal Nanoparticles , Silver , Spectrum Analysis, Raman , Silver/chemistry , Spectrum Analysis, Raman/methods , Cysteine/analysis , Cysteine/blood , Metal Nanoparticles/chemistry , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/blood , Sulfhydryl Compounds/analysis , Benzoates/chemistry , Histidine/analysis , Histidine/chemistry , Histidine/blood
3.
Macromol Rapid Commun ; : e2400028, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38593331

A temperature-responsive surface-enhanced Raman scattering (SERS) substrate with "ON-OFF" switching based on poly(ionic liquid)s (PILs) block copolymer microgels have been designed and synthesized. The PIL units act as a joint component to anchor the gold nanoparticles (AuNPs) and analytes onto poly(N-isopropylacrylamide) (PNIPAm). This anchor allows the analytes to be fixed at the formed hot spots under temperature stimulus. Owing to the regulation of the PNIPAm segment, the SERS substrates exhibit excellent thermally responsive SERS activity with a reversible "ON-OFF" effect. Additionally, because of the anion exchange of PILs, microgels can introduce new analytes, which offers more flexibility for the system. The substrate shows excellent reversibility, controllability, and flexibility of SERS activity, which is expected to have a broad application in the field of practical SERS sensors.

4.
Heliyon ; 10(7): e28280, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38560173

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) ravaged the world, and Coronavirus Disease 2019 (COVID-19) exhibited highly prevalent oral symptoms that had significantly impacted the lives of affected patients. However, the involvement of four human coronavirus (HCoVs), namely SARS-CoV-2, SARS-CoV, MERS-CoV, and HCoV-229E, in oral cavity infections remained poorly understood. We integrated single-cell RNA sequencing (scRNA-seq) data of seven human oral tissues through consistent normalization procedure, including minor salivary gland (MSG), parotid gland (PG), tongue, gingiva, buccal, periodontium and pulp. The Seurat, scDblFinder, Harmony, SingleR, Ucell and scCancer packages were comprehensively used for analysis. We identified specific cell clusters and generated expression profiles of SARS-CoV-2 and coronavirus-associated receptors and factors (SCARFs) in seven oral regions, providing direction for predicting the tropism of four HCoVs for oral tissues, as well as for dental clinical treatment. Based on our analysis, it appears that various SCARFs, including ACE2, ASGR1, KREMEN1, DPP4, ANPEP, CD209, CLEC4G/M, TMPRSS family proteins (including TMPRSS2, TMPRSS4, and TMPRSS11A), and FURIN, are expressed at low levels in the oral cavity. Conversely, BSG, CTSB, and CTSL exhibit enrichment in oral tissues. Our study also demonstrates widespread expression of restriction factors, particularly IFITM1-3 and LY6E, in oral cells. Additionally, some replication, assembly, and trafficking factors appear to exhibit broad oral tissues expression patterns. Overall, the oral cavity could potentially serve as a high-risk site for SARS-CoV-2 infection, while displaying a comparatively lower degree of susceptibility towards other HCoVs (including SARS-CoV, MERS-CoV and HCoV-229E). Specifically, MSG, tongue, and gingiva represent potential sites of vulnerability for four HCoVs infection, with the MSG exhibiting a particularly high susceptibility. However, the expression patterns of SCARFs in other oral sites demonstrate relatively intricate and may only be specifically associated with SARS-CoV-2 infection. Our study sheds light on the mechanisms of HCoVs infection in the oral cavity as well as gains insight into the characteristics and distribution of possible HCoVs target cells in oral tissues, providing potential therapeutic targets for HCoVs infection in the oral cavity.

5.
J Adv Res ; 2024 Feb 09.
Article En | MEDLINE | ID: mdl-38341031

INTRODUCTION: The long-term overuse of malachite green (MG) has potential carcinogenic, teratogenic, and mutagenic effects. The functional nanocomposite is novel and challenging to construct and implement through surface enhanced Raman scattering (SERS) strategy to reveal the contributions in application. OBJECTIVES: The novel Ag-CDs (carbon dots)-PBA (phenyl boric acid) nanocomposite was constructed by a facile route to detect toxic MG molecule with high SERS sensitivity and good uniformity. METHODS: The enhanced substrate used for the detection of MG has been successfully constructed using PBA modulated Ag-CDs on a structured surface with rich binding sites. RESULTS: The fabricated Ag-CDs-PBA substrate can be used to analyze various probe molecules exhibiting high sensitivity, good signal reproducibility, and excellent stability. The mechanism between components has been proved by calculations originating from the plasmonic Ag and active electronic transmission among the bridging CDs and PBA via the close spatial π-π effect. In addition, the accelerated separation of electron-hole pairs was triggered to further improve the SERS activity of the hybrid via a bidirectional charge transfer (CT) process. Significantly, the Ag-CDs-PBA system shows distinctive selectivity, in which PBA can hinder the interference of other species without specific hydroxyl groups. CONCLUSION: Based on this deeper insight on plasmon-mediated mechanism, the SERS substrate was successfully practiced for quantitative determination in real water and fish samples. The strategy developed promises to be a new sensor technology and has great potential for environmental and food safety applications.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 124051, 2024 May 05.
Article En | MEDLINE | ID: mdl-38368820

We developed a highly efficient, ultra-sensitive, and selective dual detection sensor for hypochlorite (ClO-) and sulfite (SO32-) ions based on surface-enhanced Raman scattering (SERS) spectroscopy. 3,3',5,5'-Tetramethylbenzidine (TMB) is oxidized by ClO- under acidic conditions to diazotized oxTMB that, when electrostatically adsorbed onto Au nanoparticles (NPs), produces a strong Raman signal at 1605 cm-1. Meanwhile, oxTMB is reduced to TMB by SO32-, which significantly reduces the Raman signal. The linear detection range of the proposed sensor is 10-10 to 10-6 M with a detection limit of 59 pM for ClO- and 10-9 to 10-5 M with a detection limit of 5.4 nM for SO32-. In addition, the sensor was successfully applied to detect ClO- and SO32- in water samples.

7.
Sci Total Environ ; 914: 170027, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38218498

We report a surface magnetic solid-phase extraction-surface-enhanced Raman scattering (SMSPE-SERS) method based on silver-nanoparticle-coated Fe3O4/chitosan (Fe3O4/CS@Ag) microspheres as the substrate, and this method integrates all steps from sample pretreatment to detection. Fe3O4/CS was synthesized by a one-step solvothermal method in which chitosan (CS) was used as a surface modifier and adsorbent. Fe3O4/CS@Ag microspheres exhibit both adsorption ability and SERS activity. Therefore, we used the SMSPE-SERS method to detect pesticide residues on fruit peel. The procedures of capturing, separating and enriching pesticides, as well as detection, are all integrated. In addition, the SERS substrate allows label-free detection of thiram pesticide in both fruit peel and apple juice. Owing to the uniform distribution of Ag NPs and the adsorption ability of CS, the thiram-detection sensitivity was sufficiently high to detect the lowest concentration of 1.2 ng/cm2, which was significantly lower than the maximum thiram residue limit (7 µg/cm2) in fruits. The method was comparable to high-performance liquid chromatography with recovery ranging from 86.60 to 109.69 %.

8.
Adv Sci (Weinh) ; 11(2): e2305919, 2024 Jan.
Article En | MEDLINE | ID: mdl-37984864

Regulating the interfacial charge transfer behavior between cocatalysts and semiconductors remains a critical challenge for attaining efficient photoelectrochemical water oxidation reactions. Herein, using bismuth vanadate (BiVO4 ) photoanode as a model, it introduces an Au binding bridge as holes transfer channels onto the surfaces of BiVO4 , and the cyano-functionalized cobalt cubane (Co4 O4 ) molecules are preferentially immobilized on the Au bridge due to the strong adsorption of cyano groups with Au nanoparticles. This orchestrated arrangement facilitates the seamless transfer of photogenerated holes from BiVO4 to Co4 O4 molecules, forming an orderly charge transfer pathway connecting the light-absorbing layer to reactive sites. An exciting photocurrent density of 5.06 mA cm-2 at 1.23 V versus the reversible hydrogen electrode (3.4 times that of BiVO4 ) is obtained by the Co4 O4 @Au(A)/BiVO4 photoanode, where the surface charge recombination is almost completely suppressed accompanied by a surface charge transfer efficiency over 95%. This work represents a promising strategy for accelerating interfacial charge transfer and achieving efficient photoelectrochemical water oxidation reaction.

9.
Talanta ; 270: 125554, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38150967

Assessing the total antioxidant capacity (TAC) of foods plays a significant role in dietary guidance and disease risk reduction. Therefore, building a simple, rapid, and sensitive sensing method for detecting TAC possesses broad application prospects. Herein, we constructed a novel nanozyme catalyzed‒surface-enhanced Raman resonance scattering (SERRS) sensing strategy for analysis of TAC based on polyvinylpyrrolidone coated gold nanoparticles (AuNPs@PVP) that was synthesized by one step reduction method. AuNPs@PVP not only served as the SERRS substrate but also possessed high oxidase activity which can catalyze 3,3',5,5'-tetramethylbenzidine (TMB) oxidation by generating hydroxyl radicals (•OH) and superoxide anion free radical (•O2-). According to the inhibiting effect of antioxidants, ascorbic acid (AA) was selected as the representative for TAC detection. The linear range and limit of detection (LOD) were determined to be 10-8‒10-5 M and 0.6 nM, respectively. More importantly, the proposed nanozyme catalyzed‒SERRS strategy has been successfully applied to the detection of TAC in fruit juices, demonstrating promising potential in the field of food supervision and healthcare applications.


Antioxidants , Metal Nanoparticles , Antioxidants/analysis , Oxidoreductases , Gold , Oxidation-Reduction , Colorimetry/methods , Hydrogen Peroxide/analysis
10.
Anal Biochem ; 680: 115314, 2023 11 01.
Article En | MEDLINE | ID: mdl-37678582

Herein, we developed a concise, time-efficient, and high selective assay for detecting Fe2+ through its triggered surface plasmon-assisted reduction reaction of p-nitrothiophenol (PNTP) to p,p'-dimercaptoazobenzene (DMAB) on the surface of gold nanoparticles (AuNPs) based on surface-enhanced Raman scattering (SERS) spectroscopy. When Fe2+ was added to the PNTP-AuNPs system, the appearance of three characteristic peaks at 1142, 1392, and 1440 cm-1 attributed to DMAB demonstrated that Fe2+ induced the catalytic coupling reaction of PNTP. The Raman intensity ratio of the peak at 1142 cm-1 to the peak at 1336 cm-1 and the concentration of Fe2+ presented a good linear response from 10 to 100 µM with a limit of detection (LOD) of 0.35 µM. More importantly, the entire detection process can be completed within 2 min and further successfully used for the detection of Fe2+ in river water.


Metal Nanoparticles , Spectrum Analysis, Raman , Gold , Antibodies
11.
JACS Au ; 3(7): 1851-1863, 2023 Jul 24.
Article En | MEDLINE | ID: mdl-37502161

Monoclinic BiVO4 is one of the most promising photoanode materials for solar water splitting. The photoelectrochemical performance of a BiVO4 photoanode could be significantly influenced by the noncovalent interactions of redox-inert metal cations at the photoanode-electrolyte interfaces, but this point has not been well investigated. In this work, we studied the Cs+-dependent surface reconstruction and passivation of BiVO4 photoanodes. Owing to the "structure breaker" nature of Cs+, the Cs+ at the BiVO4 photoanode-electrolyte interfaces participated in BiVO4 surface photocorrosion to form a Cs+-doped bismuth vanadium oxide amorphous thin layer, which inhibited the continuous photocorrosion of BiVO4 and promoted surface charge transfer and water oxidation. The resulting cocatalyst-free BiVO4 photoanodes achieved 3.3 mA cm-2 photocurrent for water oxidation. With the modification of FeOOH catalysts, the photocurrent at 1.23 VRHE reached 5.1 mA cm-2, and a steady photocurrent of 3.0 mA cm-2 at 0.8 VRHE was maintained for 30 h. This work provides new insights into the understanding of Cs+ chemistry and the effects of redox-inert cations at the electrode-electrolyte interfaces.

12.
Macromol Biosci ; 23(10): e2300025, 2023 Oct.
Article En | MEDLINE | ID: mdl-37282815

O-carboxymethyl chitosan (CM-chitosan), holds high potential as a valuable biomaterial for nerve guidance conduits (NGCs). However, the lack of explicit bioactivity on neurocytes and poor duration that does not match nerve repair limit the restorative effects. Herein, CM-chitosan-based NGC is designed to induce the reconstruction of damaged peripheral nerves without addition of other activation factors. CM-chitosan possesses excellent performance in vitro for nerve tissue engineering, such as increasing the organization of filamentous actin and the expression of phospho-Akt, and facilitating the cell cycle and migration of Schwann cells. Moreover, CM-chitosan exhibits increased longevity upon cross-linking (C-CM-chitosan) with 1, 4-Butanediol diglycidyl ether, and C-CM-chitosan fibers possess appropriate biocompatibility. In order to imitate the structure of peripheral nerves, multichannel bioactive NGCs are prepared from lumen fillers of oriented C-CM-chitosan fibers and outer warp-knitted chitosan pipeline. Implantation of the C-CM-chitosan NGCs to rats with 10-mm defects of peripheral nerves effectively improve nerve function reconstruction by increasing the sciatic functional index, decreasing the latent periods of heat tingling, enhancing the gastrocnemius muscle, and promoting nerve axon recovery, showing regenerative efficacy similar to that of autograft. The results lay a theoretical foundation for improving the potential high-value applications of CM-chitosan-based bioactive materials in nerve tissue engineering.

13.
Materials (Basel) ; 16(8)2023 Apr 18.
Article En | MEDLINE | ID: mdl-37110030

A new type of catalyst was synthesized by immobilizing heteropolyacid on ionic liquid-modified mesostructured cellular silica foam (denoted as MCF) and applied to the oxidative desulfurization of fuel. The surface morphology and structure of the catalyst were characterized by XRD, TEM, N2 adsorption-desorption, FT-IR, EDS and XPS analysis. The catalyst exhibited good stability and desulfurization for various sulfur-containing compounds in oxidative desulfurization. Heteropolyacid ionic liquid-based MCF solved the shortage of the amount of ionic liquid and difficult separation in the process of oxidative desulfurization. Meanwhile, MCF had a special three-dimensional structure that was not only highly conducive to mass transfer but also greatly increased catalytic active sites and significantly improved catalytic efficiency. Accordingly, the prepared catalyst of 1-butyl-3-methyl imidazolium phosphomolybdic acid-based MCF (denoted as [BMIM]3PMo12O40-based MCF) exhibited high desulfurization activity in an oxidative desulfurization system. The removal of dibenzothiophene could achieve levels of 100% in 90 min. Additionally, four sulfur-containing compounds could be removed completely under mild conditions. Due to the stability of the structure, sulfur removal efficiency still reached 99.8% after the catalyst was recycled six times.

15.
Article Zh | WPRIM | ID: wpr-974731

@#Objective To identify the genotypes and analyze the molecular characteristics of varicella-zoster virus(VZV)endemic strains in Changchun from 2021 to 2022.Methods A total of 59 patients with varicella or herpes zoster treated in China Japan Union Hospital of Jilin University in Changchun from 2021 to 2022 were selected as the research objects,which were identified for the serum VZV-specific antibodies by fluorescent antibody to membrane antigen(FAMA)method.The viral DNA was extracted from herpetic fluid of the confirmed patients,and multiple open reading frames(ORFs)including ORF1,ORF12,ORF16,ORF17,ORF21,ORF22,ORF37,and ORF54 of VZV were amplified by PCR,which was genotyped according to the single nucleotide polymorphisms(SNPs) of the ORFs.Furthermore,multiple ORFs,ORF38,ORF54 and ORF62 were identified by using restriction fragment length polymorphism(RFLP)to distinguish clinical strains and vaccine strains.Results 59 serum samples were positive,indicating that all the patients were infected with VZV.Among the 59 clinical samples,4 samples were completely matched with Clade 2 genotype,4 samples showed 2 SNPs,including ORF1(SNP790)mutation of C→A and ORF12(SNP18 082)mutation of T→C,and 51 samples showed ORF12(SNP18 082)mutation of T→C.All 59 VZV clinical isolates were PstⅠ+BglⅠ+BglⅠ+SmaⅠ+SmaⅠ-,which was different from the vaccine strain PstⅠ-,which was different from the vaccine strain PstⅠ-BglⅠ-BglⅠ+SmaⅠ+SmaⅠ+.Conclusion All the VZV endemic strains in Changchun from 2021 to 2022 were Clade 2 genotype,and no vaccine strain was found to be pathogenic.

16.
Molecules ; 27(24)2022 Dec 18.
Article En | MEDLINE | ID: mdl-36558171

Chitosan (CTS) has been used as a nerve guidance conduit (NGC) material for bridging peripheral nerve defects due to its biocompatible, biodegradable, and non-toxic properties. However, the nerve regeneration effect of chitosan alone is restricted due to its inadequate biological activity. Herein, a composite, bioactive chitosan based nerve conduit, consisting of outer warp-knitted tube scaffold made from medical-grade chitosan fiber, and inner porous cross linked carboxymethyl chitosan (C-CM-CTS) sponge with radial texture was developed. The inner wall of the scaffold was coated with C-CM-CTS solution. CM-CTS provided favorable bioactivities in the composite chitosan-based nerve conduit. An in vitro study of CM-CTS revealed its satisfying biocompatibility with fibroblast and its inhibition of oxidative damage to Schwann cells. As the internal filler of the NGC, the lyophilized sponge of C-CM-CTS showed a longitudinal guidance effect for nerve reconstruction. After 10 mm defect in rat sciatic nerve was bridged with the composite bioactive chitosan-based nerve conduit, the nerve conduit was able to effectively promote axonal regeneration and played a positive role in inducing nerve regeneration and functional recovery. In addition to the functional advantages, which are equal to those of an autograft; the technology for the preparation of this conduit can be put into mass production.


Chitosan , Rats , Animals , Chitosan/pharmacology , Sciatic Nerve , Nerve Regeneration , Schwann Cells , Prostheses and Implants
17.
Molecules ; 27(19)2022 Sep 22.
Article En | MEDLINE | ID: mdl-36234789

Porous aromatic framework materials with high stability, sensitivity, and selectivity have great potential to provide new sensors for optoelectronic/fluorescent probe devices. In this work, a luminescent porous aromatic framework material (LNU-23) was synthesized via the palladium-catalyzed Suzuki cross-coupling reaction of tetrabromopyrene and 1,2-bisphenyldiborate pinacol ester. The resulting PAF solid exhibited strong fluorescence emission with a quantum yield of 18.31%, showing excellent light and heat stability. Because the lowest unoccupied molecular orbital (LUMO) of LNU-23 was higher than that of the nitro compounds, there was an energy transfer from the excited LNU-23 to the analyte, leading to the selective fluorescence quenching with a limit of detection (LOD) ≈ 1.47 × 10-5 M. After integrating the luminescent PAF powder on the paper by a simple dipping method, the indicator papers revealed a fast fluorescence response to gaseous nitrobenzene within 10 s, which shows great potential in outdoor fluorescence detection of nitro compounds.


Nitro Compounds , Palladium , Esters , Fluorescent Dyes , Nitrobenzenes , Porosity , Powders
18.
Molecules ; 27(19)2022 Sep 23.
Article En | MEDLINE | ID: mdl-36234834

The strong radioactivity of iodine compounds derived from nuclear power plant wastes has motivated the development of highly efficient adsorbents. Porous aromatic frameworks (PAFs) have attracted much attention due to their low density and diverse structure. In this work, an azo group containing PAF solid, denoted as LNU-58, was prepared through Suzuki polymerization of tris-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-phenyl)-amine and 3,5-dibromoazobenzene building monomers. Based on the specific polarity properities of the azo groups, the electron-rich aromatic fragments in the hierarchical architecture efficiently capture iodine molecules with an adsorption capacity of 3533.11 mg g-1 (353 wt%) for gaseous iodine and 903.6 mg g-1 (90 wt%) for dissolved iodine. The iodine uptake per specific surface area up to 8.55 wt% m-2 g-1 achieves the highest level among all porous adsorbents. This work illustrates the successful preparation of a new type of porous adsorbent that is expected to be applied in the field of practical iodine adsorption.


Iodine , Adsorption , Amines/chemistry , Iodides , Porosity
19.
Molecules ; 27(18)2022 Sep 19.
Article En | MEDLINE | ID: mdl-36144848

Due to the frequent oil/organic solvent leakage, efficient oil/water separation has attracted extensive concern. However, conventional porous materials possess nonpolar building units, which reveal relatively weak affinity for polar organic molecules. Here, two different polarities of superhydrophobic porous aromatic frameworks (PAFs) were synthesized with respective orthoposition and paraposition C=O groups in the PAF linkers. The conjugated structure formed by a large number of alkynyl and benzene ring structures enabled porous and superhydrophobic quality of PAFs. After the successful preparation of the PAF solids, PAF powders were coated on polyester fabrics by a simple dip-coating method, which endowed the resulting polyester fabrics with superhydrophobicity, porosity, and excellent stability. Based on the unique structure, the oil/water separation efficiency of two superhydrophobic flexible fabrics was more than 90% for various organic solvents. Polar LNU-26 PAF showed better separation performance for the polar oils. This work takes the lead in adopting the polar groups as building units for the preparation of porous networks, which has great guiding significance for the construction of advanced oil/water separation materials.

...