Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 913
Filter
1.
Article in English | MEDLINE | ID: mdl-39104322

ABSTRACT

Apoptosis, inflammation, and wound healing are critical pathophysiological events associated with various liver diseases. Currently, there is a lack of in vivo approaches to study hepatocyte apoptosis-induced liver injury and repair. To address this critical knowledge gap, we developed a unique genetically modified mouse model, namely, 3xTg-iHAP (3-Transgene with inducible Hepatocyte Apoptosis Phenotype) in this study. The 3xTg-iHAP mice possess three transgenes including Alb-Cre, Rosa26-rtTA, and tetO-Fasl on a B6 background. These mice are phenotypically normal, viable, and fertile. After subcutaneous administration of a single dose of doxycycline (5 mg/kg, Dox) to 3xTg-iHAP mice, we observed a complete histological spectrum of sterile liver wound-healing responses: asymptomatic hepatocyte apoptosis at 8 h, necrotic liver injury and sterile inflammation at 48 h, followed by hepatocyte mitosis and regeneration within 7 days. During the injury phase, the mice exhibited an increase in biomarkers of ALT, CXCL1, and IL-6 in peripheral blood and α-SMA protein in liver tissues. Conversely, the mice displayed a decrease in these markers in the recovery phase. Remarkably, this model shows that the sterile liver injury following elevated hepatocyte apoptosis is associated with an increase in myeloid cells in the liver. Within 7 days post-Dox administration, the liver of Dox-treated 3xTg-iHAP mice displays a normal histological structure, indicating completion of wound-healing. Together, we established a novel mouse model of injury and regeneration induced by hepatocyte apoptosis. This tool provides a robust in vivo platform for studying the pathophysiology of sterile liver inflammation, regeneration, and new therapeutic interventions for liver diseases.

2.
Mol Divers ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141208

ABSTRACT

A series of novel sulfonyl hydrazide based ß-carboline derivatives (SX1-SX32) were designed and synthesized, and their structures were characterized on NMR and HRMS. Their α-glucosidase inhibitory screening results found that compounds (SX1-SX32) presented potential α-glucosidase inhibitory: IC50 values being 2.12 ± 0.33-19.37 ± 1.49 µM. Compound SX29 with a para-phenyl (IC50: 2.12 ± 0.33 µM) presented the strongest activity and was confirmed as a noncompetitive inhibitor. Fluorescence spectra, CD spectra and molecular docking were conducted to describe the inhibition mechanism of SX29 against α-glucosidase. Cells cytotoxicity indicated SX29 (0-32 µM) had no cytotoxicity on 293T cells. In particular, in vivo experiments revealed that oral administration of SX29 could regulate hyperglycemia and glucose tolerance of diabetic mice. These achieved findings indicated that sulfonyl hydrazide based ß-carboline derivatives bore promising potential for discovering new α-glucosidase inhibitors with hypoglycemic activity.

3.
Environ Res ; 259: 119576, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996958

ABSTRACT

The interaction between extracellular polymeric substances (EPS) in municipal sludge and antibiotics in wastewater is critical in wastewater treatment, resource recovery, and sludge management. Therefore, it is increasingly urgent to investigate the distribution coefficient (Log K) of sulfonamide antibiotics (SAs) in EPS, particularly in sludge-derived dissolved organic carbon (DOC) and aqueous phase systems. Herein, through balance experiments, the concentrations of SAs were determined using alkaline extraction EPS (AEPS) and alginate-like extracellular polymer (ALE) systems, and the Log KDOC values were determined. The results showed that the Log KDOC of AEPS was higher than that of ALE, which exhibited a negative KDOC value, indicating an inhibitory effect on dissolution. For the three SAs studied, the Log KDOC values were in the following order: sulfamethoxazole > sulfapyridine > sulfadiazine. This order can be attributed to the differing physicochemical properties, such as polarity, of the SAs. Three-dimensional excitation-emission matrix fluorescence spectra and fitting results indicated a lack of aromatic proteins dominated by tryptophan and humus-like substances in ALE. Meanwhile, the hydrophobic interaction of aromatic proteins dominated by tryptophan was the main driving force in the binding process between AEPS and SAs.

4.
Stem Cell Res Ther ; 15(1): 214, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020385

ABSTRACT

Sciatic nerve injury (SNI) is a common type of peripheral nerve injury typically resulting from trauma, such as contusion, sharp force injuries, drug injections, pelvic fractures, or hip dislocations. It leads to both sensory and motor dysfunctions, characterized by pain, numbness, loss of sensation, muscle atrophy, reduced muscle tone, and limb paralysis. These symptoms can significantly diminish a patient's quality of life. Following SNI, Wallerian degeneration occurs, which activates various signaling pathways, inflammatory factors, and epigenetic regulators. Despite the availability of several surgical and nonsurgical treatments, their effectiveness remains suboptimal. Exosomes are extracellular vesicles with diameters ranging from 30 to 150 nm, originating from the endoplasmic reticulum. They play a crucial role in facilitating intercellular communication and have emerged as highly promising vehicles for drug delivery. Increasing evidence supports the significant potential of exosomes in repairing SNI. This review delves into the pathological progression of SNI, techniques for generating exosomes, the molecular mechanisms behind SNI recovery with exosomes, the effectiveness of combining exosomes with other approaches for SNI repair, and the changes and future outlook for utilizing exosomes in SNI recovery.


Subject(s)
Exosomes , Sciatic Nerve , Exosomes/metabolism , Exosomes/transplantation , Humans , Animals , Sciatic Nerve/injuries , Peripheral Nerve Injuries/therapy , Peripheral Nerve Injuries/metabolism , Nerve Regeneration
5.
Sci Rep ; 14(1): 16394, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014016

ABSTRACT

Solid nitrogen exhibits a panoply of phenomena ranging from complex molecular crystalline configurations to polymerization and closing band gap at higher densities. Among the elemental molecular solids, nitrogen stands apart for having phases, which can only be stabilized following particular pressure-temperature pathways, indicative of metastability and kinetic barriers. Here, through the combination of Raman spectroscopy and dynamic compression techniques, we find that the appearance of the whole nitrogen phase diagram is determined by the P-T paths taken below 2 GPa. We reveal the existence of the path- and phase-dependent triple point between the ß - N 2 , δ loc - N 2 and γ - or ϵ - N 2 . We further show that the ß - N 2 towards γ - N 2 path below the triple point, that evades δ ( δ loc )- N 2 , results in the formation of γ - N 2 , which in turn becomes a dominant phase. We then demonstrate, that the ß - N 2 through δ ( δ loc )- N 2 above the triple point path leads to the formation of ϵ - N 2 and the "well-established" phase diagram. An additional pathway, which by-passes the rotationally inhibited modifications δ ( δ loc )- N 2 , via rapid compression is found to produce γ - N 2 at higher temperatures. We argue that the pathway and phase sensitive triple point and the compression rate dependent phase formation challenge our understanding of this archetypal dense molecular solid.

6.
Acta Histochem ; 126(5-7): 152174, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38976933

ABSTRACT

Choroidal melanoma (CM), a highly metastatic eye tumor, exhibits vasculogenic mimicry (VM) facilitated by hypoxia-induced angiogenesis. This study explored the inhibitory impact of the anti-malarial drug Artesunate (ART) on CM VM through modulation of the HIF-1α/VEGF/PDGF pathway. Immunohistochemistry (IHC) confirmed VM in CM with elevated VEGF and PDGF expression. Hypoxia promoted CM proliferation, upregulating HIF-1α, VEGF and PDGF. VEGF and PDGF enhanced CM migration, invasion and VM, with HIF-1α playing a crucial role. ART mitigated VM formation by suppressing the HIF-1α/VEGF/PDGF pathway, highlighting its potential as an anti-tumor agent in CM.

7.
Org Lett ; 26(31): 6658-6663, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39083395

ABSTRACT

The regiocontrol in constructing benzo-fused five-membered rings by C-H cyclization remains an important challenge. We report a highly general and regioselective methodology to access such heterocycles and indenones, where under the catalysis of CoBr2/bipyridine, aryl titanates, alkynes and EX2 (E = NR, S(O), RP(O), R2Si, CO, etc.) were assembled to various heterocycles and indenones in a modular manner. Unprecedented 1,2-Co/Ti heterobimetallic arylene and benzotitanole intermediates have played crucial roles in these syntheses.

8.
Sci Rep ; 14(1): 12718, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830921

ABSTRACT

This study evaluated retinal and choroidal microvascular changes in night shift medical workers and its correlation with melatonin level. Night shift medical workers (group A, 25 workers) and non-night shift workers (group B, 25 workers) were recruited. The images of macula and optic nerve head were obtained by swept-source OCT-angiography. Vessel density of retina, choriocapillaris (CC), choriocapillaris flow deficit (CC FD), choroidal thickness (CT) and choroidal vascularity index (CVI) were measured. 6-sulfatoxymelatonin concentration was analyzed from the morning urine. CC FD and CVI were significantly decreased and CT was significantly increased in group A (all P < 0.05). 6-sulfatoxymelatonin concentration was significantly lower in group A (P < 0.05), which was significantly positively correlated with CC FD size (r = 0.318, P = 0.024) and CVI of the most regions (maximum r-value was 0.482, P < 0.001), and was significantly negatively associated with CT of all regions (maximum r-value was - 0.477, P < 0.001). In night shift medical workers, the reduction of melatonin was significantly correlated with CT thickening, CVI reduction and CC FD reduction, which suggested that they might have a higher risk of eye diseases. CC FD could be a sensitive and accurate indicator to reflect CC perfusion.


Subject(s)
Choroid , Melatonin , Microvessels , Retinal Vessels , Tomography, Optical Coherence , Humans , Choroid/blood supply , Choroid/diagnostic imaging , Tomography, Optical Coherence/methods , Male , Adult , Female , Melatonin/urine , Melatonin/analogs & derivatives , Microvessels/diagnostic imaging , Retinal Vessels/diagnostic imaging , Middle Aged , Shift Work Schedule/adverse effects , Angiography/methods , Retina/diagnostic imaging
9.
Front Pharmacol ; 15: 1380098, 2024.
Article in English | MEDLINE | ID: mdl-38881875

ABSTRACT

Rheumatoid arthritis is a chronic immunological disease leading to the progressive bone and joint destruction. Angiogenesis, accompanied by synovial hyperplasia and inflammation underlies joint destruction. Delaying or even blocking synovial angiogenesis has emerged as an important target of RA treatment. Natural medicines has a long history of treating RA, and numerous reports have suggested that natural medicines have a strong inhibitory activity on synovial angiogenesis, thereby improving the progression of RA. Natural medicines could regulate the following signaling pathways: HIF/VEGF/ANG, PI3K/Akt pathway, MAPKs pathway, NF-κB pathway, PPARγ pathway, JAK2/STAT3 pathway, etc., thereby inhibiting angiogenesis. Tripterygium wilfordii Hook. f. (TwHF), sinomenine, and total glucoside of Paeonia lactiflora Pall. Are currently the most representative of all natural products worthy of development and utilization. In this paper, the main factors affecting angiogenesis were discussed and different types of natural medicines that inhibit angiogenesis were systematically summarized. Their specific anti-angiogenesis mechanisms are also reviewed which aiming to provide new perspective and options for the management of RA by targeting angiogenesis.

10.
Nature ; 630(8016): 329-334, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867129

ABSTRACT

Artificial Kitaev chains can be used to engineer Majorana bound states (MBSs) in superconductor-semiconductor hybrids1-4. In this work, we realize a two-site Kitaev chain in a two-dimensional electron gas by coupling two quantum dots through a region proximitized by a superconductor. We demonstrate systematic control over inter-dot couplings through in-plane rotations of the magnetic field and via electrostatic gating of the proximitized region. This allows us to tune the system to sweet spots in parameter space, where robust correlated zero-bias conductance peaks are observed in tunnelling spectroscopy. To study the extent of hybridization between localized MBSs, we probe the evolution of the energy spectrum with magnetic field and estimate the Majorana polarization, an important metric for Majorana-based qubits5,6. The implementation of a Kitaev chain on a scalable and flexible two-dimensional platform provides a realistic path towards more advanced experiments that require manipulation and readout of multiple MBSs.

11.
Bioresour Technol ; 406: 131044, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936679

ABSTRACT

The recovery of biopolymers, particularly alginate-like extracellular polymers, from municipal sludge represents a promising step toward sustainable sludge treatment practices. Originating from wastewater plants in complexly polluted environments, alginate-like extracellular polymers carry potential environmental risks concerning their reuse. This study employs ultrahigh-performance liquid chromatography-tandem mass spectrometry to investigate the distribution coefficients and occurrence of alginate-like extracellular polymers and sulfamethoxazole. Results demonstrate a negative distribution coefficient, suggesting an inhibitory effect on sulfamethoxazole dissolution. The ethanol-extracted alginate-like extracellular polymers exhibits higher sulfamethoxazole levels (approximately 52%) than those obtained via dialysis extraction. Three-dimensional excitation-emission matrix analysis and adsorption studies indicate the absence of tyrosine-like substances in the alginate-like extracellular polymers, unlike in other extracellular polymeric substances. This absence diminishes hydrophobic interactions, highlighting that electrostatic interactions play a more important role. These insights are crucial for understanding the adsorption behavior of alginate-like extracellular polymers and optimizing their large-scale extraction processes.


Subject(s)
Alginates , Sewage , Sulfamethoxazole , Alginates/chemistry , Sewage/chemistry , Adsorption , Glucuronic Acid/chemistry , Chromatography, High Pressure Liquid , Extracellular Polymeric Substance Matrix/chemistry , Extracellular Polymeric Substance Matrix/metabolism , Polymers/chemistry , Tandem Mass Spectrometry
12.
Eur J Med Chem ; 275: 116595, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38875808

ABSTRACT

In the quest for potent α-glucosidase inhibitors to combat diabetes, a series of novel thiosemicarbazide-based ß-carboline derivatives (CTL1∼36) were synthesized and evaluated. CTL1∼36 exhibited remarkable inhibitory effects against α-glucosidase, with IC50 values ranging from 2.81 to 12.40 µM, significantly surpassing the positive control acarbose (IC50 = 564.28 µM). Notably, CTL26 demonstrated the most potent inhibition (IC50 = 2.81 µM) and was characterized as a non-competitive inhibitor. Through a combination assay with fluorescence quenching, 3D fluorescence spectra, CD spectra, and molecular docking, we elucidated that CTL26 formed a complex with α-glucosidase via hydrogen bondings and hydrophobic interactions, leading to α-glucosidase conformation changes that impaired enzymatic activity. In vivo studies revealed that oral administration of CTL26 (25 and 50 mg/kg/d) reduced fasting blood glucose levels, enhanced glucose tolerance, and ameliorated lipid abnormalities in diabetic mice. These findings positioned CTL26 as a promising candidate for the development of α-glucosidase inhibitors with anti-diabetic potential.


Subject(s)
Carbolines , Diabetes Mellitus, Experimental , Glycoside Hydrolase Inhibitors , Semicarbazides , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Animals , alpha-Glucosidases/metabolism , Carbolines/pharmacology , Carbolines/chemistry , Carbolines/chemical synthesis , Semicarbazides/pharmacology , Semicarbazides/chemistry , Semicarbazides/chemical synthesis , Mice , Structure-Activity Relationship , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Molecular Structure , Molecular Docking Simulation , Dose-Response Relationship, Drug , Male , Blood Glucose/drug effects , Blood Glucose/metabolism , Blood Glucose/analysis , Humans
13.
Nat Microbiol ; 9(8): 1979-1992, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38862603

ABSTRACT

Dimethylsulfoniopropionate (DMSP) is an abundant marine organosulfur compound with roles in stress protection, chemotaxis, nutrient and sulfur cycling and climate regulation. Here we report the discovery of a bifunctional DMSP biosynthesis enzyme, DsyGD, in the transamination pathway of the rhizobacterium Gynuella sunshinyii and some filamentous cyanobacteria not previously known to produce DMSP. DsyGD produces DMSP through its N-terminal DsyG methylthiohydroxybutyrate S-methyltransferase and C-terminal DsyD dimethylsulfoniohydroxybutyrate decarboxylase domains. Phylogenetically distinct DsyG-like proteins, termed DSYE, with methylthiohydroxybutyrate S-methyltransferase activity were found in diverse and environmentally abundant algae, comprising a mix of low, high and previously unknown DMSP producers. Algae containing DSYE, particularly bloom-forming Pelagophyceae species, were globally more abundant DMSP producers than those with previously described DMSP synthesis genes. This work greatly increases the number and diversity of predicted DMSP-producing organisms and highlights the importance of Pelagophyceae and other DSYE-containing algae in global DMSP production and sulfur cycling.


Subject(s)
Phylogeny , Sulfonium Compounds , Sulfonium Compounds/metabolism , Cyanobacteria/genetics , Cyanobacteria/metabolism , Cyanobacteria/enzymology , Methyltransferases/metabolism , Methyltransferases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Biosynthetic Pathways/genetics
14.
Biomedicines ; 12(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38791091

ABSTRACT

The epithelial cell adhesion molecule (EpCAM) is a single transmembrane protein on the cell surface. Given its strong expression on epithelial cells and epithelial cell-derived tumors, EpCAM has been identified as a biomarker for circulating tumor cells (CTCs) and exosomes and a target for cancer therapy. As a cell adhesion molecule, EpCAM has a crystal structure that indicates that it forms a cis-dimer first and then probably a trans-tetramer to mediate intercellular adhesion. Through regulated intramembrane proteolysis (RIP), EpCAM and its proteolytic fragments are also able to regulate multiple signaling pathways, Wnt signaling in particular. Although great progress has been made, increasingly more findings have revealed the context-specific expression and function patterns of EpCAM and their regulation processes, which necessitates further studies to determine the structure, function, and expression of EpCAM under both physiological and pathological conditions, broadening its application in basic and translational cancer research.

15.
ACS Pharmacol Transl Sci ; 7(5): 1335-1347, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38751628

ABSTRACT

Prostate-specific membrane antigen (PSMA), a well-established biological marker for prostate cancer (PCa) imaging and therapy, is overexpressed on the surface of prostate cancer lesions. In this study, a triazole ring was introduced into the linker by click chemistry to generate a HYNIC-derived ligand (T), which exhibited good PSMA affinity (Ki = 2.23 nM). Eight stable 99mTc-labeled complexes, [99mTc]Tc-T-Mn (n = 1-8), with hydrophilic properties were synthesized by incorporating different coligands at high radiochemical yields and purities without purification. The radioligands were concentrated in the kidneys of healthy Kunming male mice and were significantly blocked by the PSMA inhibitor ZJ-43. The uptake of the optimized complex [99mTc]Tc-T-M2 was correlated with PSMA, and it had good PSMA affinity (Kd = 5.42 nM). [99mTc]Tc-T-M2 accumulated on LNCaP (PSMA++) tumors and was significantly blocked by ZJ-43 at 2 h p.i., indicating high PSMA specificity. Relatively suitable kidney uptake was beneficial for reducing kidneys exposure in patients. SPECT/CT imaging of [99mTc]Tc-T-M2 in LNCaP (PSMA++) or 22Rv1 (PSMA+) tumor-bearing mice revealed high tumor uptake, low background uptake (especially low kidney uptake (49.06 ± 9.20 %ID/g) at 2 h p.i.), and obvious inhibition by ZJ-43, whereas PC-3 (PSMA-) tumors were undetectable. A freeze-dried [99mTc]Tc-T-M2 kit was successfully developed (T-M2 kit). Preliminary clinical trials showed that [99mTc]Tc-T-M2 clearly identified small prostate cancer lesions and has potential for clinical application.

16.
Natl Sci Rev ; 11(6): nwae130, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38741716

ABSTRACT

The development of strong sensitizing and Earth-abundant antenna molecules is highly desirable for CO2 reduction through artificial photosynthesis. Herein, a library of Zn-dipyrrin complexes (Z-1-Z-6) are rationally designed via precisely controlling their molecular configuration to optimize strong sensitizing Earth-abundant photosensitizers. Upon visible-light excitation, their special geometry enables intramolecular charge transfer to induce a charge-transfer state, which was first demonstrated to accept electrons from electron donors. The resulting long-lived reduced photosensitizer was confirmed to trigger consecutive intermolecular electron transfers for boosting CO2-to-CO conversion. Remarkably, the Earth-abundant catalytic system with Z-6 and Fe-catalyst exhibits outstanding performance with a turnover number of >20 000 and 29.7% quantum yield, representing excellent catalytic performance among the molecular catalytic systems and highly superior to that of noble-metal photosensitizer Ir(ppy)2(bpy)+ under similar conditions. Experimental and theoretical investigations comprehensively unveil the structure-activity relationship, opening up a new horizon for the development of Earth-abundant strong sensitizing chromophores for boosting artificial photosynthesis.

17.
Nat Commun ; 15(1): 4223, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762554

ABSTRACT

Motivated by recent experimental observations of opposite Chern numbers in R-type twisted MoTe2 and WSe2 homobilayers, we perform large-scale density-functional-theory calculations with machine learning force fields to investigate moiré band topology across a range of twist angles in both materials. We find that the Chern numbers of the moiré frontier bands change sign as a function of twist angle, and this change is driven by the competition between moiré ferroelectricity and piezoelectricity. Our large-scale calculations, enabled by machine learning methods, reveal crucial insights into interactions across different scales in twisted bilayer systems. The interplay between atomic-level relaxation effects and moiré-scale electrostatic potential variation opens new avenues for the design of intertwined topological and correlated states, including the possibility of mimicking higher Landau level physics in the absence of magnetic field.

18.
Cardiovasc Diabetol ; 23(1): 159, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715052

ABSTRACT

BACKGROUND: In observational and experimental studies, diabetes has been reported as a protective factor for aortic dissection. 3-Hydroxybutyrate, a key constituent of ketone bodies, has been found to favor improvements in cardiovascular disease. However, whether the protective effect of diabetes on aortic dissection is mediated by 3-hydroxybutyrate is unclear. We aimed to investigate the causal effects of diabetes on the risk of aortic dissection and the mediating role of 3-hydroxybutyrate in them through two-step Mendelian randomization. MATERIALS AND METHODS: We performed a two-step Mendelian randomization to investigate the causal connections between diabetes, 3-hydroxybutyrate, and aortic dissection and calculate the mediating effect of 3-hydroxybutyrate. Publicly accessible data for Type 1 diabetes, Type 2 diabetes, dissection of aorta and 3-hydroxybutyrate were obtained from genome-wide association studies. The association between Type 1 diabetes and dissection of aorta, the association between Type 2 diabetes and dissection of aorta, and mediation effect of 3-hydroxybutyrate were carried out separately. RESULTS: The IVW method showed that Type 1 diabetes was negatively associated with the risk of aortic dissection (OR 0.912, 95% CI 0.836-0.995), The weighted median, simple mode and weighted mode method showed consistent results. The mediated proportion of 3-hydroxybutyrate on the relationship between Type 1 diabetes and dissection of aorta was 24.80% (95% CI 5.12-44.47%). The IVW method showed that Type 2 diabetes was negatively associated with the risk of aortic dissection (OR 0.763, 95% CI 0.607-0.960), The weighted median, simple mode and weighted mode method showed consistent results. 3-Hydroxybutyrate does not have causal mediation effect on the relationship between Type 2 diabetes and dissection of aorta. CONCLUSION: Mendelian randomization study revealed diabetes as a protective factor for dissection of aorta. The protective effect of type 1 diabetes on aortic dissection was partially mediated by 3-hydroxybutyrate, but type 2 diabetes was not 3-hydroxybutyrate mediated.


Subject(s)
3-Hydroxybutyric Acid , Aortic Aneurysm , Aortic Dissection , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Genetic Predisposition to Disease , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Aortic Dissection/genetics , Aortic Dissection/epidemiology , Aortic Dissection/etiology , 3-Hydroxybutyric Acid/blood , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Risk Factors , Aortic Aneurysm/genetics , Aortic Aneurysm/epidemiology , Aortic Aneurysm/etiology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/epidemiology , Risk Assessment , Protective Factors , Phenotype , Biomarkers/blood , Mediation Analysis
19.
J Virol ; 98(7): e0045824, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38814067

ABSTRACT

Tryptophan metabolism plays a crucial role in facilitating various cellular processes essential for maintaining normal cellular function. Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the conversion of tryptophan (Trp) into kynurenine (Kyn), thereby initiating the degradation of Trp. The resulting Kyn metabolites have been implicated in the modulation of immune responses. Currently, the role of IDO1-mediated tryptophan metabolism in the process of viral infection remains relatively unknown. In this study, we discovered that classical swine fever virus (CSFV) infection of PK-15 cells can induce the expression of IDO1, thereby promoting tryptophan metabolism. IDO1 can negatively regulate the NF-κB signaling by mediating tryptophan metabolism, thereby facilitating CSFV replication. We found that silencing the IDO1 gene enhances the expression of IFN-α, IFN-ß, and IL-6 by activating the NF-κB signaling pathway. Furthermore, our observations indicate that both silencing the IDO1 gene and administering exogenous tryptophan can inhibit CSFV replication by counteracting the cellular autophagy induced by Rapamycin. This study reveals a novel mechanism of IDO1-mediated tryptophan metabolism in CSFV infection, providing new insights and a theoretical basis for the treatment and control of CSFV.IMPORTANCEIt is well known that due to the widespread use of vaccines, the prevalence of classical swine fever (CSF) is shifting towards atypical and invisible infections. CSF can disrupt host metabolism, leading to persistent immune suppression in the host and causing significant harm when co-infected with other diseases. Changes in the host's metabolic profiles, such as increased catabolic metabolism of amino acids and the production of immunoregulatory metabolites and their derivatives, can also influence virus replication. Mammals utilize various pathways to modulate immune responses through amino acid utilization, including increased catabolic metabolism of amino acids and the production of immunoregulatory metabolites and their derivatives, thereby limiting viral replication. Therefore, this study proposes that targeting the modulation of tryptophan metabolism may represent an effective approach to control the progression of CSF.


Subject(s)
Classical Swine Fever Virus , Indoleamine-Pyrrole 2,3,-Dioxygenase , NF-kappa B , Signal Transduction , Tryptophan , Virus Replication , Tryptophan/metabolism , Animals , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , NF-kappa B/metabolism , Swine , Classical Swine Fever Virus/physiology , Cell Line , Kynurenine/metabolism , Classical Swine Fever/virology , Classical Swine Fever/metabolism , Autophagy
20.
Int J Biol Macromol ; 270(Pt 2): 132338, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763237

ABSTRACT

Extracellular polymeric substances (EPSs) in excess sludge of wastewater treatment plants are valuable biopolymers that can act as recovery materials. However, effectively concentrating EPSs consumes a significant amount of energy. This study employed novel energy-saving pressure-free dead-end forward osmosis (DEFO) technology to concentrate various biopolymers, including EPSs and model biopolymers [sodium alginate (SA), bovine serum albumin (BSA), and a mixture of both (denoted as BSA-SA)]. The feasibility of the DEFO technology was proven and the largest concentration ratios for these biopolymers were 94.8 % for EPSs, 97.1 % for SA, 97.8 % for BSA, and 98.4 % for BSA-SA solutions. An evaluation model was proposed, incorporating the FO membrane's water permeability coefficient and the concentrated substances' osmotic resistance, to describe biopolymers' concentration properties. Irrespective of biopolymer type, the water permeability coefficient decreased with increasing osmotic pressure, remained constant with increasing feed solution (FS) concentration, increased with increasing crossing velocity in the draw side, and showed little dependence on draw salt type. In the EPS DEFO concentration process, osmotic resistance was minimally impacted by osmotic pressure, FS concentration, and crossing velocity, and monovalent metal salts were proposed as draw solutes. The interaction between reverse diffusion metal cations and EPSs affected the structure of the concentrated substances on the FO membrane, thus changing the osmotic resistance in the DEFO process. These findings offer insights into the efficient concentration of biopolymers using DEFO.


Subject(s)
Osmosis , Biopolymers/chemistry , Alginates/chemistry , Serum Albumin, Bovine/chemistry , Permeability , Osmotic Pressure , Water/chemistry , Cattle , Membranes, Artificial , Animals , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL