Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Cell Infect Microbiol ; 11: 684965, 2021.
Article in English | MEDLINE | ID: mdl-34737971

ABSTRACT

Background: The diagnosis of bacterial pathogens in lower respiratory tract infections (LRI) using conventional culture methods remains challenging and time-consuming. Objectives: To evaluate the clinical performance of a rapid nanopore-sequencing based metagenomics test for diagnosis of bacterial pathogens in common LRIs through a large-scale prospective study. Methods: We enrolled 292 hospitalized patients suspected to have LRIs between November 2018 and June 2019 in a single-center, prospective cohort study. Rapid clinical metagenomics test was performed on-site, and the results were compared with those of routine microbiology tests. Results: 171 bronchoalveolar lavage fluid (BAL) and 121 sputum samples were collected from patients with six kinds of LRIs. The turnaround time (from sample registration to result) for the rapid metagenomics test was 6.4 ± 1.4 hours, compared to 94.8 ± 34.9 hours for routine culture. Compared with culture and real-time PCR validation tests, rapid metagenomics achieved 96.6% sensitivity and 88.0% specificity and identified pathogens in 63 out of 161 (39.1%) culture-negative samples. Correlation between enriched anaerobes and lung abscess was observed by Gene Set Enrichment Analysis. Moreover, 38 anaerobic species failed in culture was identified by metagenomics sequencing. The hypothetical impact of metagenomics test proposed antibiotic de-escalation in 34 patients compared to 1 using routine culture. Conclusions: Rapid clinical metagenomics test improved pathogen detection yield in the diagnosis of LRI. Empirical antimicrobial therapy could be de-escalated if rapid metagenomics test results were hypothetically applied to clinical management.


Subject(s)
Nanopores , Pneumonia, Bacterial , Bacteria/genetics , Humans , Metagenomics , Prospective Studies , Sensitivity and Specificity
2.
J Extracell Vesicles ; 7(1): 1458574, 2018.
Article in English | MEDLINE | ID: mdl-29696079

ABSTRACT

Extracellular vesicle (EV)-based liquid biopsies have been proposed to be a readily obtainable biological substrate recently for both profiling and diagnostics purposes. Development of a fast and reliable preparation protocol to enrich such small particles could accelerate the discovery of informative, disease-related biomarkers. Though multiple EV enrichment protocols are available, in terms of efficiency, reproducibility and simplicity, precipitation-based methods are most amenable to studies with large numbers of subjects. However, the selectivity of the precipitation becomes critical. Here, we present a simple plasma EV enrichment protocol based on pluronic block copolymer. The enriched plasma EV was able to be verified by multiple platforms. Our results showed that the particles enriched from plasma by the copolymer were EV size vesicles with membrane structure; proteomic profiling showed that EV-related proteins were significantly enriched, while high-abundant plasma proteins were significantly reduced in comparison to other precipitation-based enrichment methods. Next-generation sequencing confirmed the existence of various RNA species that have been observed in EVs from previous studies. Small RNA sequencing showed enriched species compared to the corresponding plasma. Moreover, plasma EVs enriched from 20 advanced breast cancer patients and 20 age-matched non-cancer controls were profiled by semi-quantitative mass spectrometry. Protein features were further screened by EV proteomic profiles generated from four breast cancer cell lines, and then selected in cross-validation models. A total of 60 protein features that highly contributed in model prediction were identified. Interestingly, a large portion of these features were associated with breast cancer aggression, metastasis as well as invasion, consistent with the advanced clinical stage of the patients. In summary, we have developed a plasma EV enrichment method with improved precipitation selectivity and it might be suitable for larger-scale discovery studies.

3.
Oncotarget ; 7(15): 19840-9, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-26942886

ABSTRACT

OBJECTIVE: Patients with recurrent epithelial ovarian cancer (EOC) have limited treatment options. Studies have reported that biomarker profiling may help predict patient response to available treatments. This study sought to determine the value of biomarker profiling in recurrent EOC. RESULTS: Patients in the Matched cohort had a median OS of 36 months compared to 27 months for patients in the Unmatched cohort (HR 0.62, 95% CI 0.41-0.96; p < 0.03). Individual biomarkers were analyzed, with TUBB3, and PGP prognostic for survival. Biomarker analysis also identified a molecular subtype (positive for at least two of the following markers: ERCC1, RRM1, TUBB3, PGP) with particularly poor overall survival. METHODS: 224 patients from a commercial registry (NCT02678754) with stage IIIC/IV EOC at diagnosis, or restaged to IIIC/IV EOC at the time of molecular profiling, were retrospectively divided into two cohorts based on whether or not the drugs they received matched their profile recommendations. The Matched cohort received no drugs predicted to be lack-of-benefit while the Unmatched cohort received at least one drug predicted to be lack-of-benefit. Profile biomarker/drug associations were based on multiple test platforms including immunohistochemistry, fluorescent in situ hybridization and DNA sequencing. CONCLUSIONS: This report demonstrates the ability of multi-platform molecular profiling to identify EOC patients at risk of inferior survival. It also suggests a potential beneficial role of avoidance of lack-of-benefit therapies which, when administered, resulted in decreased survival relative to patients who received only therapies predicted to be of benefit.


Subject(s)
Biomarkers, Tumor/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Ovarian Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence/methods , Kaplan-Meier Estimate , Middle Aged , Neoplasm Staging , Outcome Assessment, Health Care/methods , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Prognosis , Retrospective Studies
4.
J Mol Diagn ; 17(5): 487-95, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26320869

ABSTRACT

The HER2 (official name ERBB2) gene encodes a membrane receptor in the epidermal growth factor receptor family amplified and overexpressed in adenocarcinoma. Activating mutations also occur in several cancers. We report mutation analyses of the HER2 kinase domain in 7497 histologically diverse cancers. Forty-five genes, including the kinase domain of HER2 with HER2 IHC and dual in situ hybridization, were analyzed in tumors from 7497 patients with cancer, including 850 breast, 770 colorectal, 910 non-small cell lung, 823 uterine or cervical, 1372 ovarian, and 297 pancreatic cancers, as well as 323 melanomas and 2152 other solid tumors. Sixty-nine HER2 kinase domain mutations were identified in tumors from 68 patients (approximately 1% of all cases, ranging from absent in sarcomas to 4% in urothelial cancers), which included previously published activating mutations and 13 novel mutations. Fourteen cases with coexisting HER2 mutation and amplification and/or overexpression were identified. Fifty-two of 68 patients had additional mutations in other analyzed genes, whereas 16 patients (23%) had HER2 mutations identified as the sole driver mutation. HER2 mutations coexisted with HER2 gene amplification and overexpression and with mutations in other functionally important genes. HER2 mutations were identified as the only driver mutation in a significant proportion of solid cancers. Evaluation of anti-HER2 therapies in nonamplified, HER2-mutated cancers is warranted.


Subject(s)
Mutation , Neoplasms/genetics , Phosphotransferases/chemistry , Receptor, ErbB-2/genetics , Amino Acid Substitution , Catalytic Domain/genetics , Cohort Studies , DNA Mutational Analysis/methods , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Phosphotransferases/genetics , Receptor, ErbB-2/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...