Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Discov Med ; 36(184): 992-1001, 2024 May.
Article in English | MEDLINE | ID: mdl-38798258

ABSTRACT

BACKGROUND: Diabetic neuropathic pain (DNP) is a complication of diabetes mellitus (DM). Hyperbaric lidocaine (HL), a local anesthetics drug, has neurotoxicity. The present study aims to study the effect and molecular mechanisms of HL on spinal nerve injury in DNP. METHODS: The DNP rat model was established through a high-fat-glucose diet in combination with Streptozotocin (STZ) administration. SB203580 and PD98059 were utilized to inhibit p38 mitogen-activated protein kinase (p38 MAPK) and extracellular signal-regulated kinase (ERK). The mechanical paw withdrawal threshold (PWT) and the thermal paw withdrawal latency (PWL) were tested to evaluate rats' mechanical allodynia and thermal hyperalgesia. Hematoxylin-eosin (H&E) and terminal deoxynucleotidyltransferase-mediated dUTP nick-end Labeling (TUNEL) staining were performed to evaluate the pathological changes and neuron apoptosis in spinal cord tissues of L4-5. Western blotting analysis and reverse transcription-polymerase chain reaction (RT-qPCR) assay were used to measure the levels of proteins and mRNAs, respectively. RESULTS: PWT and PWL were decreased in DNP rats with serious spinal nerve injury. HL administration downregulated the PWT and PWL and aggravated spinal nerve injury in DNP rats, but isobaric lidocaine had no effects on these changes. Meanwhile, p38 MAPK/ERK signaling and PTEN-induced kinase 1 (PINK1)-mediated mitophagy were activated in DNP, which was enhanced by HL but not isobaric lidocaine. Blocking p38 MAPK/ERK signaling could effectively attenuate HL-induced spinal nerve injury and inhibit mitophagy. CONCLUSION: In summary, HL can aggravate spinal cord tissue damage in DNP rats by inducing PINK1-mediated mitophagy via activating p38 MAPK/ERK signaling. Our data provide a novel insight that supports the potential role of p38 MAPK/ERK signaling in acting as a therapeutic target for HL-induced neurotoxicity.


Subject(s)
Diabetic Neuropathies , Lidocaine , Mitophagy , Protein Kinases , Rats, Sprague-Dawley , Ubiquitin-Protein Ligases , p38 Mitogen-Activated Protein Kinases , Animals , Lidocaine/pharmacology , Rats , Diabetic Neuropathies/pathology , Diabetic Neuropathies/metabolism , Diabetic Neuropathies/etiology , p38 Mitogen-Activated Protein Kinases/metabolism , Mitophagy/drug effects , Male , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/pathology , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects
4.
Neurosci Lett ; 807: 137259, 2023 06 11.
Article in English | MEDLINE | ID: mdl-37075883

ABSTRACT

Postoperative cognitive dysfunction (POCD) is common in aged patients after major surgery and is associated with increased risk of long-term morbidity and mortality. However, the underlying mechanism remains largely unknown and the clinical management of POCD is still controversial. Stellate ganglion block (SGB) is a clinical treatment for nerve injuries and circulatory issues. Recent evidence has identified the benefits of SGB in promoting learning and memory. We thus hypothesize that SGB could be effective in improving cognitive function after surgery. In present study, we established POCD model in aged rats via partial liver resection surgery. We found that the development of POCD was associated with the activation of toll-like receptor 4/nuclear factor kapa-B (TLR4/NF-κB) signaling pathway in the microglia in dorsal hippocampus, which induced the production of pro-inflammatory mediators (TNF-α, IL-1ß, IL-6) and promoted neuroinflammation. More importantly, we showed evidence that preoperative treatment with SGB could inhibit microglial activation, suppress TLR4/NF-κB-mediated neuroinflammation and effectively attenuate cognitive decline after the surgery. Our study suggested that SGB may serve as a novel treatment to prevent POCD in elderly patients. As SGB is safe procedure widely used in clinic, our findings can be easily translated into clinical practice and benefit more patients.


Subject(s)
Cognitive Dysfunction , Postoperative Cognitive Complications , Rats , Animals , NF-kappa B/metabolism , Postoperative Cognitive Complications/prevention & control , Postoperative Cognitive Complications/metabolism , Neuroinflammatory Diseases , Toll-Like Receptor 4/metabolism , Stellate Ganglion/metabolism , Signal Transduction , Cognitive Dysfunction/etiology , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/drug therapy , Microglia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...