Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.278
Filter
1.
Front Plant Sci ; 15: 1420408, 2024.
Article in English | MEDLINE | ID: mdl-39100088

ABSTRACT

Heavy metal pollution has become a serious concern across the globe due to their persistent nature, higher toxicity, and recalcitrance. These toxic metals threaten the stability of the environment and the health of all living beings. Heavy metals also enter the human food chain by eating contaminated foods and cause toxic effects on human health. Thus, remediation of HMs polluted soils is mandatory and it needs to be addressed at higher priority. The use of microbes is considered as a promising approach to combat the adverse impacts of HMs. Microbes aided in the restoration of deteriorated environments to their natural condition, with long-term environmental effects. Microbial remediation prevents the leaching and mobilization of HMs and they also make the extraction of HMs simple. Therefore, in this context recent technological advancement allowed to use of bioremediation as an imperative approach to remediate polluted soils. Microbes use different mechanisms including bio-sorption, bioaccumulation, bioleaching, bio-transformation, bio-volatilization and bio-mineralization to mitigate toxic the effects of HMs. Thus, keeping in the view toxic HMs here in this review explores the role of bacteria, fungi and algae in bioremediation of polluted soils. This review also discusses the various approaches that can be used to improve the efficiency of microbes to remediate HMs polluted soils. It also highlights different research gaps that must be solved in future study programs to improve bioremediation efficency.

2.
Natl Sci Rev ; 11(8): nwae234, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39114378

ABSTRACT

Ruthenium polypyridyl complexes are promising anticancer candidates, while their cellular targets have rarely been identified, which limits their clinical application. Herein, we design a series of Ru(II) polypyridyl complexes containing bioactive ß-carboline derivatives as ligands for anticancer evaluation, among which Ru5 shows suitable lipophilicity, high aqueous solubility, relatively high anticancer activity and cancer cell selectivity. The subsequent utilization of a photo-clickable probe, Ru5a, serves to validate the significance of ATP synthase as a crucial target for Ru5 through photoaffinity-based protein profiling. Ru5 accumulates in mitochondria, impairs mitochondrial functions and induces mitophagy and ferroptosis. Combined analysis of mitochondrial proteomics and RNA-sequencing shows that Ru5 significantly downregulates the expression of the chloride channel protein, and influences genes related to ferroptosis and epithelial-to-mesenchymal transition. Finally, we prove that Ru5 exhibits higher anticancer efficacy than cisplatin in vivo. We firstly identify the molecular targets of ruthenium polypyridyl complexes using a photo-click proteomic method coupled with a multiomics approach, which provides an innovative strategy to elucidate the anticancer mechanisms of metallo-anticancer candidates.

3.
Oecologia ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133236

ABSTRACT

The N2-fixing trees Alnus spp. have been widely encroaching into boreal peatlands, but the nutrient responses of native vascular plants remain unclear. Here, we compared nutrient concentrations and isotope signal of six common plants (Betula fruticosa, Salix rosmarinifolia, Vaccinium uliginosum, Rhododendron tomentosum, Chamaedaphne calyculata, and Eriophorum vaginatum) between Alnus hirsuta island and open peatland and assessed plant nutrient responses to A. hirsuta encroachment in boreal peatlands. Alnus hirsuta encroachment increased nitrogen (N) concentration of leaf, branch, and stem. Despite no significant interspecific difference in branch and stem, the increment magnitude of leaf N concentration varied among species, with greatest magnitude for R. tomentosum (55.1% ± 40.7%) and lowest for E. vaginatum (9.80% ± 4.40%) and B. fruticosa (18.4% ± 10.7%). Except for E. vaginatum, the significant increase in δ15N occurred for all organs of shrubs, with interspecific differences in change of leaf δ15N. According to the mass balance equation involving leaf δ15N, R. tomentosum and E. vaginatum, respectively, obtained highest (40.5% ± 19.8%) and lowest proportions (-14.0% ± 30.5%) of N from A. hirsuta. Moreover, the increment magnitudes of leaf N concentration showed a positive linear relationship with the proportion of N from A. hirsuta. In addition, A. hirsuta encroachment reduced leaf phosphorus (P) concentration of deciduous shrubs (i.e., B. fruticosa, S. rosmarinifolia, and V. uliginosum), thus increasing N:P ratio. These findings indicate that Alnus encroachment improves native plant N status and selectively intensifies P limitation of native deciduous shrubs, and highlight that the N acquisition from the symbiotic N2-fixing system regulates plant N responses in boreal peatlands.

4.
Adv Sci (Weinh) ; : e2400354, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120568

ABSTRACT

The mechanisms of anxiety disorders, the most common mental illness, remain incompletely characterized. The ventral hippocampus (vHPC) is critical for the expression of anxiety. However, current studies primarily focus on vHPC neurons, leaving the role for vHPC astrocytes in anxiety largely unexplored. Here, genetically encoded Ca2+ indicator GCaMP6m and in vivo fiber photometry calcium imaging are used to label vHPC astrocytes and monitor their activity, respectively, genetic and chemogenetic approaches to inhibit and activate vHPC astrocytes, respectively, patch-clamp recordings to measure glutamate currents, and behavioral assays to assess anxiety-like behaviors. It is found that vHPC astrocytic activity is increased in anxiogenic environments and by 3-d subacute restraint stress (SRS), a well-validated mouse model of anxiety disorders. Genetic inhibition of vHPC astrocytes exerts anxiolytic effects on both innate and SRS-induced anxiety-related behaviors, whereas hM3Dq-mediated chemogenetic or SRS-induced activation of vHPC astrocytes enhances anxiety-like behaviors, which are reversed by intra-vHPC application of the ionotropic glutamate N-methyl-d-aspartate receptor antagonists. Furthermore, intra-vHPC or systemic application of the N-methyl-d-aspartate receptor antagonist memantine, a U.S. FDA-approved drug for Alzheimer's disease, fully rescues SRS-induced anxiety-like behaviors. The findings highlight vHPC astrocytes as critical regulators of stress and anxiety and as potential therapeutic targets for anxiety and anxiety-related disorders.

5.
Front Plant Sci ; 15: 1297499, 2024.
Article in English | MEDLINE | ID: mdl-39139721

ABSTRACT

Boehmeria is a taxonomically challenging group within the nettle family (Urticaceae). The polyphyly of the genus has been proposed by previous studies with respect to five genera (Debregeasia, Cypholophus, Sarcochlamys, Archiboehmeria, and Astrothalamus). Extensive homoplasy of morphological characters has made generic delimitation problematic. Previous studies in other plant groups suggest that plastome structural variations have the potential to provide characters useful in reconstructing evolutionary relationships. We aimed to test this across Boehmeria and its allied genera by mapping plastome structural variations onto a resolved strongly supported phylogeny. In doing so, we expanded the sampling of the plastome to include Cypholophus, Sarcochlamys, Archiboehmeria, and Astrothalamus for the first time. The results of our phylogenomic analyses provide strong support for Sarcochlamys as being more closely related to Leucosyke puya than to Boehmeria and for the clustering of Boehmeria s.l. into four subclades. The sizes of the plastomes in Boehmeria s.l. ranged from 142,627 bp to 170,958 bp. The plastomes recovered a typical quadripartite structure comprising 127~146 genes. We observe several obvious structural variations across the taxa such as gene loss and multiple gene duplication, inverted repeat (IR) contraction and wide expansions, and inversions. Moreover, we recover a trend for these variations that the early clades were relatively conserved in evolution, whereas the later diverging clades were variable. We propose that the structural variations documented may be linked to the adaptation of Boehmeria s.l. to a wide range of habitats, from moist broadleaf forests in Asia to xeric shrublands and deserts in Africa. This study confirms that variation in plastome gene loss/duplication, IR contraction/expansion, and inversions can provide evidence useful for the reconstruction of evolutionary relationships.

6.
J Neuroimmunol ; 394: 578423, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39096562

ABSTRACT

The objective is to characterize differentially expressed proteins (DEPs) in Guillain-Barré Syndrome (GBS) and Chronic Inflammatory Demyelinating Polyneuropathy (CIDP) through high-throughput analysis. Sera from 11 healthy controls (HCs), 21 GBS and 19 CIDP patients were subjected to Olink Proteomics Analysis. In the comparison between CIDP and GBS groups, up-regulation of ITM2A and down-regulation of NTF4 were observed. Comparing GBS with HCs revealed 18 up-regulated and 4 down-regulated proteins. Comparing CIDP with the HCs identified 15 up-regulated and 4 down-regulated proteins. Additionally, the correlation between clinical characteristics and DEPs were uncovered. In conclusion, the DEPs have significant potential to advance our understanding of the pathogenesis in these debilitating neurological disorders.

7.
Virol J ; 21(1): 172, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095779

ABSTRACT

Human papillomavirus (HPV) 11/16 E6/E7 proteins have been recognized to be pivotal in viral pathogenesis. This study sought to uncover the potential mechanisms of how HPV11/16 E6/E7-transfected keratinocytes inhibit cytokine secretion in peripheral blood mononuclear cells (PBMC). Upon co-culturing HPV11/16 E6/E7-transfected keratinocytes with PBMC in a non-contact manner, we observed a marked decrease in various cytokines secreted by PBMC. To determine if this suppression was mediated by specific common secreted factors, we conducted transcriptomic sequencing on these transfected cells. This analysis identified 53 common differentially secreted genes in all four HPV-transfected cells. Bioinformatics analysis demonstrated these genes were predominantly involved in immune regulation. Results from quantitative PCR (qPCR) and an extensive literature review suggested the downregulation of 12 genes (ACE2, BMP3, BPIFB1, CLU, CST6, CTF1, HMGB2, MMP12, PDGFA, RNASE7, SULF2, TGM2), and upregulation of 7 genes (CCL17, CCL22, FBLN1, PLAU, S100A7, S100A8, S100A9), may be crucial in modulating tumor immunity and combating pathogenic infections, with genes S100A8 and S100A9, and IL-17 signaling pathway being particularly noteworthy. Thus, HPV11/16 E6/E7 proteins may inhibit cytokine secretion of immune cells by altering the expression of host-secreted genes. Further exploration of these genes may yield new insights into the complex dynamics of HPV infection.


Subject(s)
Cytokines , Leukocytes, Mononuclear , Oncogene Proteins, Viral , Humans , Cytokines/metabolism , Cytokines/genetics , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Leukocytes, Mononuclear/metabolism , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Oncogene Proteins, Viral/immunology , Keratinocytes/virology , Keratinocytes/immunology , Keratinocytes/metabolism , Human papillomavirus 16/genetics , Human papillomavirus 16/immunology , Human papillomavirus 11/genetics , Human papillomavirus 11/immunology , Gene Expression Profiling , Papillomavirus Infections/virology , Papillomavirus Infections/immunology , Papillomavirus Infections/genetics , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/metabolism , Papillomavirus E7 Proteins/immunology , Coculture Techniques , Host-Pathogen Interactions/immunology , Host-Pathogen Interactions/genetics
8.
Front Mol Neurosci ; 17: 1424561, 2024.
Article in English | MEDLINE | ID: mdl-38962803

ABSTRACT

Cognitive impairment (COI) is a prevalent complication across a spectrum of brain disorders, underpinned by intricate mechanisms yet to be fully elucidated. Neurons, the principal cell population of the nervous system, orchestrate cognitive processes and govern cognitive balance. Extensive inquiry has spotlighted the involvement of Foxo3a in COI. The regulatory cascade of Foxo3a transactivation implicates multiple downstream signaling pathways encompassing mitochondrial function, oxidative stress, autophagy, and apoptosis, collectively affecting neuronal activity. Notably, the expression and activity profile of neuronal Foxo3a are subject to modulation via various modalities, including methylation of promoter, phosphorylation and acetylation of protein. Furthermore, upstream pathways such as PI3K/AKT, the SIRT family, and diverse micro-RNAs intricately interface with Foxo3a, engendering alterations in neuronal function. Through several downstream routes, Foxo3a regulates neuronal dynamics, thereby modulating the onset or amelioration of COI in Alzheimer's disease, stroke, ischemic brain injury, Parkinson's disease, and traumatic brain injury. Foxo3a is a potential therapeutic cognitive target, and clinical drugs or multiple small molecules have been preliminarily shown to have cognitive-enhancing effects that indirectly affect Foxo3a. Particularly noteworthy are multiple randomized, controlled, placebo clinical trials illustrating the significant cognitive enhancement achievable through autophagy modulation. Here, we discussed the role of Foxo3a in neuron-mediated COI and common cognitively impaired diseases.

9.
Allergy ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987868

ABSTRACT

INTRODUCTION: Evidence on the early life risk factors of adult CRS, and the history of asthma and allergies across the life course, is limited. AIM: To investigate relationships between respiratory infective/allergic conditions in childhood, and asthma and allergies across the life course and CRS in middle age. METHODS: Data were from the population-based Tasmanian Longitudinal Health Study (TAHS) cohort, first studied in 1968 when aged 6-7 years (n = 8583) and serially followed into middle age (n = 3609). Using a well-accepted epidemiological definition, participants were assigned a CRS-severity subtype at age 53: no sinusitis/CRS (reference); past doctor diagnosis only; current symptoms without doctor diagnosis; and doctor-diagnosed CRS with current symptoms. Relationships with infective/allergic respiratory illnesses at age 7, and previously published asthma-allergy trajectories from 7 to 53 years, were examined using multinominal regression. RESULTS: In middle age, 5.8% reported current CRS symptoms with 2.5% doctor-diagnosed. Childhood conditions associated with symptomatic doctor-diagnosed CRS included frequent head colds (multinomial odds ratio [mOR] = 2.04 (95% confidence interval [95% CI]: 1.24, 3.37)), frequent tonsillitis (mOR = 1.61 [95% CI: 1.00, 2.59]) and current childhood asthma (mOR = 2.23 [95% CI: 1.25, 3.98]). Life course trajectories that featured late-onset or persistent asthma and allergies were associated with all CRS subtypes in middle age; early-onset persistent asthma and allergies (mOR = 6.74, 95% CI: 2.76, 16.4); late-onset asthma allergies (mOR = 15.9, 95% CI: 8.06, 31.4), and late-onset hayfever (mOR = 3.02, 95% CI: 1.51, 6.06) were associated with symptomatic doctor-diagnosed CRS. CONCLUSION: Current asthma, frequent head colds and tonsillitis at age 7 could signal a susceptible child who is at higher risk for CRS in mid-adult life and who might benefit from closer monitoring and/or proactive management. Concurrent asthma and allergies were strongly associated and are potential treatable traits of adult CRS.

10.
Angew Chem Int Ed Engl ; : e202411166, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008335

ABSTRACT

Molecular editing promises to facilitate the rapid diversification of complex molecular architectures by rapidly and conveniently altering core frameworks. This approach has the potential to accelerate both drug discovery and total synthesis. In this study, we present a novel protocol for the molecular editing of pyrroles. Initially, N-Boc pyrroles and alkynes are converted into N-bridged compounds through a Diels-Alder reaction. These compounds then undergo deprotection of the Boc group, nitrosylation, and cheletropic N2O extrusion to yield benzene or naphthalene products. By using benzyne as a substrate, this method can be conceptually viewed as a fusion of skeletal editing of the pyrrole ring and site-selective peripheral editing of the benzene ring. Furthermore, this proof-of-concept protocol has demonstrated its potential to transform the (hetero)arene motif from commercially available drugs, offering the possibility of generating new biologically active compounds.

11.
Plant Cell Rep ; 43(7): 188, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960994

ABSTRACT

KEY MESSAGE: BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance in Arabidopsis roots. The formative divisions of cortex/endodermis initials (CEIs) and CEI daughter cells (CEIDs) in Arabidopsis roots are coordinately controlled by the longitudinal auxin gradient and the radial SHORT ROOT (SHR) abundance. However, the mechanism underlying this coordination remains poorly understood. In this study, we demonstrate that BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance. Mutations in BIG gene repressed cell cycle progression, delaying the formative divisions within the ground tissues and impairing the establishment of endodermal and cortical identities. In addition, we uncovered auxin's suppressive effect on BIG expression, triggering CYCLIND6;1 (CYCD6;1) activation in an SHR-dependent fashion. Moreover, the degradation of RETINOBLASTOMA-RELATED (RBR) is jointly regulated by BIG and CYCD6;1. The loss of BIG function led to RBR protein accumulation, detrimentally impacting the SHR/SCARECROW (SCR) protein complex and the CEI/CEID formative divisions. Collectively, these findings shed light on a fundamental mechanism wherein BIG intricately coordinates the interplay between SHR/SCR and auxin, steering ground tissue patterning within Arabidopsis root tissue.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Indoleacetic Acids , Plant Roots , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/cytology , Indoleacetic Acids/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Roots/cytology , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Asymmetric Cell Division , Mutation/genetics , Stem Cells/metabolism , Stem Cells/cytology , Cyclins/metabolism , Cyclins/genetics , Calmodulin-Binding Proteins , Transcription Factors
12.
Cancer Lett ; 598: 217118, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39002690

ABSTRACT

Recent studies have highlighted palmitoylation, a novel protein post-translational modification, as a key player in various signaling pathways that contribute to tumorigenesis and drug resistance. Despite this, its role in bladder cancer (BCa) development remains inadequately understood. In this study, ZDHHC9 emerged as a significantly upregulated oncogene in BCa. Functionally, ZDHHC9 knockdown markedly inhibited tumor proliferation, promoted tumor cell apoptosis, and enhanced the efficacy of gemcitabine (GEM) and cisplatin (CDDP). Mechanistically, SP1 was found to transcriptionally activate ZDHHC9 expression. ZDHHC9 subsequently bound to and palmitoylated the Bip protein at cysteine 420 (Cys420), thereby inhibiting the unfolded protein response (UPR). This palmitoylation at Cys420 enhanced Bip's protein stability and preserved its localization within the endoplasmic reticulum (ER). ZDHHC9 might become a novel therapeutic target for BCa and could also contribute to combination therapy with GEM and CDDP.

13.
Eur J Med Res ; 29(1): 366, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014466

ABSTRACT

PURPOSE: Our study aimed to develop and validate a homologous recombination deficiency (HRD) scoring algorithm in the Chinese breast cancer population. METHODS AND MATERIALS: Ninety-six in-house breast cancer (BC) samples and 6 HRD-positive standard cells were analyzed by whole-genome sequencing (WGS). Besides, 122 BCs from the TCGA database were down-sampled to ~ 1X WGS. We constructed an algorithm named AcornHRD for HRD score calculated based on WGS at low coverage as input data to estimate large-scale copy number alteration (LCNA) events on the genome. A clinical cohort of 50 BCs (15 cases carrying BRCA mutation) was used to assess the association between HRD status and anthracyclines-based neoadjuvant treatment outcomes. RESULTS: A 100-kb window was defined as the optimal size using 41 in-house cases and the TCGA dataset. HRD score high threshold was determined as HRD score ≥ 10 using 55 in-house BCs with BRCA mutation to achieve a 95% BRCA-positive agreement rate. Furthermore, the HRD status agreement rate of AcornHRD is 100%, while the ShallowHRD is 60% in standard cells. BRCA mutation was significantly associated with a high HRD score evaluated by AcornHRD and ShallowHRD (p = 0.008 and p = 0.003, respectively) in the TCGA dataset. However, AcornHRD showed a higher positive agreement rate than did the ShallowHRD algorithm (70% vs 60%). In addition, the BRCA-positive agreement rate of AcornHRD was superior to that of ShallowHRD (87% vs 13%) in the clinical cohort. Importantly, the high HRD score assessed by AcornHRD was significantly correlated with a residual cancer burden score of 0 or 1 (RCB0/1). Besides, the HRD-positive group was more likely to respond to anthracycline-based chemotherapy than the HRD-negative group (pCR [OR = 9.5, 95% CI 1.11-81.5, p = 0.040] and RCB0/1 [OR = 10.29, 95% CI 2.02-52.36, p = 0.005]). CONCLUSION: Using the AcornHRD algorithm evaluation, our analysis demonstrated the high performance of the LCNA genomic signature for HRD detection in breast cancers.


Subject(s)
Algorithms , Anthracyclines , Breast Neoplasms , Neoadjuvant Therapy , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , Anthracyclines/therapeutic use , Anthracyclines/administration & dosage , Neoadjuvant Therapy/methods , Middle Aged , China/epidemiology , Adult , Homologous Recombination , Mutation , Aged , DNA Copy Number Variations , BRCA1 Protein/genetics
14.
J Am Chem Soc ; 146(28): 18892-18898, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38968086

ABSTRACT

Herein, we designed a reaction for the desymmetrization-addition of cyclopropenes to imines by leveraging the synergy between photoredox and asymmetric cobalt catalysis. This protocol facilitated the synthesis of a series of chiral functionalized cyclopropanes with high yield, enantioselectivity, and diastereoselectivity (44 examples, up to 93% yield and >99% ee). A possible reaction mechanism involving cyclopropene desymmetrization by Co-H species and imine addition by Co-alkyl species was proposed. This study provides a novel route to important chiral cyclopropanes and extends the frontier of asymmetric metallaphotoredox catalysis.

15.
Am J Transl Res ; 16(6): 2358-2368, 2024.
Article in English | MEDLINE | ID: mdl-39006289

ABSTRACT

OBJECTIVE: To explore the mechanism of Qigui-Yishen decoction in delaying renal fibrosis in mice by regulating thrombin regulatory protein (Thrombomodulin, TM) and plasminogen activator inhibitor-1 (PAI-1) based on network pharmacology. METHODS: The active ingredients of Qigui Yishen decoction and their target molecules associated with chronic kidney disease (CKD) were retrieved from websites and databases, sorted out, and screened, and the possible targets of Qigui Yishen decoction for reducing CKD renal fibrosis were predicted and analyzed. Forty Institute of Cancer research (ICR) rats were used to establish a unilateral ureteral obstruction (UUO) model, and divided into several groups: sham operation group, model group, high concentration decoction group (1 g/mL), low concentration decoction group (0.46 g/mL), and benazepril group (0.1 g/mL). At the end of the experiment, the levels of serum creatinine (Scr) and blood urea nitrogen (BUN) were detected. Masson staining was used to observe changes in the renal interstitial fibrosis index. Immunohistochemistry and western blot were used to detect the expressions of TM, PAI-1, transforming growth factor-ß1 (TGF-ß1) and collagen I (Col I) in kidney tissues, and the differences between groups were compared. RESULTS: Qigui Yishen decoction contains 42 effective ingredients such as sitosterol, mannitol, and quercetin, with 662 drug targets and 16154 disease targets. Analysis revealed 570 potential targets, including TM4SF19, PAIP1, TGF-ß1, and Col I-AI. Compared to the sham operation group, all treatment groups exhibited increased Scr and BUN levels (P<0.05) and enhanced renal interstitial fibrosis (P<0.05) after UUO model establishment. Moreover, immunohistochemical results showed significant increases in PAI-1, TGF-ß1, and Col I (all P<0.05), and a significant decrease in TM expression (P<0.05). Compared to the model group, the high concentration decoction group, low concentration decoction group and benazepril group had no significant difference in Scr and BUN values (P>0.05), but the renal interstitial fibrosis index was lower (P<0.05). Also, the relative expressions of PAI-1, TGF-ß1 and Col I in the kidney tissue of mice were decreased, while the relative expression of TM was increased (P<0.05). CONCLUSION: Qigi Yishen decoction has the characteristics of multiple components and multiple targets, and can play a role in delaying renal fibrosis by regulating the expression of PAI-1, TGF-ß1, Col I, and TM.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124712, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38950476

ABSTRACT

In this study, a series of tetraphenylethene-containing gold(I) complexes with different auxiliary ligands have been synthesized. These complexes were characterized using a variety of techniques including nuclear magnetic resonance spectroscopy, mass spectrometry, and single crystal X-ray diffraction. Their aggregation-induced emission (AIE) behaviors were investigated through ultraviolet/visible and photoluminescence spectrum analyses, and dynamic light scattering measurements. Meanwhile, their mechanofluorochromic properties were also studied via solid-state photoluminescence spectroscopy. Intriguingly, all these mononuclear gold(I) molecules functionalized by tetraphenylethene group demonstrated AIE phenomena. Furthermore, five gold(I) complexes possessing diverse auxiliary ligands exhibited distinct fluorescence changes in response to mechanical grinding. For luminogens 2-5, their solids showed reversible mechanofluorochromic behaviors triggered by the mutual transformation of crystalline and amorphous states, while for luminogen 1, blue-green-cyan three-color solid fluorescence conversion was realized by sequential mechanical grinding and solvent fumigation. Based on this stimuli-responsive tricolored fluorescence feature of 1, an information encryption system was successfully constructed.

17.
Neurosci Bull ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39078595

ABSTRACT

Sevoflurane induces developmental neurotoxicity in mice; however, the underlying mechanisms remain unclear. Triggering receptor expressed on myeloid cells 2 (TREM2) is essential for microglia-mediated synaptic refinement during the early stages of brain development. We explored the effects of TREM2 on dendritic spine pruning during sevoflurane-induced developmental neurotoxicity in mice. Mice were anaesthetized with sevoflurane on postnatal days 6, 8, and 10. Behavioral performance was assessed using the open field test and Morris water maze test. Genetic knockdown of TREM2 and overexpression of TREM2 by stereotaxic injection were used for mechanistic experiments. Western blotting, immunofluorescence, electron microscopy, three-dimensional reconstruction, Golgi staining, and whole-cell patch-clamp recordings were performed. Sevoflurane exposures upregulated the protein expression of TREM2, increased microglia-mediated pruning of dendritic spines, and reduced synaptic multiplicity and excitability of CA1 neurons. TREM2 genetic knockdown significantly decreased dendritic spine pruning, and partially aggravated neuronal morphological abnormalities and cognitive impairments in sevoflurane-treated mice. In contrast, TREM2 overexpression enhanced microglia-mediated pruning of dendritic spines and rescued neuronal morphological abnormalities and cognitive dysfunction. TREM2 exerts a protective role against neurocognitive impairments in mice after neonatal exposures to sevoflurane by enhancing microglia-mediated pruning of dendritic spines in CA1 neurons. This provides a potential therapeutic target in the prevention of sevoflurane-induced developmental neurotoxicity.

18.
Sci Total Environ ; 947: 174450, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38969138

ABSTRACT

Fine particulate matter (PM2.5) can cause brain damage and diseases. Of note, ultrafine particles (UFPs) with an aerodynamic diameter less than or equal to 100 nm are a growing concern. Evidence has suggested toxic effects of PM2.5 and UFPs on the brain and links to neurological diseases. However, the underlying mechanism has not yet been fully illustrated due to the variety of the study models, different endpoints, etc. The adverse outcome pathway (AOP) framework is a pathway-based approach that could systematize mechanistic knowledge to assist health risk assessment of pollutants. Here, we constructed AOPs by collecting molecular mechanisms in PM-induced neurotoxicity assessments. We chose particulate matter (PM) as a stressor in the Comparative Toxicogenomics Database (CTD) and identified the critical toxicity pathways based on Ingenuity Pathway Analysis (IPA). We found 65 studies investigating the potential mechanisms linking PM2.5 and UFPs to neurotoxicity, which contained 2, 675 genes in all. IPA analysis showed that neuroinflammation signaling and glucocorticoid receptor signaling were the common toxicity pathways. The upstream regulator analysis (URA) of PM2.5 and UFPs demonstrated that the neuroinflammation signaling was the most initially triggered upstream event. Therefore, neuroinflammation was recognized as the MIE. Strikingly, there is a clear sequence of activation of downstream signaling pathways with UFPs, but not with PM2.5. Moreover, we found that inflammation response and homeostasis imbalance were key cellular events in PM2.5 and emphasized lipid metabolism and mitochondrial dysfunction, and blood-brain barrier (BBB) impairment in UFPs. Previous AOPs, which only focused on phenotypic changes in neurotoxicity upon PM exposure, we for the first time propose AOP framework in which PM2.5 and UFPs may activate pathway cascade reactions, resulting in adverse outcomes associated with neurotoxicity. Our toxicity pathway-based approach not only advances risk assessment for PM-induced neurotoxicity but shines a spotlight on constructing AOP frameworks for new chemicals.


Subject(s)
Adverse Outcome Pathways , Air Pollutants , Particulate Matter , Particulate Matter/toxicity , Air Pollutants/toxicity , Humans , Neurotoxicity Syndromes , Signal Transduction/drug effects , Particle Size , Risk Assessment
19.
J Med Chem ; 67(14): 11989-12011, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38959216

ABSTRACT

The P2Y14 receptor has been proven to be a potential target for IBD. Herein, we designed and synthesized a series of 4-amide-thiophene-2-carboxyl derivatives as novel potent P2Y14 receptor antagonists based on the scaffold hopping strategy. The optimized compound 39 (5-((5-fluoropyridin-2-yl)oxy)-4-(4-methylbenzamido)thiophene-2-carboxylic acid) exhibited subnanomolar antagonistic activity (IC50: 0.40 nM). Moreover, compound 39 demonstrated notably improved solubility, liver microsomal stability, and oral bioavailability. Fluorescent ligand binding assay confirmed that 39 has the binding ability to the P2Y14 receptor, and molecular dynamics (MD) simulations revealed the formation of a unique intramolecular hydrogen bond (IMHB) in the binding conformation. In the experimental colitis mouse model, compound 39 showed a remarkable anti-IBD effect even at low doses. Compound 39, with a potent anti-IBD effect and favorable druggability, can be a promising candidate for further research. In addition, this work lays a strong foundation for the development of P2Y14 receptor antagonists and the therapeutic strategy for IBD.


Subject(s)
Inflammatory Bowel Diseases , Receptors, Purinergic P2 , Thiophenes , Animals , Thiophenes/pharmacology , Thiophenes/chemical synthesis , Thiophenes/chemistry , Thiophenes/therapeutic use , Humans , Mice , Inflammatory Bowel Diseases/drug therapy , Receptors, Purinergic P2/metabolism , Structure-Activity Relationship , Purinergic P2 Receptor Antagonists/pharmacology , Purinergic P2 Receptor Antagonists/chemistry , Purinergic P2 Receptor Antagonists/chemical synthesis , Purinergic P2 Receptor Antagonists/therapeutic use , Male , Drug Discovery , Amides/chemistry , Amides/pharmacology , Amides/chemical synthesis , Amides/therapeutic use , Microsomes, Liver/metabolism , Molecular Dynamics Simulation , Colitis/drug therapy
20.
Am J Chin Med ; : 1-35, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39075978

ABSTRACT

Rehmannia glutinosa is widely recognized as a prominent medicinal herb employed by practitioners across various generations for the purpose of fortifying kidney yin. Within Rehmannia glutinosa, the compound known as catalpol (CAT) holds significant importance as a bioactive constituent. However, the protective effects of CAT on kidneys, including ameliorative effects on chronic kidney disease - most prominently renal anemia and renal fibrosis - have not been clearly defined. In this study, the kidney injury model of NRK-52E cells and C57BL/6N male mice was prepared by exposure to aristolochic acid I (AA-I), and it was discovered that CAT could ameliorate oxidative stress injury, inflammatory injury, apoptosis, renal anemia, renal fibrosis, and other renal injuries both in vivo and in vitro. Further treatment of NRK-52E cells with Nrf2 inhibitors (ML385) and activators (ML334), as well as NF-[Formula: see text]B inhibitors (PDTC), validated CAT's ability to target Nrf2 activation. Furthermore, the expression of phosphorylated NF-[Formula: see text]B p65, IL-6, and Cleaved-Caspase3 protein was inhibited. CAT also inhibited NF-[Formula: see text]B, and then inhibited the expression of IL-6, p-STAS3, TGF-[Formula: see text]1 protein. Therefore, CAT can regulate Nrf2/NF-[Formula: see text]B signaling pathway, significantly correct renal anemia and renal fibrosis, and is conducive to the preservation of renal structure and function, thus achieving a protective effect on the kidneys.

SELECTION OF CITATIONS
SEARCH DETAIL