Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
iScience ; 27(8): 110554, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39184441

ABSTRACT

Zebrafish and organoids, crucial for complex biological studies, necessitate an imaging system with deep tissue penetration, sample protection from environmental interference, and ample operational space. Traditional three-photon microscopy is constrained by short-working-distance objectives and falls short. Our long-working-distance high-collection-efficiency three-photon microscopy (LH-3PM) addresses these challenges, achieving a 58% fluorescence collection efficiency at a 20 mm working distance. LH-3PM significantly outperforms existing three-photon systems equipped with the same long working distance objective, enhancing fluorescence collection and dramatically reducing phototoxicity and photobleaching. These improvements facilitate accurate capture of neuronal activity and an enhanced detection of activity spikes, which are vital for comprehensive, long-term imaging. LH-3PM's imaging of epileptic zebrafish not only showed sustained neuron activity over an hour but also highlighted increased neural synchronization and spike numbers, marking a notable shift in neural coding mechanisms. This breakthrough paves the way for new explorations of biological phenomena in small model organisms.

2.
Talanta ; 280: 126727, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39178511

ABSTRACT

In this study, Cu doped carbon dots (Cu-CDs) of uniform particle size and good water solubility was synthesized using Angelica Sinensis Radix as precursor materials through a one-step hydrothermal. The Lucigenin-(Cu-CDs) chemiluminescence sensor allows the simultaneous determination of o-toluenesulfonamide (TFA) and sulfamethoxazole (STZ) concentrations. Under optimal conditions, the sensor demonstrates the capability to detect TFA and STZ within the ranges of 50 µM-800 µM and 15 µM-120 µM, respectively. The limits of detection (LOD) for TFA and STZ are determined as 0.09 µM and 0.05 µM, respectively. While the limits of quantification (LOQ) are established at 0.3 µM and 0.17 µM, respectively. The feasibility of the method for determining TFA and STZ content in chicken samples was substantiated, demonstrating spiked recovery rates ranging from 97.5% to 102.3 % and 97.5%-99.8 %, respectively. The possible reaction mechanism was clarified based on chemiluminescence, UV-vis measurement and free radical analysis results. The newly established system is characterized by stability, convenience, and robust anti-interference capabilities, thus expanding the application of carbon dots and offering a promising strategy for the detection of TFA and STZ.

3.
J Immunol Res ; 2024: 4481452, 2024.
Article in English | MEDLINE | ID: mdl-39104595

ABSTRACT

Exosome-derived microRNAs (miRNAs) are emerging as pivotal players in the pathophysiology of sepsis, representing a new frontier in both the diagnosis and treatment of this complex condition. Sepsis, a severe systemic response to infection, involves intricate immune and nonimmune mechanisms, where exosome-mediated communication can significantly influence disease progression and outcomes. During the progress of sepsis, the miRNA profile of exosomes undergoes notable alterations, is reflecting, and may affect the progression of the disease. This review comprehensively explores the biology of exosome-derived miRNAs, which originate from both immune cells (such as macrophages and dendritic cells) and nonimmune cells (such as endothelial and epithelial cells) and play a dynamic role in modulating pathways that affect the course of sepsis, including those related to inflammation, immune response, cell survival, and apoptosis. Taking into account these dynamic changes, we further discuss the potential of exosome-derived miRNAs as biomarkers for the early detection and prognosis of sepsis and advantages over traditional biomarkers due to their stability and specificity. Furthermore, this review evaluates exosome-based therapeutic miRNA delivery systems in sepsis, which may pave the way for targeted modulation of the septic response and personalized treatment options.


Subject(s)
Biomarkers , Exosomes , MicroRNAs , Sepsis , Humans , Exosomes/metabolism , Sepsis/diagnosis , Sepsis/therapy , Sepsis/genetics , Sepsis/immunology , MicroRNAs/genetics , Animals , Prognosis , Macrophages/immunology , Macrophages/metabolism
4.
Sci Adv ; 10(31): eadk4331, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093969

ABSTRACT

Homeostatic plasticity maintains the stability of functional brain networks. The axon initial segment (AIS), where action potentials start, undergoes dynamic adjustment to exert powerful control over neuronal firing properties in response to network activity changes. However, it is poorly understood whether this plasticity involves direct synaptic input to the AIS. Here, we show that changes of GABAergic synaptic input from chandelier cells (ChCs) drive homeostatic tuning of the AIS of principal neurons (PNs) in the prelimbic (PL) region, while those from parvalbumin-positive basket cells do not. This tuning is evident in AIS morphology, voltage-gated sodium channel expression, and PN excitability. Moreover, the impact of this homeostatic plasticity can be reflected in animal behavior. Social behavior, inversely linked to PL PN activity, shows time-dependent alterations tightly coupled to changes in AIS plasticity and PN excitability. Thus, AIS-originated homeostatic plasticity in PNs may counteract deficits elicited by imbalanced ChC presynaptic input at cellular and behavioral levels.


Subject(s)
Axon Initial Segment , Axons , Homeostasis , Neuronal Plasticity , Synapses , Animals , Neuronal Plasticity/physiology , Axon Initial Segment/metabolism , Axons/physiology , Axons/metabolism , Mice , Synapses/physiology , Action Potentials , Male , GABAergic Neurons/physiology , GABAergic Neurons/metabolism
5.
Adv Sci (Weinh) ; : e2404792, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39119825

ABSTRACT

Fluorogens with aggregation-induced emission (AIEgens) are promising agents for two-photon fluorescence (TPF) imaging. However, AIEgens' photophysical properties are fixed and unoptimizable once synthesized. Therefore, it is urgent and meaningful to explore an efficient post-regulation strategy to optimize AIEgens' photophysical properties. Herein, a general and efficient post-regulation strategy is reported. By simply tuning the ratio of inert AIEgens within binary nanoparticles (BNPs), the fluorescence quantum yield and two-photon absorption cross-section of functional AIEgens are enhanced by 8.7 and 5.4 times respectively, which are not achievable by conventional strategies, and the notorious phototoxicity is almost eliminated. The experimental results, theoretical simulation, and mechanism analysis demonstrated its feasibility and generality. The BNPs enabled deep cerebrovascular network imaging with ≈1.10 mm depth and metastatic cancer cell detection with single-cell resolution. Furthermore, the TPF imaging quality is improved by the self-supervised denoising algorithm. The proposed binary molecular post-regulation strategy opened a new avenue to efficiently boost the AIEgens' photophysical properties and consequently TPF imaging quality.

6.
bioRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38979368

ABSTRACT

Cancers evolve in a dynamic ecosystem. Thus, characterizing cancer's ecological dynamics is crucial to understanding cancer evolution and can lead to discovering novel biomarkers to predict disease progression. Ductal carcinoma in situ (DCIS) is an early-stage breast cancer characterized by abnormal epithelial cell growth confined within the milk ducts. Although there has been extensive research on genetic and epigenetic causes of breast carcinogenesis, none of these studies have successfully identified a biomarker for the progression and/or upstaging of DCIS. In this study, we show that ecological habitat analysis of hypoxia and acidosis biomarkers can significantly improve prediction of DCIS upstaging. First, we developed a novel eco-evolutionary designed approach to define habitats in the tumor intra-ductal microenvironment based on oxygen diffusion distance in our DCIS cohort of 84 patients. Then, we identify cancer cells with metabolic phenotypes attributed to their habitat conditions, such as the expression of CA9 indicating hypoxia responding phenotype, and LAMP2b indicating a hypoxia-induced acid adaptation. Traditionally these markers have shown limited predictive capabilities for DCIS upstaging, if any. However, when analyzed from an ecological perspective, their power to differentiate between indolent and upstaged DCIS increased significantly. Second, using eco-evolutionary guided computational and digital pathology techniques, we discovered distinct spatial patterns of these biomarkers and used the distribution of such patterns to predict patient upstaging. The patterns were characterized by both cellular features and spatial features. With a 5-fold validation on the biopsy cohort, we trained a random forest classifier to achieve the area under curve(AUC) of 0.74. Our results affirm the importance of using eco-evolutionary-designed approaches in biomarkers discovery studies in the era of digital pathology by demonstrating the role of eco-evolution dynamics in predicting cancer progression.

7.
BMC Genomics ; 25(1): 702, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026173

ABSTRACT

DNA binding with one finger(Dof) gene family is a class of transcription factors which play an important role on plant growth and development. Genome-wide identification results indicated that there were 45 Dof genes(ColDof) in C.oleifera genome. All 45 ColDof proteins were non-transmembrane and non-secretory proteins. Phosphorylation site analysis showed that biological function of ColDof proteins were mainly realized by phosphorylation at serine (Ser) site. The secondary structure of 44 ColDof proteins was dominated by random coil, and only one ColDof protein was dominated by α-helix. ColDof genes' promoter region contained a variety of cis-acting elements, including light responsive regulators, gibberellin responsive regulators, abscisic acid responsive regulators, auxin responsive regulators and drought induction responsive regulators. The SSR sites analysis showed that the proportion of single nucleotide repeats and the frequency of A/T in ColDof genes were the largest. Non-coding RNA analysis showed that 45 ColDof genes contained 232 miRNAs. Transcription factor binding sites of ColDof genes showed that ColDof genes had 5793 ERF binding sites, 4381 Dof binding sites, 2206 MYB binding sites, 3702 BCR-BPC binding sites. ColDof9, ColDof39 and ColDof44 were expected to have the most TFBSs. The collinearity analysis showed that there were 40 colinear locis between ColDof proteins and AtDof proteins. Phylogenetic analysis showed that ColDof gene family was most closely related to that of Camellia sinensis var. sinensis cv.Biyun and Camellia lanceoleosa. Protein-protein interaction analysis showed that ColDof34, ColDof20, ColDof28, ColDof35, ColDof42 and ColDof26 had the most protein interactions. The transcriptome analysis of C. oleifera seeds showed that 21 ColDof genes were involved in the growth and development process of C. oleifera seeds, and were expressed in 221 C. oleifera varieties. The results of qRT-PCR experiments treated with different concentrations NaCl and PEG6000 solutions indicated that ColDof1, ColDof2, ColDof14 and ColDof36 not only had significant molecular mechanisms for salt stress tolerance, but also significant molecular functions for drought stress tolerance in C. oleifera. The results of this study provide a reference for further understanding of the function of ColDof genes in C.oleifera.


Subject(s)
Camellia , Evolution, Molecular , Multigene Family , Phylogeny , Plant Proteins , Transcription Factors , Camellia/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Genome, Plant , Promoter Regions, Genetic , Binding Sites , Stress, Physiological/genetics
8.
Medicine (Baltimore) ; 103(24): e38550, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875391

ABSTRACT

BACKGROUND: Enteroviruses-infected hand, foot, and mouth disease (HFMD) seriously threatens human health. This study aimed to analyze the research status, hotspots, and frontiers of HFMD. METHODS: Publications on HFMD between January 1, 2006, and January 31, 2023, were retrieved from the Web of Science Core database. Bibliometric tools, including CiteSpace, VOSviewer, R package "Bibiometrix," SCImago Graphica, and Charticulator, were utilized to analyze and visualize the data. RESULTS: A total of 1860 articles from 424 journals, involving 8815 authors from 64 countries and 1797 institutions were analyzed. The number of studies on HFMD has shown an increasing trend over the past 18 years, with an annual increase observed since 2006, which is particularly prominent after 2010. Research in this field has centered on the Asian region. Notably, the research hotspots were mainly focused on vaccines, epidemiology, and pathogenesis of HFMD. Among the researchers in this field, Zhang Yong emerged as the most prolific author, while Xu Wenbo had the most significant influence. The Chinese Academy of Sciences was the most productive institution, and China was the most productive country for HFMD research. CONCLUSION: By bibliometric analysis, researchers in the HMFD field can efficiently identify and visually represent their research focus and limitations. In the future, it is crucial to maintain ongoing surveillance of HFMD outbreaks and their pathogenic changes. Additionally, future research should extensively explore the molecular mechanisms underlying Enteroviruses-induced HFMD with a focus on developing vaccines and therapies.


Subject(s)
Bibliometrics , Hand, Foot and Mouth Disease , Hand, Foot and Mouth Disease/epidemiology , Humans , Biomedical Research/statistics & numerical data , Biomedical Research/trends
9.
Cell Biol Toxicol ; 40(1): 39, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38789630

ABSTRACT

Hypertrophic scar (HS) is characterized by excessive collagen deposition and myofibroblasts activation. Endothelial-to-mesenchymal transition (EndoMT) and oxidative stress were pivotal in skin fibrosis process. Exosomes derived from adipose tissue-derived stem cells (ADSC-Exo) have the potential to attenuate EndoMT and inhibit fibrosis. The study revealed reactive oxygen species (ROS) levels were increased during EndoMT occurrence of dermal vasculature of HS. The morphology of endothelial cells exposure to H2O2, serving as an in vitro model of oxidative stress damage, transitioned from a cobblestone-like appearance to a spindle-like shape. Additionally, the levels of endothelial markers decreased in H2O2-treated endothelial cell, while the expression of fibrotic markers increased. Furthermore, H2O2 facilitated the accumulation of ROS, inhibited cell proliferation, retarded its migration and suppressed tube formation in endothelial cell. However, ADSC-Exo counteracted the biological effects induced by H2O2. Subsequently, miRNAs sequencing analysis revealed the significance of mir-486-3p in endothelial cell exposed to H2O2 and ADSC-Exo. Mir-486-3p overexpression enhanced the acceleration of EndoMT, its inhibitors represented the attenuation of EndoMT. Meanwhile, the target regulatory relationship was observed between mir-486-3p and Sirt6, whereby Sirt6 exerted its anti-EndoMT effect through Smad2/3 signaling pathway. Besides, our research had successfully demonstrated the impact of ADSC-Exo and mir-486-3p on animal models. These findings of our study collectively elucidated that ADSC-Exo effectively alleviated H2O2-induced ROS and EndoMT by inhibiting the mir-486-3p/Sirt6/Smad axis.


Subject(s)
Adipose Tissue , Exosomes , Human Umbilical Vein Endothelial Cells , Hydrogen Peroxide , MicroRNAs , Oxidative Stress , Signal Transduction , Sirtuins , Animals , Humans , Adipose Tissue/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , Epithelial-Mesenchymal Transition/drug effects , Exosomes/metabolism , Exosomes/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/toxicity , MicroRNAs/metabolism , MicroRNAs/genetics , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Sirtuins/metabolism , Sirtuins/genetics , Smad Proteins/metabolism , Stem Cells/metabolism , Stem Cells/drug effects
10.
Small ; : e2401502, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716798

ABSTRACT

All-solid-state fluoride ion batteries (ASSFIBs) show remarkable potential as energy storage devices due to their low cost, superior safety, and high energy density. However, the poor ionic conductivity of F- conductor, large volume expansion, and the lack of a suitable anode inhibit their development. In this work, PbSnF4 solid electrolytes in different phases (ß- and γ-PbSnF4) are successfully synthesized and characterized. The ASSFIBs composed of ß-PbSnF4 electrolytes, a BiF3 cathode, and micrometer/nanometer size (µ-/n-) Sn anodes, exhibit substantial capacities. Compared to the µ-Sn anode, the n-Sn anode with nanostructure exhibits superior battery performance in the BiF3/ß-PbSnF4/Sn battery. The optimized battery delivers a high initial discharge capacity of 181.3 mAh g-1 at 8 mA g-1 and can be reversibly cycled at 40 mA g-1 with a high discharge capacity of over 100.0 mAh g-1 after 120 cycles at room temperature. Additionally, it displays high discharge capacities over 90.0 mAh g-1 with excellent cyclability over 100 cycles under -20 °C. Detailed characterization has confirmed that reducing Sn particle size and boosting external pressure are crucial for achieving good defluorination/fluorination behaviors in the Sn anode. These findings pave the way to designing ASSFIBs with high capacities and superior cyclability under different operating temperatures.

11.
Burns Trauma ; 12: tkae010, 2024.
Article in English | MEDLINE | ID: mdl-38803612

ABSTRACT

Background: Diabetic chronic wounds are among the most common and serious complications of diabetes and are associated with significant morbidity and mortality. Endothelial-to-mesenchymal transition (EndMT) is a specific pathological state in which endothelial cells are transformed into mesenchymal cells in response to various stimuli, such as high glucose levels and high oxidative stress. Acidic fibroblast growth factor (aFGF), which is a member of the fibroblast growth factor family, possesses strong antioxidant properties and can promote the differentiation of mesenchymal stem cells into angiogenic cells. Therefore, we investigated the role of aFGF in EndMT in diabetic wounds and analysed the underlying mechanisms. Methods: A diabetic mouse model was used to verify the effect of aFGF on wound healing, and the effect of aFGF on vascular endothelial cells in a high-glucose environment was examined in vitro. We examined the expression of miR-155-5p in a high-glucose environment and the miR-155 downstream target gene SIRT1 by luciferase reporter assays. Results: aFGF promoted wound closure and neovascularization in a mouse model of type 2 diabetes. In vitro, aFGF inhibited the production of total and mitochondrial reactive oxygen species (ROS) in vascular endothelial cells and alleviated epithelial-mesenchymal transdifferentiation in a high-glucose environment. Mechanistically, aFGF promoted the expression of SIRT1 and the downstream targets Nrf2 and HO-1 by negatively regulating miR-155-5p, thereby reducing ROS generation. Conclusions: In conclusion, our results suggest that aFGF inhibits ROS-induced epithelial-mesenchymal transdifferentiation in diabetic vascular endothelial cells via the miR-155-5p/SIRT1/Nrf2/HO-1 axis, thereby promoting wound healing.

12.
Cell Signal ; 120: 111202, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38729323

ABSTRACT

Hypertrophic scarring (HS) is a pathological condition characterized by excessive fibrosis and inflammation, resulting in excessive extracellular matrix formation in the skin. MIR155HG, a long non-coding RNA, is abnormally upregulated in fibrotic tissues; however, its underlying mechanism is poorly understood. Using single-cell sequencing data, we analyzed connective tissue growth factor (CTGF) expression in various cell types in HS and normal skin tissues and MIR155HG expression in clinical samples. To investigate the mechanism of fibrosis, an in vitro model using CTGF-treated hypertrophic scar fibroblasts (HSFBs) was established and qRT-PCR, western blotting and ELISA assays were performed to investigate the expression of interleukin (IL)-1ß, IL-6, and mesenchymal markers α-smooth muscle actin (α-SMA). CTGF stimulates MIR155HG level through phosphorylated STAT3 binding to the MIR155HG promoter. We analyzed the methylation of MIR155HG, assessed the levels of miR-155-5p/-3p in CTGF-treated HSFBs and identified differentially expressed genes among HS and NS samples using the Gene Expression Omnibus RNA sequencing data. The binding between miR-155-5p/-3p and AZGP1 was confirmed using a dual-luciferase assay and inflammatory cytokine production and α-SMA expression were investigated in rescue experiments. The findings revealed that CTGF elevated inflammatory cytokine production, α-SMA and MIR155HG expression in HSFBs. MIR155HG is upregulated in HS tissues due to low DNA methylation. Mechanistically, miR-155-5p/-3p was directly bound to MIR155HG 3'UTR. MIR155HG silencing inhibited cytokine production and α-SMA expression by repressing the generation of miR-155-5p/-3p in CTGF-treated HSFBs. Bioinformatics analysis and luciferase reporter assays revealed that miR-155-5p/-3p targets AZGP1. In addition, transfection with plasmids carrying AZGP1 cDNA significantly inhibited the signaling activity of miR-155-5p/-3 p-overexpressing HSFBs. Our findings highlight the importance of the MIR155HG/miR-155/AZGP1 axis in regulating cytokine production and α-SMA in HS.


Subject(s)
Actins , Cicatrix, Hypertrophic , Connective Tissue Growth Factor , Cytokines , Fibroblasts , MicroRNAs , Up-Regulation , MicroRNAs/metabolism , MicroRNAs/genetics , Humans , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/genetics , Fibroblasts/metabolism , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/pathology , Cicatrix, Hypertrophic/genetics , Actins/metabolism , Cytokines/metabolism , Up-Regulation/drug effects , Glycoproteins/metabolism , Glycoproteins/genetics , Male , Female , Signal Transduction
13.
bioRxiv ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38659885

ABSTRACT

The stability of functional brain network is maintained by homeostatic plasticity, which restores equilibrium following perturbation. As the initiation site of action potentials, the axon initial segment (AIS) of glutamatergic projection neurons (PyNs) undergoes dynamic adjustment that exerts powerful control over neuronal firing properties in response to changes in network states. Although AIS plasticity has been reported to be coupled with the changes of network activity, it is poorly understood whether it involves direct synaptic input to the AIS. Here we show that changes of GABAergic synaptic input to the AIS of cortical PyNs, specifically from chandelier cells (ChCs), are sufficient to drive homeostatic tuning of the AIS within 1-2 weeks, while those from parvalbumin-positive basket cells do not. This tuning is reflected in the morphology of the AIS, the expression level of voltage-gated sodium channels, and the intrinsic neuronal excitability of PyNs. Interestingly, the timing of AIS tuning in PyNs of the prefrontal cortex corresponds to the recovery of changes in social behavior caused by alterations of ChC synaptic transmission. Thus, homeostatic plasticity of the AIS at postsynaptic PyNs may counteract deficits elicited by imbalanced ChC presynaptic input. Teaser: Axon initial segment dynamically responds to changes in local input from chandelier cells to prevent abnormal neuronal functions.

14.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38591963

ABSTRACT

Traditional approaches to the intelligent fault diagnosis of rolling bearings have predominantly relied on manual expertise for feature extraction, a practice that compromises robustness. In addition, the existing convolutional neural network (CNN) is characterized by an overabundance of parameters and a substantial requirement for training samples. To address these limitations, this study introduces a novel fault diagnosis algorithm for rolling bearings, integrating a one-dimensional convolutional neural network (1DCNN) with a support vector machine (SVM) to form an enhanced 1DCNN-SVM model. This model is further refined using the sparrow search algorithm (SSA) for the optimal adjustment of the parameters of 1DCNN-SVM. Specifically, by substituting the CNN's final softmax layer with an SVM, the model becomes better suited for processing limited data volumes. In addition, the incorporation of batch normalization and dropout layers within the CNN framework significantly augments its fault classification accuracy for rolling bearings, concurrently mitigating the risk of overfitting. The SSA is subsequently applied to refine three principal hyper-parameters: batch size, initial learning rate, and the L2 regularization coefficient, thereby overcoming the challenges associated with manually adjusting parameters, such as extended processing times and unpredictable outcomes. Empirical tests on Case Western Reserve University (CWRU) datasets revealed the model's superior performance, with the SSA-optimized 1DCNN-SVM showcasing diagnostic accuracies over 98%, marked improvements over conventional models, and a significant reduction in processing times. This method not only marks a significant advancement in intelligent fault diagnosis for rolling bearings but also demonstrates the potential of integrating machine learning for more precise and efficient diagnostics. The SSA-1DCNN-SVM model, optimized for accuracy and minimal data use, sets a new standard in fault diagnosis, relevant for machinery health monitoring and maintenance strategies across various industries.

15.
Biomacromolecules ; 25(5): 3141-3152, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38687279

ABSTRACT

Atherosclerosis (AS) is characterized by the accumulation of substantial low-density lipoprotein (LDL) and inflammatory response. Hemoperfusion is commonly employed for the selective removal of LDL from the body. However, conventional hemoperfusion merely focuses on LDL removal and does not address the symptom of plaque associated with AS. Based on the LDL binding properties of acrylated chondroitin sodium sulfate (CSA), acrylated beta-cyclodextrin (CD) and acrylic acid (AA), along with the anti-inflammatory property of rosiglitazone (R), the fabricated AA-CSA-CD-R microspheres could simultaneously release R and facilitate LDL removal for hemoperfusion. The AA and CSA offer electrostatic adsorption sites for LDL, while the CD provides hydrophobic adsorption sites for LDL and weak binding sites for R. According to the Sips model, the maximum static LDL adsorption capacity of AA-CSA-CD-R is determined to be 614.73 mg/g. In dynamic simulated perfusion experiments, AA-CSA-CD-R exhibits an initial cycle LDL adsorption capacity of 150.97 mg/g. The study suggests that the weakened inflammatory response favors plaque stabilization. The anti-inflammatory property of the microspheres is verified through an inflammation model, wherein the microsphere extracts are cocultured with mouse macrophages. Both qualitative analysis of iNOS\TNF-α and quantitative analysis of IL-6\TNF-α collectively demonstrate the remarkable anti-inflammatory effect of the microspheres. Therefore, the current study presents a novel blood purification treatment of eliminating pathogenic factors and introducing therapeutic factors to stabilize AS plaque.


Subject(s)
Acrylic Resins , Atherosclerosis , Chondroitin Sulfates , Lipoproteins, LDL , Rosiglitazone , Animals , Mice , Lipoproteins, LDL/chemistry , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/isolation & purification , Chondroitin Sulfates/chemistry , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Acrylic Resins/chemistry , Rosiglitazone/pharmacology , Rosiglitazone/chemistry , Adsorption , RAW 264.7 Cells , Microspheres , Cyclodextrins/chemistry
16.
Mol Microbiol ; 121(1): 1-17, 2024 01.
Article in English | MEDLINE | ID: mdl-37927230

ABSTRACT

The ubiquitous bacterial second messenger c-di-GMP is synthesized by diguanylate cyclase and degraded by c-di-GMP-specific phosphodiesterase. The genome of Pseudomonas putida contains dozens of genes encoding diguanylate cyclase/phosphodiesterase, but the phenotypical-genotypical correlation and functional mechanism of these genes are largely unknown. Herein, we characterize the function and mechanism of a P. putida phosphodiesterase named DibA. DibA consists of a PAS domain, a GGDEF domain, and an EAL domain. The EAL domain is active and confers DibA phosphodiesterase activity. The GGDEF domain is inactive, but it promotes the phosphodiesterase activity of the EAL domain via binding GTP. Regarding phenotypic regulation, DibA modulates the cell surface adhesin LapA level in a c-di-GMP receptor LapD-dependent manner, thereby inhibiting biofilm formation. Moreover, DibA interacts and colocalizes with LapD in the cell membrane, and the interaction between DibA and LapD promotes the PDE activity of DibA. Besides, except for interacting with DibA and LapD itself, LapD is found to interact with 11 different potential diguanylate cyclases/phosphodiesterases in P. putida, including the conserved phosphodiesterase BifA. Overall, our findings demonstrate the functional mechanism by which DibA regulates biofilm formation and expand the understanding of the LapD-mediated c-di-GMP signaling network in P. putida.


Subject(s)
Escherichia coli Proteins , Pseudomonas putida , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Cyclic GMP/metabolism , Biofilms , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Carrier Proteins/metabolism , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
17.
Nucleic Acids Res ; 52(1): 186-203, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38000372

ABSTRACT

The ubiquitous bacterial second messenger cyclic diguanylate (c-di-GMP) coordinates diverse cellular processes through its downstream receptors. However, whether c-di-GMP participates in regulating nitrate assimilation is unclear. Here, we found that NasT, an antiterminator involved in nitrate assimilation in Pseudomonas putida, specifically bound c-di-GMP. NasT was essential for expressing the nirBD operon encoding nitrite reductase during nitrate assimilation. High-level c-di-GMP inhibited the binding of NasT to the leading RNA of nirBD operon (NalA), thus attenuating the antitermination function of NasT, resulting in decreased nirBD expression and nitrite reductase activity, which in turn led to increased nitrite accumulation in cells and its export. Molecular docking and point mutation assays revealed five residues in NasT (R70, Q72, D123, K127 and R140) involved in c-di-GMP-binding, of which R140 was essential for both c-di-GMP-binding and NalA-binding. Three diguanylate cyclases (c-di-GMP synthetases) were found to interact with NasT and inhibited nirBD expression, including WspR, PP_2557, and PP_4405. Besides, the c-di-GMP-binding ability of NasT was conserved in the other three representative Pseudomonas species, including P. aeruginosa, P. fluorescens and P. syringae. Our findings provide new insights into nitrate assimilation regulation by revealing the mechanism by which c-di-GMP inhibits nitrate assimilation via NasT.


Subject(s)
Bacterial Proteins , Cyclic GMP , Nitrates , Pseudomonas putida , Bacterial Proteins/metabolism , Cyclic GMP/metabolism , Gene Expression Regulation, Bacterial , Molecular Docking Simulation , Nitrates/metabolism , Nitrite Reductases/genetics , Nitrite Reductases/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas putida/genetics , Pseudomonas putida/metabolism
18.
Nat Commun ; 14(1): 7476, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37978295

ABSTRACT

As a major neuron type in the brain, the excitatory neuron (EN) regulates the lifespan in C. elegans. How the EN acquires senescence, however, is unknown. Here, we show that growth differentiation factor 11 (GDF11) is predominantly expressed in the EN in the adult mouse, marmoset and human brain. In mice, selective knock-out of GDF11 in the post-mitotic EN shapes the brain ageing-related transcriptional profile, induces EN senescence and hyperexcitability, prunes their dendrites, impedes their synaptic input, impairs object recognition memory and shortens the lifespan, establishing a functional link between GDF11, brain ageing and cognition. In vitro GDF11 deletion causes cellular senescence in Neuro-2a cells. Mechanistically, GDF11 deletion induces neuronal senescence via Smad2-induced transcription of the pro-senescence factor p21. This work indicates that endogenous GDF11 acts as a brake on EN senescence and brain ageing.


Subject(s)
Caenorhabditis elegans , Growth Differentiation Factors , Adult , Mice , Humans , Animals , Caenorhabditis elegans/metabolism , Growth Differentiation Factors/genetics , Growth Differentiation Factors/metabolism , Aging/genetics , Brain/metabolism , Neurons/metabolism , Bone Morphogenetic Proteins
19.
Front Pharmacol ; 14: 1153067, 2023.
Article in English | MEDLINE | ID: mdl-37214432

ABSTRACT

Finding new targets is necessary for understanding tumorigenesis and developing cancer therapeutics. DExH-box helicase 9 (DHX9) plays a central role in many cellular processes but its expression pattern and prognostic value in most types of cancer remain unclear. In this study, we extracted pan-cancer data from TCGA and GEO databases to explore the prognostic and immunological role of DHX9. The expression levels of DHX9 were then verified in tumor specimens by western blot and immunohistochemistry (IHC). The oncogenic roles of DHX9 in cancers were further verified by in vitro experiments. We first verified that DHX9 is highly expressed in most tumors but significantly decreased in kidney and thyroid cancers, and it is prominently correlated with the prognosis of patients with different tumors. The phosphorylation level of DHX9 was also increased in cancers. Enrichment analysis revealed that DHX9 was involved in Spliceosome, RNA transport and mRNA surveillance pathway. Furthermore, DHX9 expression exhibited strong correlations with immune cell infiltration, immune checkpoint genes, and tumor mutational burden (TMB)/microsatellite instability (MSI). In liver, lung, breast and renal cancer cells, the knockdown or depletion of DHX9 significantly affected the proliferation, metastasis and EMT process of cancer cells. In summary, this pan-cancer investigation provides a comprehensive understanding of the prognostic and immunological role of DHX9 in human cancers, and experiments indicated that DHX9 was a potential target for cancer treatment.

20.
Front Neurosci ; 17: 1085682, 2023.
Article in English | MEDLINE | ID: mdl-36891460

ABSTRACT

The development of three-photon microscopy (3PM) has greatly expanded the capability of imaging deep within biological tissues, enabling neuroscientists to visualize the structure and activity of neuronal populations with greater depth than two-photon imaging. In this review, we outline the history and physical principles of 3PM technology. We cover the current techniques for improving the performance of 3PM. Furthermore, we summarize the imaging applications of 3PM for various brain regions and species. Finally, we discuss the future of 3PM applications for neuroscience.

SELECTION OF CITATIONS
SEARCH DETAIL