Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Des Monomers Polym ; 27(1): 51-61, 2024.
Article in English | MEDLINE | ID: mdl-38979124

ABSTRACT

To explore the effect of polycarboxylate superplasticizers on the strength and hydration performance of alkali slag building materials, this study prepared cross-linked polycarboxylate superplasticizers with different ratios of hydrogen peroxide, methyl allyl alcohol polyoxyethylene ether, acrylic acid, polyethylene glycol diacrylate, monomer aqueous solution, reducing agent, chain transfer agent, etc. according to certain ratios, and tested their effects on the hydration performance and strength of alkali slag building materials. Through experimental analysis, it was found that the higher the proportion of cross-linked polycarboxylate based high-efficiency water-reducing agents, the lower the initial flowability of building material slurry; The addition of cross-linked polycarboxylate water-reducing agent will prolong the initial and final setting time of alkali slag building materials, delaying the hydration time of building materials; Cross linked polycarboxylate superplasticizers can reduce the electrical conductivity of alkali slag building material slurry, delaying its hydration rate; Different ratios of water-reducing agents have a significant impact on the water reduction rate of alkali slag building materials, with V2 water-reducing agent having the highest water-reduction rate of 28.6%; Cross linked polycarboxylate superplasticizers can increase the flexural and compressive strength of alkali slag building materials. Therefore, cross-linked polycarboxylate water-reducing agents have shown great potential in regulating the properties of alkali slag building materials.

2.
Sci Total Environ ; 937: 173533, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38802003

ABSTRACT

Pore type and pore structure evolves systematically across continuous black shale weathering profile. However, the extend and process of pore structure change is still an enigma. In this study, we try to unveil the pore structure evolution during weathering process through studying Cambrian Hetang shales in southern China. Fourteen shale samples, from protolith zone (PZ), fractured and weathered shale zone (FWZ), and saprolite zone (SZ), were collected to elucidate how porosity and pore structure develop during black shale weathering under subtropical condition. Through low pressure argon (Ar) gas adsorption (LP-ArGA), high pressure mercury intrusion (HPMI), nuclear magnetic resonance(NMR) and field emission scanning electron microscope (FESEM) observation, the results reveal significant differences in physical properties and pore structures among the PZ, FWZ, and SZ samples. Specifically, compared to PZ, FWZ and SZ samples are characterized by higher clay mineral content, lower organic matter (OM), and the absence of carbonates and pyrite. Total porosity, determined through HPMI and NMR, exhibits a gradual increase from PZ (6.70 % and 6.41 %) to FWZ (20.47 % and 13.45 %) and SZ (23.22 % and 12.48 %). Ar adsorption isotherms indicate a change in pore type from predominantly ink-bottle and slit-shaped in the PZ to mainly slit-shaped in FWZ and SZ. Integrated analysis of LP-ArGA, HPMI, NMR and SEM observation suggests a substantial decrease in the contribution of micropores to total pore volume (PV) and a concurrent increase in larger pores (meso-macropores) with the increase of weathering intensity. This results in smoother surfaces of micro-transition pores but rougher surfaces of macropores. Changes in mineralogy composition during weathering play a crucial role in influencing pore structure of shales and further accelerating the release and migration of toxic elements in black shale. Our study provides the essential theoretical foundation for the remediation of soil and water environmental pollution caused by black shale weathering.

3.
Gut Microbes ; 15(1): 2223340, 2023.
Article in English | MEDLINE | ID: mdl-37306468

ABSTRACT

The antibiotic resistome is the collection of all antibiotic resistance genes (ARGs) present in an individual. Whether an individual's susceptibility to infection and the eventual severity of coronavirus disease 2019 (COVID-19) is influenced by their respiratory tract antibiotic resistome is unknown. Additionally, whether a relationship exists between the respiratory tract and gut ARGs composition has not been fully explored. We recruited 66 patients with COVID-19 at three disease stages (admission, progression, and recovery) and conducted a metagenome sequencing analysis of 143 sputum and 97 fecal samples obtained from them. Respiratory tract, gut metagenomes, and peripheral blood mononuclear cell (PBMC) transcriptomes are analyzed to compare the gut and respiratory tract ARGs of intensive care unit (ICU) and non-ICU (nICU) patients and determine relationships between ARGs and immune response. Among the respiratory tract ARGs, we found that Aminoglycoside, Multidrug, and Vancomycin are increased in ICU patients compared with nICU patients. In the gut, we found that Multidrug, Vancomycin, and Fosmidomycin were increased in ICU patients. We discovered that the relative abundances of Multidrug were significantly correlated with clinical indices, and there was a significantly positive correlation between ARGs and microbiota in the respiratory tract and gut. We found that immune-related pathways in PBMC were enhanced, and they were correlated with Multidrug, Vancomycin, and Tetracycline ARGs. Based on the ARG types, we built a respiratory tract-gut ARG combined random-forest classifier to distinguish ICU COVID-19 patients from nICU patients with an AUC of 0.969. Cumulatively, our findings provide some of the first insights into the dynamic alterations of respiratory tract and gut antibiotic resistome in the progression of COVID-19 and disease severity. They also provide a better understanding of how this disease affects different cohorts of patients. As such, these findings should contribute to better diagnosis and treatment scenarios.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , Anti-Bacterial Agents , Vancomycin , Leukocytes, Mononuclear , Respiratory System , Patient Acuity
4.
ACS Omega ; 7(43): 38811-38824, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36340131

ABSTRACT

Organic matter (OM) pores are considered to be an important pore type in the Ordovician Wufeng-Silurian Longmaxi Formation shales in the Sichuan Basin, China, because they have a high capacity to store natural gas. However, to the best of our knowledge, research on the characterization and quantitation of different OM pore characteristics is insufficient. In this study, detailed optical microscope and scanning electron microscope (SEM) observations and the pores/particles and cracks analysis system (PCAS) were applied to identify the OM pores and obtain quantitative information on pores such as pore size, surface porosity, form factor, and probability entropy. Moreover, CO2 and N2 adsorption experiments were performed to study the properties of pores for samples with different TOC and mineral compositions. The results show the following. (1) Pyrobitumen and kerogen can be distinguished under an optical microscope and SEM; the former can be further divided into pyrobitumen without a fixed shape and pyrobitumen with a certain shape, and the latter contains algal fragments, bacteria-like aggregates, graptolite, and micrinite. The overwhelming number of SEM-visible OM pores are mainly observed in pyrobitumen without a fixed shape, whereas pores in other OM types are complex. A PCAS analysis showed that meso-macropores are developed in pyrobitumen without a fixed shape, whereas pores in algal fragments and bacterial-like aggregates are mainly mesopores. (2) Quartz-rich brittle shale will provide more visible SEM pores compared to clay-rich ductile shale, and carbonates are unfavorable for pore development because they can block the pore as cements. Moreover, the rigid mineral framework, including that constructed by quartz recrystallization and pyrite cementation, and the pore-fluid pressure are favorable for the development of OM pores. (3) Adsorption experiments showed that pyrobitumen makes a great contribution to pore development, including micropores and meso-/macropores. Finally, we propose that the pore parameters (e.g., pore diameter, pore form factor, and deformation) of pyrobitumen without a fixed shape may characterize the enrichment condition of shale gas.

5.
Materials (Basel) ; 15(13)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35806643

ABSTRACT

A Cu-Ni-Si alloy containing (Ni + Si) ≥ 5 wt.%, with the addition of Cr, is fabricated by HCCM continuous casting and two steps of aging treatment. The evolution of the microstructures and precipitations, as well as the effect of Cr atoms, is studied in this paper. An excellent combination of mechanical property (hardness HV 250-270) and electrical conductivity (46-47 %IACS) is obtained by the first step aging at 500 °C for 0.25 h and the second step aging at 450 °C for 1 h. The cold rolling and aging process are directly conducted on the solution treated specimens fabricated by HCCM continuous casting process without hot deformation, since the excellent homogeneity of matrix is obtained by solution treatment with δ-Ni2Si precipitates dissolved. It is found that the formation of discontinuous precipitation is suppressed by the formation of Cr3Si cores of 5-10 nm before the formation δ-Ni2Si. Then, the nucleation and growth of δ-Ni2Si precipitates occurs around the boundaries of these Cr3Si cores, leading to an enhanced nucleation rate. This study provides a promising direction for the design and optimization of Cu-Ni-Si alloys based on the further understanding of the effect of the addition of Cr.

6.
Adv Sci (Weinh) ; 9(27): e2200956, 2022 09.
Article in English | MEDLINE | ID: mdl-35780499

ABSTRACT

The role of respiratory tract microbes and the relationship between respiratory tract and gut microbiomes in coronavirus disease 2019 (COVID-19) remain uncertain. Here, the metagenomes of sputum and fecal samples from 66 patients with COVID-19 at three stages of disease progression are sequenced. Respiratory tract, gut microbiome, and peripheral blood mononuclear cell (PBMC) samples are analyzed to compare the gut and respiratory tract microbiota of intensive care unit (ICU) and non-ICU (nICU) patients and determine relationships between respiratory tract microbiome and immune response. In the respiratory tract, significantly fewer Streptococcus, Actinomyces, Atopobium, and Bacteroides are found in ICU than in nICU patients, while Enterococcus and Candida increase. In the gut, significantly fewer Bacteroides are found in ICU patients, while Enterococcus increases. Significant positive correlations exist between relative microbiota abundances in the respiratory tract and gut. Defensin-related pathways in PBMCs are enhanced, and respiratory tract Streptococcus is reduced in patients with COVID-19. A respiratory tract-gut microbiota model identifies respiratory tract Streptococcus and Atopobium as the most prominent biomarkers distinguishing between ICU and nICU patients. The findings provide insight into the respiratory tract and gut microbial dynamics during COVID-19 progression, considering disease severity, potentially contributing to diagnosis, and treatment strategies.


Subject(s)
COVID-19 , Microbiota , Biomarkers , Defensins , Enterococcus , Gastrointestinal Tract , Humans , Leukocytes, Mononuclear , Respiratory System
7.
Clin Chim Acta ; 524: 132-138, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34774827

ABSTRACT

BACKGROUND: Severe disease of COVID-19 and mortality occur more frequently in male patients than that in female patients may be related to testosterone level. However, the diagnostic value of changes in the level of testosterone in predicting severe disease of male COVID-19 patients has not been determined yet. METHODS: Sixty-one male COVID-19 patients admitted to the First Affiliated Hospital of Zhejiang University School of Medicine were enrolled. Serum samples at different stages of the patients after admission were collected and testosterone levels were detected to analyze the correlation between testosterone level and disease severity. Transcriptome analysis of PBMC was performed in 34 patients. RESULTS: Testosterone levels at admission in male non-ICU COVID-19 patients (3.7 nmol/L, IQR: 1.5 âˆ¼ 4.7) were significantly lower than those in male ICU COVID-19 patients (6.7 nmol/L, IQR: 4.2 âˆ¼ 8.7). Testosterone levels in the non-ICU group increased gradually during the progression of the disease, while those in the ICU group remained low. In addition, testosterone level of enrolled patients in the second week after onset was significantly correlated with the severity of pneumonia, and ROC curve showed that testosterone level in the second week after onset was highly effective in predicting the severity of COVID-19. Transcriptome studies have found that testosterone levels of COVID-19 patients were associated with immune response, including T cell activation and regulation of lymphocyte activation. In addition, CD28 and Inositol Polyphosphate-4-Phosphatase Type II B (INPP4B) were found positively correlated with testosterone. CONCLUSIONS: Serum testosterone is an independent risk factor for predicting the severity of COVID-19 in male patients, and the level of serum testosterone in the second week after onset is valuable for evaluating the severity of COVID-19. Testosterone level is associated with T cell immune activation. The monitoring of serum testosterone should be highlighted in clinical treatment and the related mechanism should be further studied.


Subject(s)
COVID-19 , Testosterone , Female , Gene Expression Profiling , Humans , Immunity , Leukocytes, Mononuclear , Male , SARS-CoV-2 , Severity of Illness Index , T-Lymphocytes
8.
Biomaterials ; 280: 121260, 2022 01.
Article in English | MEDLINE | ID: mdl-34823885

ABSTRACT

An increasing number of works have highlighted the importance of metal implants surface modification in enhancing bone defect healing through the synergistic osteogenesis-angiogenesis regulation. Studies have shown that pitavastatin has the effect of promoting osteogenesis and angiogenesis. However, how to prepare pitavastatin functionalized implants and how pitavastatin regulates the synergies of osteogenesis and angiogenesis around implants as well as the related mechanisms remain unclear. In the present study, multilayer films with osteogenic and angiogenic properties were constructed on pure titanium substrates via the layer-by-layer assembly of pitavastatin-loaded ß-cyclodextrin grafted chitosan and gelatin. In vitro experiments demonstrated that locally applied pitavastatin could dramatically enhance osteogenic potential of mesenchymal stem cells (MSCs) and angiogenic potential of endothelial cells (ECs). Moreover, pitavastatin loaded multilayer films could regulate the paracrine signaling mediated crosstalk between MSCs and ECs, and indirectly increase the angiogenic potential of MSCs and osteogenic potential of ECs via multiple paracrine signaling. The results of subcutaneous and femur implantation confirmed that locally released pitavastatin had potentially triggered a chain of biological events: mobilizing endogenous stem cells and ECs to the implant-bone interface, in turn facilitating coupled osteogenesis and angiogenesis, and eventually enhancing peri-implant osseointegration. This study enlarges the application scope of pitavastatin and provides an optional choice for developing a multifunctional bioactive coating on the surfaces of mental implants.


Subject(s)
Osseointegration , Osteogenesis , Cell Differentiation , Endothelial Cells , Quinolines , Surface Properties , Titanium/chemistry , Titanium/pharmacology
9.
Front Cell Infect Microbiol ; 11: 685640, 2021.
Article in English | MEDLINE | ID: mdl-34164346

ABSTRACT

Background: Viral nucleic acid detection is considered the gold standard for the diagnosis of coronavirus disease 2019 (COVID-19), which is caused by SARS-CoV-2 infection. However, unsuitable sample types and laboratory detection kits/methods lead to misdiagnosis, which delays the prevention and control of the pandemic. Methods: We compared four nucleic acid detection methods [two kinds of reverse transcription polymerase chain reactions (RT-PCR A: ORF1ab and N testing; RT-PCRB: only ORF1ab testing), reverse transcription recombinase aided amplification (RT-RAA) and droplet digital RT-PCR (dd-RT-PCR)] using 404 samples of 72 hospitalized COVID-19 patients, including oropharyngeal swab (OPS), nasopharyngeal swabs (NPS) and saliva after deep cough, to evaluate the best sample type and method for SARS-CoV-2 detection. Results: Among the four methods, dd-RT-PCR exhibited the highest positivity rate (93.0%), followed by RT-PCR B (91.2%) and RT-RAA (91.2%), while the positivity rate of RT-PCR A was only 71.9%. The viral load in OPS [24.90 copies/test (IQR 15.58-129.85)] was significantly lower than that in saliva [292.30 copies/test (IQR 20.20-8628.55)] and NPS [274.40 copies/test (IQR 33.10-2836.45)]. In addition, if OPS samples were tested alone by RT-PCR A, only 21.4% of the COVID-19 patients would be considered positive. The accuracy of all methods reached nearly 100% when saliva and NPS samples from the same patient were tested simultaneously. Conclusions: SARS-CoV-2 nucleic acid detection methods should be fully evaluated before use. High-positivity rate methods such as RT-RAA and dd-RT-PCR should be considered when possible. Furthermore, saliva after deep cough and NPS can greatly improve the accuracy of the diagnosis, and testing OPS alone is not recommended.


Subject(s)
COVID-19 Testing/methods , COVID-19 , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Humans , Nasopharynx , Pandemics , RNA, Viral/genetics , SARS-CoV-2 , Saliva , Specimen Handling
10.
J Zhejiang Univ Sci B ; 22(4): 330-340, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33835767

ABSTRACT

Epidemiological evidence suggests that patients with hypertension infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are at increased risk of acute lung injury. However, it is still not clear whether this increased risk is related to the usage of renin-angiotensin system (RAS) blockers. We collected medical records of coronavirus disease 2019 (COVID-19) patients from the First Affiliated Hospital, Zhejiang University School of Medicine (Hangzhou, China), and evaluated the potential impact of an angiotensin II receptor blocker (ARB) on the clinical outcomes of COVID-19 patients with hypertension. A total of 30 hypertensive COVID-19 patients were enrolled, of which 17 were classified as non-ARB group and the remaining 13 as ARB group based on the antihypertensive therapies they received. Compared with the non-ARB group, patients in the ARB group had a lower proportion of severe cases and intensive care unit (ICU) admission as well as shortened length of hospital stay, and manifested favorable results in most of the laboratory testing. Viral loads in the ARB group were lower than those in the non-ARB group throughout the disease course. No significant difference in the time of seroconversion or antibody levels was observed between the two groups. The median levels of soluble angiotensin-converting enzyme 2 (sACE2) in serum and urine samples were similar in both groups, and there were no significant correlations between serum sACE2 and biomarkers of disease severity. Transcriptional analysis showed 125 differentially expressed genes which mainly were enriched in oxygen transport, bicarbonate transport, and blood coagulation. Our results suggest that ARB usage is not associated with aggravation of COVID-19. These findings support the maintenance of ARB treatment in hypertensive patients diagnosed with COVID-19.


Subject(s)
Angiotensin Receptor Antagonists/therapeutic use , Antibodies, Viral/blood , COVID-19/complications , Hypertension/drug therapy , Viral Load , Aged , Aged, 80 and over , Angiotensin Receptor Antagonists/adverse effects , Angiotensin-Converting Enzyme 2/blood , Antihypertensive Agents/adverse effects , Antihypertensive Agents/therapeutic use , Biomarkers , China , Female , Humans , Hypertension/complications , Intensive Care Units , Length of Stay , Male , Middle Aged , Retrospective Studies , Transcriptome
11.
Clin Chim Acta ; 511: 177-180, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33068630

ABSTRACT

To clarify the effect of different respiratory sample types on SARS-CoV-2 detection, we collected throat swabs, nasal swabs and hock-a-loogie saliva or sputum, and compared their detection rates and viral loads. The detection rates of sputum (95.65%, 22/23) and hock-a-loogie saliva (88.09%, 37/42) were significantly higher than those in throat swabs (41.54%, 27/65) and nasal swabs (72.31%, 47/65) (P < 0.001). The Ct Values of sputum, hock-a-loogie saliva and nasal swabs were significantly higher than that in throat swabs, whereas no significant difference was observed between sputum and saliva samples. Hock-a-loogie saliva are reliable sample types that can be used to detect SARS-CoV-2, and worthy of clinical promotion.


Subject(s)
COVID-19/diagnosis , COVID-19/genetics , Polymerase Chain Reaction/standards , SARS-CoV-2/genetics , Saliva/virology , Specimen Handling/standards , Adult , Female , Humans , Male , Middle Aged , Nasopharynx/virology , Polymerase Chain Reaction/methods , Prospective Studies , SARS-CoV-2/isolation & purification , Specimen Handling/methods , Sputum/virology , Viral Load/methods , Viral Load/standards
12.
BMJ ; 369: m1443, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32317267

ABSTRACT

OBJECTIVE: To evaluate viral loads at different stages of disease progression in patients infected with the 2019 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the first four months of the epidemic in Zhejiang province, China. DESIGN: Retrospective cohort study. SETTING: A designated hospital for patients with covid-19 in Zhejiang province, China. PARTICIPANTS: 96 consecutively admitted patients with laboratory confirmed SARS-CoV-2 infection: 22 with mild disease and 74 with severe disease. Data were collected from 19 January 2020 to 20 March 2020. MAIN OUTCOME MEASURES: Ribonucleic acid (RNA) viral load measured in respiratory, stool, serum, and urine samples. Cycle threshold values, a measure of nucleic acid concentration, were plotted onto the standard curve constructed on the basis of the standard product. Epidemiological, clinical, and laboratory characteristics and treatment and outcomes data were obtained through data collection forms from electronic medical records, and the relation between clinical data and disease severity was analysed. RESULTS: 3497 respiratory, stool, serum, and urine samples were collected from patients after admission and evaluated for SARS-CoV-2 RNA viral load. Infection was confirmed in all patients by testing sputum and saliva samples. RNA was detected in the stool of 55 (59%) patients and in the serum of 39 (41%) patients. The urine sample from one patient was positive for SARS-CoV-2. The median duration of virus in stool (22 days, interquartile range 17-31 days) was significantly longer than in respiratory (18 days, 13-29 days; P=0.02) and serum samples (16 days, 11-21 days; P<0.001). The median duration of virus in the respiratory samples of patients with severe disease (21 days, 14-30 days) was significantly longer than in patients with mild disease (14 days, 10-21 days; P=0.04). In the mild group, the viral loads peaked in respiratory samples in the second week from disease onset, whereas viral load continued to be high during the third week in the severe group. Virus duration was longer in patients older than 60 years and in male patients. CONCLUSION: The duration of SARS-CoV-2 is significantly longer in stool samples than in respiratory and serum samples, highlighting the need to strengthen the management of stool samples in the prevention and control of the epidemic, and the virus persists longer with higher load and peaks later in the respiratory tissue of patients with severe disease.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/virology , Pneumonia, Viral/virology , Adult , COVID-19 , China , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Viral Load
13.
Clin Pediatr (Phila) ; 59(7): 656-662, 2020 06.
Article in English | MEDLINE | ID: mdl-32146823

ABSTRACT

Hand, foot, and mouth disease (HFMD) is most frequently caused by several serotypes of human enterovirus (EV) including Enterovirus 71 (EV-A71), coxsackievirus A16 (CV-A16), or other types of EV. The aim of this study was to determine the epidemiological characteristics of HFMD and to describe the epidemiologic characteristics of HFMD among severe and mild cases. We collected 4760 HFMD cases in Hangzhou from 2016 to 2018. Specimens from these cases were collected and tested for EV-A71, CV-A16, CV-A6, CV-A10, CV-A2, and CV-A5 by reverse transcriptase polymerase chain reaction. From 2016 to 2018, the prevalence of HFMD was seasonal each year. Among the 4760 probable HFMD cases, 3559 cases were confirmed (74.8%), including 426 cases of EV-A71 infections (8.9%), 249 cases of CV-A16 infections (5.2%), and 2884 cases of other EV infections (60.6%). The percentage of other EV infections was more than 80%, which increased year by year. Random selection of samples for detection of other EV infections in 2017 and 2018, among the 1297 cases, showed there were 835 (64.4%) cases of CV-A6 infections, 177 (13.6%) cases of CV-A10 infections, 100 (7.7%) cases of CV-A2 infections, 40 (3.1%) cases of CV-A5 infections, 3 (0.02 %) cases of mixed infections, and 11.0% untyped EV infections. Preschool children were still the primary population susceptible to HFMD. In severe cases, EV-A71 infection was the main cause. Characterizing the epidemiology and the relationship between severe and common cases of HFMD would provide relevant evidences for the prevention and treatment of HFMD.


Subject(s)
Hand, Foot and Mouth Disease/epidemiology , Hand, Foot and Mouth Disease/pathology , Age Factors , Child, Preschool , China/epidemiology , Female , Hand, Foot and Mouth Disease/physiopathology , Humans , Infant , Male , Real-Time Polymerase Chain Reaction
14.
Materials (Basel) ; 13(3)2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32028706

ABSTRACT

The combustion behavior and mechanism of Ti14 titanium alloy are studied by promoted ignition combustion tests at different oxygen pressures in this paper. The burning velocity increases at higher oxygen pressures and also increases with longer burning times instead of a constant at the same pressure. The Cu atoms are found enriched in two zones-i.e., the heat affected zone and melting zone during the combustion process-which can prevent the diffusion process of oxygen atoms. The different combustion behavior of Ti14 and Ti-Cr-V alloys is basically controlled by the characteristics of phase structures and chemical reactions.

15.
Materials (Basel) ; 12(19)2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31574926

ABSTRACT

The combustion velocity and the mechanism for a series of Ti-Cr-V alloys with different chemical compositions are studied by a promoted ignition combustion test corresponding to different oxygen pressures to investigate the influence of alloying elements, such as Cr and V, on combustion behavior. The microstructures and composition distributions of the alloying elements in the reaction and oxide areas are observed and analyzed. The thermogravimetry analysis results show that the oxidation mass gain decreases with the increasing Cr content, and the oxidation resistance obviously increases from 10 Cr to 20 Cr. The combustion velocity decreases with increasing Cr content, and it is concluded that elevated Cr content can effectively retard the flame propagation velocity. Importantly, for the Ti-Cr-V alloys, the Cr and V elements accumulate in the melting zone and reduce the heat created by combustion.

16.
Virus Genes ; 55(5): 592-599, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31302878

ABSTRACT

Since February 2013, human infections with the novel influenza A H7N9 virus have occurred in eastern China. It is important to detect mutations in viral genes and analyze the clinical features of patients and viral shedding duration related to neuraminidase inhibitor (NAI) resistance. We collected clinical specimens from 31 hospitalized H7N9 patients and sequenced NA, PB2, HA, and M gene fragments. Of the 31 identified patients, 7 (22.6%) carried the R292K substitution in NA, 30 (96.8%), 3 (9.7%), and 5 (16.1%) carried E627K, Q591K, and D701N mutations in PB2, respectively, and 2 (6.5%) carried both E627K and D701N mutations in PB2. All 26 identified patients harbored Q226L mutations and possessed only a single arginine (R) at cleavage sites in the HA and a S31N mutation in M2. Among 7 NA-R292K mutated patients, 3 died and 4 were discharged. There was no significant difference in the days that patients started oseltamivir treatment after symptom onset between NA-R292K mutant and NA-R292 wild-type patients (median days, 7 vs 6, P = 0.374). NA-R292K mutant patients had a significantly longer duration of viral shedding than NA-R292 wild-type patients after oseltamivir treatment (median days, 10 vs 5, P = 0.022). The mutation of R292K in NA conferring the potential ability of oseltamivir resistance resulted in prolonged viral duration and poor outcome and should be taken into consideration in the clinical management of infected patients.


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral , Influenza A Virus, H7N9 Subtype/genetics , Influenza, Human/virology , Mutation, Missense , Oseltamivir/pharmacology , Virus Shedding , Adult , Aged , Aged, 80 and over , China , Female , Genome, Viral , Humans , Influenza A Virus, H7N9 Subtype/isolation & purification , Influenza, Human/pathology , Male , Middle Aged , RNA, Viral/genetics , Sequence Analysis, DNA
17.
J Immunol Res ; 2019: 1418251, 2019.
Article in English | MEDLINE | ID: mdl-31061831

ABSTRACT

The outbreak of avian influenza A (H7N9) virus infection, with a high mortality rate, has caused concern worldwide. Although interleukin-17- (IL-17-) secreting CD4+ T (Th17) and CD8+ T (Tc17) cells have been proven to play crucial roles in influenza virus infection, the changes and roles of Th17 and Tc17 cells in immune responses to H7N9 infection remain controversial. In this study, we found that the frequencies of Th17 and Tc17 cells among human peripheral blood mononuclear cells (PBMCs) as well as IL-17A protein and mRNA levels were markedly decreased in patients with acute H7N9 virus infection. A positive correlation was found between the serum IL-17A level and the frequency of these two cell groups. In vitro infection experiments revealed decreased Th17 and Tc17 cell frequency and IL-17A levels at various time points postinfection. In addition, Th17 cells were the predominant sources of IL-17A in PBMCs of patients infected with H7N9 virus. Taken together, our results indicate immune disorder in acute H7N9 infection and a restored Th17 and Tc17 cell frequency might serve as a biomarker for predicting recovery in patients infected with this virus.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , Influenza, Human/immunology , Interleukin-17/blood , Th17 Cells/cytology , Acute Disease , Adult , Aged , Animals , Cells, Cultured , Female , Humans , Influenza A Virus, H7N9 Subtype , Male , Middle Aged , Poultry/virology
18.
Clin Infect Dis ; 66(7): 1054-1060, 2018 03 19.
Article in English | MEDLINE | ID: mdl-29077848

ABSTRACT

Background: The significance of early neuraminidase inhibitor (NAI) therapy for treating influenza A(H7N9) is currently unknown. Methods: The duration of viral shedding was monitored by reverse-transcription polymerase chain reaction after patients with confirmed H7N9 infection were admitted to the First Affiliated Hospital, Zhejiang University, during April 2013-April 2017. Indices such as the length of hospitalization and mortality were collected, and the correlation between the time of administration of NAI and the severity of disease was systematically analyzed. Results: One hundred sixty patients with confirmed H7N9 infection were divided into 3 groups according to NAI starting time. Three of 20 (15%) patients for whom NAI was administered within 2 days died compared with 12 of 52 (23.1%) patients who received treatment within 2-5 days and 33 of 88 (37.5%) patients who were treated after 5 days (P < .05). The median durations of viral shedding from NAI therapy initiation was 4.5 days (interquartile range [IQR], 3-9 days) for patients who took antiviral medication within 2 days, which was significantly different from that for patients who took medication within 2-5 days (7.5 days [IQR, 4.25-12.75 days]) or after 5 days (7 days [IQR, 5-10 days]) (P < .05). We found that the duration of viral shedding from NAI therapy was the shortest in spring 2013 (5.5 days) and the longest in winter-spring 2016-2017 (8.5 days) (P < .05), showing a prolonged trend. Conclusions: Early NAI therapy within 2 days of illness shortened the duration of viral shedding and improved survival in patients with H7N9 viral infection.


Subject(s)
Antiviral Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Influenza, Human/drug therapy , Neuraminidase/antagonists & inhibitors , Virus Shedding/drug effects , Aged , China , Female , Hospitalization , Humans , Influenza A Virus, H7N9 Subtype , Influenza, Human/mortality , Male , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction , Seasons , Time Factors , Treatment Outcome
20.
Oncotarget ; 8(17): 29370-29382, 2017 Apr 25.
Article in English | MEDLINE | ID: mdl-28030850

ABSTRACT

Interleukin (IL)-22+CD4+T (Th22) cells play crucial roles in the pathogenesis of autoimmune diseases and infectious diseases, although the role of Th22 cells remains largely unclear in children with hand, foot, and mouth disease (HFMD) caused by enterovirus 71 (EV71). This study aims to explore the role of circulating IL-22+IL-17A-CD4+T (cTh22) cells in children with EV71-associated HFMD. We found that during the acute stage of illness, the frequencies of cTh22 and circulating IL-22+IL-17A+CD4+T (IL-22+cTh17) cells in CD4+T cells infrom affected patients, and especially in severely affected patients, were significantly higher than in healthy controls (HC). The major source of IL-22 production was cTh22 cells, partially from cTh17 cells. Moreover, the protein and mRNA levels of IL-22, IL-17A, IL-23, IL-6, and TNF-α were significantly different among the mild patients, severe patients and HC, as well as AHR and RORγt mRNA levels. A positive correlation was found between plasma IL-22 levels and cTh22 cell frequencies, and cTh17 cell and IL-22+ cTh17 cell frequencies. Furthermore, the frequencies of cTh22 were significantly decreased in the convalescent patients. Our findings indicated that cTh22 cells could play critical roles in the pathogenesis of EV71 infection, and are potential therapeutic targets for patients with EV71-associated HFMD.


Subject(s)
Enterovirus A, Human/pathogenicity , Hand, Foot and Mouth Disease/genetics , Interleukin-17/metabolism , Interleukins/metabolism , Child, Preschool , Female , Hand, Foot and Mouth Disease/metabolism , Humans , Male , Interleukin-22
SELECTION OF CITATIONS
SEARCH DETAIL
...