Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.054
1.
Gastroenterol. hepatol. (Ed. impr.) ; 47(5): 506-516, may. 2024.
Article En | IBECS | ID: ibc-CR-363

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world, with epidemiological studies indicating a 25% prevalence. NAFLD is considered to be a progressive disease that progresses from simple hepatic steatosis to non-alcoholic steatohepatitis (NASH), then to liver fibrosis, and finally to cirrhosis or hepatocellular carcinoma (HCC). Existing research has mostly elucidated the etiology of NAFLD, yet its particular molecular processes remain uncertain. Long non-coding RNAs (LncRNAs) have been linked in a wide range of biological processes in recent years, with the introduction of microarray and high-throughput sequencing technologies, and previous studies have established their tight relationship with several stages of NAFLD development. Existing studies have shown that lncRNAs can regulate the signaling pathways related to hepatic lipid metabolism, NASH, NASH-related fibrosis and HCC. This review aims to provide a basic overview of NAFLD and lncRNAs, summarize and describe the mechanisms of lncRNAs action involved in the development of NAFLD, and provide an outlook on the future of lncRNAs-based therapy for NAFLD. (AU)


La enfermedad del hígado graso no alcohólico (NAFLD) es la enfermedad hepática más común en el mundo, con estudios epidemiológicos que indican una prevalencia del 25%. La NAFLD se considera una enfermedad progresiva que avanza de esteatosis hepática simple a esteatohepatitis no alcohólica (NASH), luego a fibrosis hepática y, finalmente, a cirrosis o carcinoma hepatocelular (HCC). La investigación existente ha dilucidado principalmente la etiología de NAFLD. Sin embargo, sus procesos moleculares particulares siguen siendo inciertos. Los ARN largos no codificantes (lncRNA) se han relacionado en una amplia gama de procesos biológicos en los últimos años, con la introducción de microarrays y tecnologías de secuenciación de alto rendimiento, y estudios previos han establecido su estrecha relación con varias etapas del desarrollo de NAFLD. Los estudios existentes han demostrado que los lncRNA pueden regular las vías de señalización relacionadas con el metabolismo lipídico hepático, NASH, fibrosis relacionada con NASH y HCC. Esta revisión tiene como objetivo proporcionar una visión general básica de NAFLD y lncRNA, resumir y describir los mecanismos de acción de lncRNA involucrados en el desarrollo de NAFLD, y proporcionar una perspectiva sobre el futuro de la terapia basada en lncRNA para NAFLD. (AU)


Humans , Non-alcoholic Fatty Liver Disease , RNA, Long Noncoding
3.
Int J Biol Macromol ; : 131913, 2024 May 09.
Article En | MEDLINE | ID: mdl-38749889

In this study, we aimed to determine the effect of carboxymethyl chitosan (CMCh) and carboxymethyl cellulose sodium (CMCNa) on the quality of frozen rice dough. We used a variety of methods to conduct a thorough investigation of frozen rice dough, including nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, size exclusion high-performance liquid chromatography (SE-HPLC), X-ray diffraction (X-RD), differential scanning calorimetry (DSC), and rapid visco analyzer (RVA). Our findings showed that frozen storage caused significant damage to the texture of rice dough, and this damage was reduced by the inclusion of CMCh, which led to a gradual change in the orderly structure of proteins. The degree of cross-linking between CMCh-B (DS:1; 0.5 %, 1 %, and 1.5 %) and the large protein polymer was significantly higher than that between CMCh-A (DS:0.8; 0.5 %, 1 %, and 1.5 %) and CMCNa (DS:1; 1 %), which decreased the ability of bound water to become free water. This resulted in the increase of tan δ, which effectively delayed the structural transformation of frozen rice dough. Furthermore, the introduction of CMCh delayed the immediate order of starch and crystal structure modifications, altering the thermal properties and pasting qualities of the frozen rice dough. Therefore, 1.5 % CMCh-B showed the best protective effect on frozen rice dough.

4.
Int J Pharm ; : 124220, 2024 May 09.
Article En | MEDLINE | ID: mdl-38734274

Porous Microneedles (PMNs) have been widely used in drug delivery and medical diagnosis owing to their abundant interconnected pores. However, the mechanical strength, the use of organic solvent, and drug loading capacity have long been challenging. Herein, a novel strategy of PMNs fabrication based on the Ice Templating Method is proposed that is suitable for insoluble, soluble, and nanosystem drug loading. The preparation process simplifies the traditional microneedle preparation process with a shorter preparation time. It endows the highly tunable porous morphology, enhanced mechanical strength, and rapid dissolution performance. Micro-CT three-dimensional reconstruction was used to better quantify the internal structures of PMNs, and we further established the equivalent pore network model to statistically analyze the internal pore structure parameters of PMNs. In particular, the mechanical strength is mainly negatively correlated with the surface porosity, while the dissolution velocity is mainly positively correlated with the permeability coefficient by the correlation heatmap. The poorly water-soluble Asiatic acid was encapsulated in PMNs in nanostructured lipid carriers, showing prominent hypertrophic scar healing trends. This work offers a quick and easy way of preparation that may be used to expand PMNs function and be introduced in industrial manufacturing development.

5.
3D Print Addit Manuf ; 11(2): e638-e654, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38689922

This study proposes a novel and simple fabrication method of magnetic microfibers, employing filament stretching three-dimensional (3D) printing, and demonstrates the capacity of four-dimensional (4D) printing of the proposed magnetic microfibers. A ferromagnetic 3D printing filament is prepared by the mixture of neodymium-iron-boron (NdFeB) and polylactic acid (PLA), and we investigate the characteristics of the ferromagnetic filament by mixing ratio, magnetic properties, mechanical properties, and rheological properties through experiments. By thermal extrusion of the ferromagnetic filament through a 3D printer nozzle, various thicknesses (80-500 µm) and lengths (less than ∼5 cm) of ferromagnetic microfibers are achieved with different printing setups, such as filament extrusion amount and printing speed. The printed ferromagnetic microfibers are magnetized to maintain a permanent magnetic dipole moment, and 4D printing can be achieved by the deformations of the permanently magnetized microfibers under magnetic fields. We observe that the mixing ratio, the thickness, and the length of the magnetized microfibers provide distinct deformation of the microfiber for customization of 4D printings. This study exhibits that the permanently magnetized microfibers have a great potential for smart sensors and actuators. Furthermore, we briefly present an application of our proposed magnetic microfibers for bionic motion actuators with various unique undulating and oscillating motions.

6.
Cell Rep Med ; : 101588, 2024 May 18.
Article En | MEDLINE | ID: mdl-38781961

Tibial cortex transverse distraction is a surgical method for treating severe diabetic foot ulcers (DFUs), but the underlying mechanism is unclear. We show that antioxidant proteins and small extracellular vesicles (sEVs) with multiple-tissue regenerative potential are released during bone transport (BT) in humans and rats. These vesicles accumulate in diabetic wounds and are enriched with microRNAs (miRNAs) (e.g., miR-494-3p) that have high regenerative activities that improve the circulation of ischemic lower limbs while also promoting neovascularization, fibroblast migration, and nerve fiber regeneration. Deletion of miR-494-3p in rats reduces the beneficial effects of BT on diabetic wounds, while hydrogels containing miR-494-3p and reduced glutathione (GSH) effectively repair them. Importantly, the ginsenoside Rg1 can upregulate miR-494-3p, and a randomized controlled trial verifies that the regimen of oral Rg1 and GSH accelerates wound healing in refractory DFU patients. These findings identify potential functional factors for tissue regeneration and suggest a potential therapy for DFUs.

7.
Adv Sci (Weinh) ; : e2404143, 2024 May 24.
Article En | MEDLINE | ID: mdl-38785180

Commencing with the breakdown of the diabetic osteoimmune microenvironment, multiple pathogenic factors, including hyperglycemia, inflammation, hypoxia, and deleterious cytokines, are conjointly involved in the progression of diabetic periodontal bone regeneration. Based on the challenge of periodontal bone regeneration treatment and the absence of real-time feedback of blood oxygen fluctuation in diabetes mellitus, a novel self-adaptive hyperthermia supramolecular cascade nano-reactor ACFDG is constructed via one-step supramolecular self-assembly strategy to address multiple factors in diabetic periodontal bone regeneration. Hyperthermia supramolecular ACFDG possesses high photothermal conversion efficiency (32.1%), and it can effectively inhibit the vicious cycle of ROS-inflammatory cascade through catalytic cascade reactions, up-regulate the expression of heat shock proteins (HSPs) under near-infrared (NIR) irradiation, which promotes periodontal bone regeneration. Remarkably, ACFDG can provide real-time non-invasive diagnosis of blood oxygen changes during periodontal bone regeneration through photoacoustic (PA) imaging, thus can timely monitor periodontal hypoxia status. In conclusion, this multifunctional supramolecular nano-reactor combined with PA imaging for real-time efficacy monitoring provides important insights into the biological mechanisms of diabetic periodontal bone regeneration and potential clinical theranostics.

8.
Bioresour Technol ; 402: 130844, 2024 Jun.
Article En | MEDLINE | ID: mdl-38754560

In this study, a novel magnetic Ni-Fe2O3-C catalyst combined with electromagnetic induction heating in biomass steam gasification was proposed to enhance H2 production. Better catalytic performance for H2 production was observed with the Ni-Fe2O3-C catalyst under induction heating, resulting in an increase in H2 yield from 735.1 to 2271.2 mL/g-biomass (a 209.1 % enhancement). SEM, TGA and XRD analysis demonstrated a significant decrease in coking deposition, caking, and particle agglomeration of the Ni-Fe2O3-C catalyst under induction heating, while maintaining more active sites. Importantly, the benefits of induction heating were also applicable to different magnetic catalysts like Ni-Al2O3-C, Ni-ZrO2-C, and Ni-MgO-C. Experimental results revealed a logarithmic correlation between the increase in H2 yields due to induction heating and the magnetic saturation (Ms) of the catalysts. The Ni-Fe2O3-C catalyst, with a high Ms of 50.9 emu/g, showed the highest catalytic activity for H2 production under induction heating in this study.


Biomass , Ferric Compounds , Hydrogen , Nickel , Steam , Catalysis , Hydrogen/chemistry , Nickel/chemistry , Ferric Compounds/chemistry , Hot Temperature , Heating , X-Ray Diffraction , Electromagnetic Phenomena
9.
Vaccines (Basel) ; 12(5)2024 May 11.
Article En | MEDLINE | ID: mdl-38793777

The COVID-19 vaccine is safe and effective for children, yet parental hesitancy towards vaccinating children against the virus persists. We conducted a telephone-administered weighted survey in Texas to examine parents' sociodemographic factors and medical conditions associated with COVID-19 vaccination intention for parents with unvaccinated children ages 5-17 years. We collected responses from 19,502 participants, of which 4879 were parents of children ages 5-17 years. We conducted multiple logistic regression with Lasso-selected variables to identify factors associated with children's vaccination status and parents' intention to vaccinate their children. From the unweighted sample, less than half of the parents (46.8%) had at least one unvaccinated child. These parents were more likely to be White, English-speaking, not concerned about illness, privately insured, and unvaccinated for COVID-19 themselves (p < 0.001). In the adjusted regression model, parents who were unvaccinated (vs. having COVID-19 booster, aOR = 28.6) and financially insecure (aOR = 1.46) had higher odds of having unvaccinated children. Parents who were Asian (aOR = 0.50), Black (aOR = 0.69), Spanish-speaking (aOR = 0.57), concerned about illness (aOR = 0.63), had heart disease (aOR = 0.41), and diabetes (aOR = 0.61) had lower odds of having unvaccinated children. Parents who were Asian, Black, Hispanic, Spanish-speaking, concerned about illness for others, and vaccine-boosted were more likely to have vaccination intention for their children (p < 0.001). Children's vaccination is essential to reduce COVID-19 transmission. It is important to raise awareness about the value of pediatric COVID-19 vaccination while considering parents' sociodemographic and medical circumstances.

10.
Mikrochim Acta ; 191(6): 326, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740583

Migration is an initial step in tumor expansion and metastasis; suppressing cellular migration is beneficial to cancer therapy. Herein, we designed a novel biogated nanoagents that integrated the migration inhibitory factor into the mesoporous silica nanoparticle (MSN) drug delivery nanosystem to realize cell migratory inhibition and synergistic treatment. Antisense oligonucleotides (Anti) of microRNA-330-3p, which is positively related with cancer cell proliferation, migration, invasion, and angiogenesis, not only acted as the locker for blocking drugs but also acted as the inhibitory factor for suppressing migration via gene therapy. Synergistic with gene therapy, the biogated nanoagents (termed as MSNs-Gef-Anti) could achieve on-demand drug release based on the intracellular stimulus-recognition and effectively kill tumor cells. Experimental results synchronously demonstrated that the migration suppression ability of MSNs-Gef-Anti nanoagents (nearly 30%) significantly contributed to cancer therapy, and the lethality rate of the non-small-cell lung cancer was up to 70%. This strategy opens avenues for realizing efficacious cancer therapy and should provide an innovative way for pursuing the rational design of advanced nano-therapeutic platforms with the combination of cancer cell migratory inhibition.


Cell Movement , Drug Therapy, Combination , Nanoparticles , Neoplasms , Silicon Dioxide , Cell Movement/drug effects , Silicon Dioxide/chemistry , Drug Therapy, Combination/methods , Neoplasms/drug therapy , Nanoparticle Drug Delivery System/chemistry , Nanoparticle Drug Delivery System/therapeutic use , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Nanoparticles/ultrastructure , A549 Cells , Microscopy, Electron, Transmission , Humans
11.
Zool Res ; 45(3): 633-647, 2024 May 18.
Article En | MEDLINE | ID: mdl-38766746

Painful stimuli elicit first-line reflexive defensive reactions and, in many cases, also evoke second-line recuperative behaviors, the latter of which reflects the sensing of tissue damage and the alleviation of suffering. The lateral parabrachial nucleus (lPBN), composed of external- (elPBN), dorsal- (dlPBN), and central/superior-subnuclei (jointly referred to as slPBN), receives sensory inputs from spinal projection neurons and plays important roles in processing affective information from external threats and body integrity disruption. However, the organizational rules of lPBN neurons that provoke diverse behaviors in response to different painful stimuli from cutaneous and deep tissues remain unclear. In this study, we used region-specific neuronal depletion or silencing approaches combined with a battery of behavioral assays to show that slPBN neurons expressing substance P receptor ( NK1R) (lPBN NK1R) are crucial for driving pain-associated self-care behaviors evoked by sustained noxious thermal and mechanical stimuli applied to skin or bone/muscle, while elPBN neurons are dispensable for driving such reactions. Notably, lPBN NK1R neurons are specifically required for forming sustained somatic pain-induced negative teaching signals and aversive memory but are not necessary for fear-learning or escape behaviors elicited by external threats. Lastly, both lPBN NK1R and elPBN neurons contribute to chemical irritant-induced nocifensive reactions. Our results reveal the functional organization of parabrachial substrates that drive distinct behavioral outcomes in response to sustained pain versus external danger under physiological conditions.


Nociception , Parabrachial Nucleus , Animals , Parabrachial Nucleus/physiology , Mice , Nociception/physiology , Neurons/physiology , Pain/physiopathology , Male , Behavior, Animal/physiology
12.
Food Chem ; 454: 139801, 2024 May 24.
Article En | MEDLINE | ID: mdl-38810456

Photodynamic inactivation (PDI) could utilize light to activate reactive oxygen species (ROS) produced by photosensitizers to kill bacteria for preservation. To delve into the complex effects arising during the post-harvest PDI processing, we conducted experiments using Pseudomonas reinekei, a food spoilage bacteria extracted from rotten Pakchoi. Through analyzing the metabolomics results, we discovered that methionine (Met) and glutamate (Glu) exhibited significant inhibitory effects during the PDI process. The oxidative stress generated by light treatment resulted in a reduction of 30.31% and 36.37% in the levels of Met and Glu, respectively. The data also showed that exogenous Met and Glu reduced intracellular oxidative stress levels, increased peroxidase activity, and prevented the damage of intracellular material and cell membrane deformation. That amino acids could inhibit the effect of PDI by hindering oxidative stress. Therefore, the amino acid content should be considered when applying PDI to treat Met- or Glu-rich foods.

13.
Biomed Pharmacother ; 175: 116727, 2024 Jun.
Article En | MEDLINE | ID: mdl-38733771

Myelodysplastic syndromes (MDS) encompass a collection of clonal hematopoietic malignancies distinguished by the depletion of peripheral blood cells. The treatment of MDS is hindered by the advanced age of patients, with a restricted repertoire of drugs currently accessible for therapeutic intervention. In this study, we found that ES-Cu strongly inhibited the viability of MDS cell lines and activated cuproptosis in a copper-dependent manner. Importantly, ferroptosis inducer IKE synergistically enhanced ES-Cu-mediated cytotoxicity both in vitro and in vivo. Of note, the combination of IKE and ES-Cu intensively impaired mitochondrial homeostasis with increased mitochondrial ROS, MMP hyperpolarized, down-regulated iron-sulfur proteins and declined oxygen consumption rate. Additionally, ES-Cu/IKE treatment could enhance the lipoylation-dependent oligomerization of the DLAT. To elucidate the specific order of events in the synergistic cell death, inhibitors of ferroptosis and cuproptosis were utilized to further characterize the basis of cell death. Cell viability assays showed that the glutathione and its precursor N-acetylcysteine could significantly rescue the cell death under either mono or combination treatment, demonstrating that GSH acts at the crossing point in the regulation network of cuproptosis and ferroptosis. Significantly, the reconstitution of xCT expression and knockdown of FDX1 cells have been found to contribute to the tolerance of mono treatment but have little recovery impact on the combined treatment. Collectively, these findings suggest that a synergistic interaction leading to the induction of multiple programmed cell death pathways could be a promising approach to enhance the effectiveness of therapy for MDS.


Copper , Drug Synergism , Ferroptosis , Myelodysplastic Syndromes , Ferroptosis/drug effects , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/metabolism , Humans , Animals , Copper/chemistry , Copper/metabolism , Piperazines/pharmacology , Mice , Cell Survival/drug effects , Imidazoles/pharmacology , Reactive Oxygen Species/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Cell Line, Tumor , Glutathione/metabolism
14.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2734-2744, 2024 May.
Article Zh | MEDLINE | ID: mdl-38812174

Prunella vulgaris, aptly named for its withering at the summer solstice, displays significant variation in quality arising from differing harvest time. However, research on the chemical composition changes of its spikes at various stages is limited, and the specific metabolites remain unclear. In order to elucidate the metabolites and metabolic pathways of the spikes of P. vulgaris, the current study deployed ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) and targeted metabolomics to characterize the compound variability in the spikes of P. vulgaris across different periods. Multivariate statistical techniques such as principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to identify the differences in metabolites, and relevant metabolic pathways were analyzed. A total of 602 metabolites were identified by metabolomics, of which organic acids and their derivatives were the most abundant, followed by flavonoids. Multiple differential metabolites, including p-hydroxybenzoic acids and gallic acids were identified based on variable importance in projection(VIP)>1 and P<0.05. The results of enrichment analysis suggested that isoflavonoids biosynthesis, aminobenzoate degradation, benzoate degradation, anthocyanins biosynthesis, metabolic pathways, microbial metabolism in different environments, secondary plant metabolite biosynthesis, tryptophan metabolism, and phenylpropanoid synthesis were the main metabolic pathways. These results intend to elucidate the dynamic changes of differential metabolites of P. vulgaris and provide a theoretical basis for further study of the harvesting mechanism of spikes of P. vulgaris.


Metabolomics , Prunella , Tandem Mass Spectrometry , Prunella/chemistry , Prunella/metabolism , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid , Metabolomics/methods , Liquid Chromatography-Mass Spectrometry
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124452, 2024 Sep 05.
Article En | MEDLINE | ID: mdl-38761559

Histamine has been known as a momentous cause of biogenic amine poisoning. Therefore, the content of histamine in foods is strictly required to be controlled within a certain range. Here, an aptamer fluorescent sensor was developed for detection of histamine. Poly [(9, 9-di-n-octylfluorenyl-2, 7-diyl)-alt-(benzo [2,1,3] thiadia-zol-4, 8-diyl)] (PF8BT) and the styrene maleic anhydride copolymer (PSMA) were used for the preparation of PF8BT-Polymer dots (PF8BT-Pdots). PF8BT-Pdots and the cyanine3-phosphoramidite (Cy3) were linked through aptamer to achieve the ratiometric detection for histamine. PF8BT-Pdots were partly quenched by Cy3 due to the fluorescence resonance energy transfer (FRET), when the histamine molecule was recognized by aptamer on the surface of PF8BT-Pdots. A linear range (3-21 µmol/L) was obtained for histamine detection with a low limit of detection (LOD = 0.38 µmol/L). PF8BT aptamer Pdots (PF8BT-A) were used to detect histamine in simply treated aquaculture water and tuna. The cell imaging of HeLa cells presented a good biosecurity and outstanding fluorescent imaging capability of PF8BT-A. The aptamer fluorescent sensors provided a new platform for rapid and accurate detection of histamine in aquatic products and had great potential for the application in food safety and quality control.


Aptamers, Nucleotide , Histamine , Polymers , Quantum Dots , Histamine/analysis , Aptamers, Nucleotide/chemistry , Polymers/chemistry , Quantum Dots/chemistry , Humans , Limit of Detection , Food Analysis/methods , Fluorescence Resonance Energy Transfer/methods , Biosensing Techniques/methods , Fluorescent Dyes/chemistry , Animals , Food Contamination/analysis , HeLa Cells , Spectrometry, Fluorescence/methods
16.
J Exp Clin Cancer Res ; 43(1): 149, 2024 May 23.
Article En | MEDLINE | ID: mdl-38778379

BACKGROUND: Prostate cancer (PCa) incidence and mortality rates are rising. Our previous research has shown that the combination of icariin (ICA) and curcumol (CUR) induced autophagy and ferroptosis in PCa cells, and altered lipid metabolism. We aimed to further explore the effects of the combination of ICA and CUR on gut microbiota, metabolism, and immunity in PCa. METHODS: A mouse subcutaneous RM-1 cell tumor model was established. 16 S rRNA sequencing was performed to detect changes in fecal gut microbiota. SCFAs in mouse feces, and the effect of ICA-CUR on T-cell immunity, IGFBP2, and DNMT1 were examined. Fecal microbiota transplantation (FMT) was conducted to explore the mechanism of ICA-CUR. Si-IGFBP2 and si/oe-DNMT1 were transfected into RM-1 and DU145 cells, and the cells were treated with ICA-CUR to investigate the mechanism of ICA-CUR on PCa development. RESULTS: After treatment with ICA-CUR, there was a decrease in tumor volume and weight, accompanied by changes in gut microbiota. ICA-CUR affected SCFAs and DNMT1/IGFBP2/EGFR/STAT3/PD-L1 pathway. ICA-CUR increased the positive rates of CD3+CD8+IFN-γ, CD3+CD8+Ki67 cells, and the levels of IFN-γ and IFN-α in the serum. After FMT (with donors from the ICA-CUR group), tumor volume and weight were decreased. SCFAs promote tumor development and the expression of IGFBP2. In vitro, DNMT1/IGFBP2 promotes cell migration and proliferation. ICA-CUR inhibits the expression of DNMT1/IGFBP2. CONCLUSIONS: ICA-CUR mediates the interaction between gut microbiota and the DNMT1/IGFBP2 axis to inhibit the progression of PCa by regulating immune response and metabolism, suggesting a potential therapeutic strategy for PCa.


CD8-Positive T-Lymphocytes , DNA (Cytosine-5-)-Methyltransferase 1 , Gastrointestinal Microbiome , Prostatic Neoplasms , Animals , Mice , Male , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Humans , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Insulin-Like Growth Factor Binding Protein 2/metabolism , Flavonoids/pharmacology , Flavonoids/therapeutic use , Disease Models, Animal
17.
Acta Neuropathol Commun ; 12(1): 61, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637883

We aimed to identify the druggable cell-intrinsic vulnerabilities and target-based drug therapies for PitNETs using the high-throughput drug screening (HTS) and genomic sequencing methods. We examined 9 patient-derived PitNET primary cells in HTS. Based on the screening results, the potential target genes were analyzed with genomic sequencing from a total of 180 PitNETs. We identified and verified one of the most potentially effective drugs, which targeted the Histone deacetylases (HDACs) both in in vitro and in vivo PitNET models. Further RNA sequencing revealed underlying molecular mechanisms following treatment with the representative HDACs inhibitor, Panobinostat. The HTS generated a total of 20,736 single-agent dose responses which were enriched among multiple inhibitors for various oncogenic targets, including HDACs, PI3K, mTOR, and proteasome. Among these drugs, HDAC inhibitors (HDACIs) were, on average, the most potent drug class. Further studies using in vitro, in vivo, and isolated PitNET primary cell models validated HDACIs, especially Panobinostat, as a promising therapeutic agent. Transcriptional surveys revealed substantial alterations to the Nrf2 signaling following Panobinostat treatment. Moreover, Nrf2 is highly expressed in PitNETs. The combination of Panobinostat and Nrf2 inhibitor ML385 had a synergistic effect on PitNET suppression. The current study revealed a class of effective anti-PitNET drugs, HDACIs, based on the HTS and genomic sequencing. One of the representative compounds, Panobinostat, may be a potential drug for PitNET treatment via Nrf2-mediated redox modulation. Combination of Panobinostat and ML385 further enhance the effectiveness for PitNET treatment.


Neuroendocrine Tumors , Pituitary Neoplasms , Humans , Panobinostat/pharmacology , Panobinostat/therapeutic use , NF-E2-Related Factor 2/genetics , Neuroendocrine Tumors/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Signal Transduction
18.
Front Oncol ; 14: 1373727, 2024.
Article En | MEDLINE | ID: mdl-38680861

Paraganglioma (PGL) is rare, and PGL that arises from the urogenital system is even rarer. Here we report a case of PGL in spermatic cord and review the relevant literatures. We encountered a 15-year-old boy with a history of hypertension for almost 2 years, accompanied with headache and palpitations. His serum and urine catecholamines were elevated, but no adrenal lesions were detected, suggesting the existence of PGL. Upon physical examination, a painless nodule adherent to the spermatic cord in the right scrotum was found. A systemic Ga68 DOTATATE PET-CT was then performed, and it revealed a mass with high DOTATATE uptake in the right scrotum. The CT, MRI, and ultrasound images showed the abundant blood supply to the tumor. Based on the above-mentioned imaging and biochemical information, a diagnosis of PGL was made prior to surgery. After 2 weeks of preparation with Cardura, an open surgery was performed to remove the tumor together with the right testis and right epididymis. The blood pressure increased to 180/100 mmHg when the tumor was touched intraoperatively and decreased to 90/55 mmHg after the tumor was removed. Post-operative pathology confirmed our diagnosis of PGL originating from the spermatic cord. Immunohistochemical (IHC) staining showed SDHB (+), CgA (+), synaptophysin (+), GATA3 (+), CD56 (+), sertoli cells S-100 (+), and Ki67 (5%). Genetic testing revealed a missense mutation in the SDHA gene. Only 16 cases of spermatic cord PGL have been reported to date. Although it is easy to diagnose by histology and IHC examinations, preoperative diagnosis is quite important as it can actually reduce intraoperative complications.

19.
J Agric Food Chem ; 72(18): 10605-10615, 2024 May 08.
Article En | MEDLINE | ID: mdl-38647030

Acinetobacter johnsonii and Shewanella putrefaciens were identified as specific spoilage organisms in aquatic food. The interactions among specific spoilage organisms under cold stress have a significant impact on the assembly of microbial communities, which play crucial roles in the spoilage and cold adaptation processes. The limited understanding of A. johnsonii and S. putrefaciens interactions in the cold adaptation mechanism hinders the elucidation of their roles in protein and metabolism levels. 4D quantitative proteomic analysis showed that the coculture of A. johnsonii and S. putrefaciens responds to low temperatures through ABC transporter proteins, resulting in phospholipid transport and inner membrane components. SapA and FtsX proteins were significantly upregulated, while LolC, LolD, LolE, PotD, PotA, PotB, and PotC proteins were significantly downregulated. Metabolome assays revealed that metabolites of glutathione and spermidine/putrescin were significantly upregulated, while metabolites of arginine/lysine/ornithine were significantly downregulated and involved in the ABC transporter metabolism. The results of ultramicroscopic analyses showed that the coculture of A. johnsonii and S. putrefaciens surface combined with the presence of the leakage of intracellular contents, suggesting that the bacteria were severely damaged and wrinkled to absorb metabolic nutrients and adapt to cold temperatures.


ATP-Binding Cassette Transporters , Acinetobacter , Bacterial Proteins , Cold Temperature , Shewanella putrefaciens , Shewanella putrefaciens/metabolism , Shewanella putrefaciens/physiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/genetics , Acinetobacter/metabolism , Acinetobacter/physiology , Food Storage , Adaptation, Physiological , Coculture Techniques
20.
J Colloid Interface Sci ; 667: 385-392, 2024 Aug.
Article En | MEDLINE | ID: mdl-38640657

Introducing the appropriate vacancies to augment the active sites and improve the electrochemical kinetics while maintaining high cyclability is a major challenge for its widespread application in electrochemical energy storage. Here, core-shell structured Bi2S3@C with sulfur vacancies was prepared by hydrothermal method and one-step carbonization/sulfuration process, which significantly improves the intrinsic electrical conductivity and ion transport efficiency of Bi2S3. Additionally, the uniform protective carbon layer around surface of composite maintains structural stability and effectively alleviates volume expansion during alloying/dealloying. As a result, the BSC-500 anode exhibits a brilliant reversible capacity of 636 mAh/g at 0.2 A/g and a long-term stable capacity of 524 mAh/g for 500 cycles at a high current density of 3 A/g in lithium-ion batteries. In addition, the assembled Bi2S3@C//LiCoO2 full cell delivered a capacity of 184 mAh/g at 1 A/g and excellent cyclability (125 mAh/g after 1000 cycles). The proposed strategy of combining sulfur vacancies with a core-shell structure to improve the electrochemical kinetics of Bi2S3 in lithium-ion batteries off the prospect for practical applications of transition metal sulfide anodes.

...