Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935530

ABSTRACT

High-entropy alloy nanoparticles (HEA-NPs) show exceptional properties and great potential as a new generation of functional materials, yet a universal and facile synthetic strategy in air toward nonoxidized and precisely controlled composition remains a huge challenge. Here we provide a laser scribing method to prepare single-phase solid solution HEA-NPs libraries in air with tunable composition at the atomic level, taking advantage of the laser-induced metastable thermodynamics and substrate-assisted confinement effect. The three-dimensional porous graphene substrate functions as a microreactor during the fast heating/cooling process, which is conductive to the generation of the pure alloy phase by effectively blocking the binding of oxygen and metals, but is also beneficial for realizing accurate composition control via microstructure confinement-endowed favorable vapor pressure. Furthermore, by combining an active learning approach based on an adaptive design strategy, we discover an optimal composition of quinary HEA-NP catalysts with an ultralow overpotential for Li-CO2 batteries. This method provides a simple, fast, and universal in-air route toward the controllable synthesis of HEA-NPs, potentially integrated with machine learning to accelerate the research on HEAs.

2.
Anesthesiology ; 141(1): 56-74, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38625708

ABSTRACT

BACKGROUND: Stimulation of the paraventricular thalamus has been found to enhance anesthesia recovery; however, the underlying molecular mechanism by which general anesthetics modulate paraventricular thalamus is unclear. This study aimed to test the hypothesis that the sodium leak channel (NALCN) maintains neuronal activity in the paraventricular thalamus to resist anesthetic effects of sevoflurane in mice. METHODS: Chemogenetic and optogenetic manipulations, in vivo multiple-channel recordings, and electroencephalogram recordings were used to investigate the role of paraventricular thalamus neuronal activity in sevoflurane anesthesia. Virus-mediated knockdown and/or overexpression was applied to determine how NALCN influenced excitability of paraventricular thalamus glutamatergic neurons under sevoflurane. Viral tracers and local field potentials were used to explore the downstream pathway. RESULTS: Single neuronal spikes in the paraventricular thalamus were suppressed by sevoflurane anesthesia and recovered during emergence. Optogenetic activation of paraventricular thalamus glutamatergic neurons shortened the emergence period from sevoflurane anesthesia, while chemogenetic inhibition had the opposite effect. Knockdown of the NALCN in the paraventricular thalamus delayed the emergence from sevoflurane anesthesia (recovery time: from 24 ± 14 to 64 ± 19 s, P < 0.001; concentration for recovery of the righting reflex: from 1.13% ± 0.10% to 0.97% ± 0.13%, P < 0.01). As expected, the overexpression of the NALCN in the paraventricular thalamus produced the opposite effects. At the circuit level, knockdown of the NALCN in the paraventricular thalamus decreased the neuronal activity of the nucleus accumbens, as indicated by the local field potential and decreased single neuronal spikes in the nucleus accumbens. Additionally, the effects of NALCN knockdown in the paraventricular thalamus on sevoflurane actions were reversed by optical stimulation of the nucleus accumbens. CONCLUSIONS: Activity of the NALCN maintains the excitability of paraventricular thalamus glutamatergic neurons to resist the anesthetic effects of sevoflurane in mice.


Subject(s)
Anesthetics, Inhalation , Midline Thalamic Nuclei , Neurons , Sevoflurane , Animals , Sevoflurane/pharmacology , Mice , Anesthetics, Inhalation/pharmacology , Neurons/drug effects , Neurons/physiology , Midline Thalamic Nuclei/drug effects , Midline Thalamic Nuclei/physiology , Male , Mice, Inbred C57BL , Sodium Channels/drug effects , Sodium Channels/physiology , Glutamic Acid/metabolism , Glutamic Acid/pharmacology , Ion Channels , Membrane Proteins
3.
Am J Physiol Endocrinol Metab ; 326(3): E326-E340, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38294696

ABSTRACT

This study aimed to evaluate the role of skeletal muscle-derived interleukin (IL)-15 in the regulation of skeletal muscle autophagy using IL-15 knockout (KO) and transgenic (TG) mice. Male C57BL/6 wild-type (WT), IL-15 KO, and IL-15 TG mice were used in this study. Changes in muscle mass, forelimb grip strength, succinate dehydrogenase (SDH) activity, gene and protein expression levels of major regulators and indicators of autophagy, comprehensive gene expression, and DNA methylation in the gastrocnemius muscle were analyzed. Enrichment pathway analyses revealed that the pathology of IL-15 gene deficiency was related to the autophagosome pathway. Moreover, although IL-15 KO mice maintained gastrocnemius muscle mass, they exhibited a decrease in autophagy induction. IL-15 TG mice exhibited a decrease in gastrocnemius muscle mass and an increase in forelimb grip strength and SDH activity in skeletal muscle. In the gastrocnemius muscle, the ratio of phosphorylated adenosine monophosphate-activated protein kinase α (AMPKα) to total AMPKα and unc-51-like autophagy activating kinase 1 and Beclin1 protein expression were higher in the IL-15 TG group than in the WT group. IL-15 gene deficiency induces a decrease in autophagy induction. In contrast, IL-15 overexpression could improve muscle quality by activating autophagy induction while decreasing muscle mass. The regulation of IL-15 in autophagy in skeletal muscles may lead to the development of therapies for the autophagy-induced regulation of skeletal muscle mass and cellular quality control.NEW & NOTEWORTHY IL-15 gene deficiency can decrease autophagy induction. However, although IL-15 overexpression induced a decrease in muscle mass, it led to an improvement in muscle quality. Based on these results, understanding the role of IL-15 in regulating autophagy pathways within skeletal muscle may lead to the development of therapies for the autophagy-induced regulation of skeletal muscle mass and cellular quality control.


Subject(s)
Interleukin-15 , Muscle, Skeletal , Mice , Male , Animals , Interleukin-15/genetics , Interleukin-15/metabolism , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Mice, Transgenic , Mice, Knockout , AMP-Activated Protein Kinases/metabolism , Autophagy
4.
Innovation (Camb) ; 4(4): 100468, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37427353

ABSTRACT

The radiation tolerance of energy storage batteries is a crucial index for universe exploration or nuclear rescue work, but there is no thorough investigation of Li metal batteries. Here, we systematically explore the energy storage behavior of Li metal batteries under gamma rays. Degradation of the performance of Li metal batteries under gamma radiation is linked to the active materials of the cathode, electrolyte, binder, and electrode interface. Specifically, gamma radiation triggers cation mixing in the cathode active material, which results in poor polarization and capacity. Ionization of solvent molecules in the electrolyte promotes decomposition of LiPF6 along with its decomposition, and molecule chain breaking and cross-linking weaken the bonding ability of the binder, causing electrode cracking and reduced active material utilization. Additionally, deterioration of the electrode interface accelerates degradation of the Li metal anode and increases cell polarization, hastening the demise of Li metal batteries even more. This work provides significant theoretical and technical evidence for development of Li batteries in radiation environments.

5.
Front Neuroanat ; 17: 1162049, 2023.
Article in English | MEDLINE | ID: mdl-37405309

ABSTRACT

The somatosensory neurons in the dorsal root ganglion (DRG) are responsible to detect peripheral physical and noxious stimuli, and then transmit these inputs into the central nervous system. DRG neurons are composed of various subpopulations, which are suggested to respond to different stimuli, such as mechanical, thermal, and cold perception. For a long time, DRG neurons were classified based on anatomical criteria. Recently, single-cell (scRNA-seq) and single-nucleus RNA-sequencing (snRNA-seq) has advanced our understanding of the composition and functional heterogeneity of both human and rodent DRG neurons at single-cell resolution. In this review, we summarized the current literature regarding single-cell transcriptomic profiling of DRG to provide an integral understanding in the molecular transcriptomes, cell types, and functional annotations of DRG neurons in humans and rodents.

6.
Adv Mater ; 35(33): e2302325, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37166138

ABSTRACT

To date, the effect of noble metal (NM) electronic structures on CO2 reaction activity remains unknown, and explicit screening criteria are still lacking for designing highly efficient catalysts in CO2 -breathing batteries. Herein, by preferentially considering the decomposition of key intermediate Li2 CO3 , an intrinsic descriptor constituted of the d x 2 - y 2 ${{\rm{d}}}_{{x}^2 - {y}^2}$ orbital states and the electronegativity for predicting high-performance cathode material are discovered. As a demonstration, a series of graphene-supported noble metals (NM@G) as cathodes are fabricated via a fast laser scribing technique. Consistent with the preliminary prediction, Pd@G exhibits an ultralow overpotential (0.41 V), along with superior cycling performance up to 1400 h. Moreover, the overall thermodynamic reaction pathways on NM@G confirm the reliability of the established intrinsic descriptor. This basic finding of the relationship between the electronic properties of noble metal cathodes and the performance of Li-CO2 batteries provides a novel avenue for designing remarkably efficient cathode materials for metal-CO2 batteries.

7.
J Clin Biochem Nutr ; 72(3): 248-255, 2023 May.
Article in English | MEDLINE | ID: mdl-37251965

ABSTRACT

Diabetes mellitus is recognized as a risk factor for sarcopenia. Luseogliflozin, a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, reduces inflammation and oxidative stress by improving hyperglycemia, subsequently improving hepatosteatosis or kidney dysfunction. However, the effects of SGLT2 inhibitor on the regulation of skeletal muscle mass or function in hyperglycemia are still unknown. In this study, we investigated the effects of luseogliflozin-mediated attenuation of hyperglycemia on the prevention of muscle atrophy. Twenty-four male Sprague-Dawley rats were randomly divided into four groups: control, control with SGLT2 inhibitor treatment, hyperglycemia, and hyperglycemia with SGLT2 inhibitor treatment. The hyperglycemic rodent model was established using a single injection of streptozotocin, a compound with preferential toxicity toward pancreatic beta cells. Muscle atrophy in streptozotocin-induced hyperglycemic model rats was inhibited by the suppression of hyperglycemia using luseogliflozin, which consequently suppressed hyperglycemia-mediated increase in the levels of advanced glycation end products (AGEs) and activated the protein degradation pathway in muscle cells. Treatment with luseogliflozin can restore the hyperglycemia-induced loss in the muscle mass to some degree partly through the inhibition of AGEs-induced or homeostatic disruption of mitochondria-induced activation of muscle degradation.

8.
J Am Chem Soc ; 145(16): 9242-9253, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37058355

ABSTRACT

The low salt adsorption capacities (SACs) of benchmark carbon materials (usually below 20 mg g-1) are one of the most challenging issues limiting further commercial development of capacitive deionization (CDI), an energetically favorable method for sustainable water desalination. Sodium superionic conductor (NASICON)-structured NaTi2(PO4)3 (NTP) materials, especially used in combination with carbon to prepare NTP/C materials, provide emerging options for higher CDI performance but face the problems of poor cycling stability and dissolution of active materials. In this study, we report the development of the yolk-shell nanoarchitecture of NASICON-structured NTP/C materials (denoted as ys-NTP@C) using a metal-organic framework@covalent organic polymer (MOF@COP) as a sacrificial template and space-confined nanoreactor. As expected, ys-NTP@C exhibits good CDI performance, including exemplary SACs with a maximum SAC of 124.72 mg g-1 at 1.8 V in the constant-voltage mode and 202.76 mg g-1 at 100 mA g-1 in the constant-current mode, and good cycling stability without obvious performance degradation or energy consumption increase over 100 cycles. Furthermore, X-ray diffraction used to study CDI cycling clearly exhibits the good structural stability of ys-NTP@C during repeated ion intercalation/deintercalation processes, and the finite element simulation shows why yolk-shell nanostructures exhibit better performance than other materials. This study provides a new synthetic paradigm for preparing yolk-shell structured materials from MOF@COP and highlights the potential use of yolk-shell nanoarchitectures for electrochemical desalination.

9.
Angew Chem Int Ed Engl ; 62(9): e202217869, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36625674

ABSTRACT

Non-aqueous Li-air batteries, despite their high energy density and low cost, have not been deployed practically due to their instability in ambient air, where moisture causes parasitic reactions and shortens their life drastically. Here, we demonstrate the rational design of nanoporous covalent organic frameworks (COFs) as effective gas diffusion layers (GDLs) to address this constraint. The COF GDLs, with a tailor-made pore size of ≈1.4 nm and superhydrophobicity, can limit the intrusion of organic electrolytes and moisture into the gas diffusion channels, enabling high capacity, fast kinetics, and excellent stability of the Li-air batteries. Moreover, we achieve multi-atmosphere Li-air batteries, which can stably cycle under open ambient air (relative humidity up to 95 %) and even in various atmospheres with looping oxygen, humid air, and carbon dioxide. The design principles of our COF GDLs can be universally applied in energy storage and electrochemical systems using organic electrolytes.

10.
ACS Nano ; 17(3): 2901-2911, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36638084

ABSTRACT

To realize the practical application of lithium-sulfur (Li-S) batteries, there is a need to inhibit uncontrolled Li deposition by facilitating Li-ion migration, and suppress the irreversible consumption of cathodes by preventing polysulfide shuttling. However, a permselective artifical membrane or interlayer which features fast ion transport but low polysulfide crossover is elusive. Here, we report the design and synthesis of a fluorinated covalent organic framework (4F-COF)-based membrane with a high permselectivity and increased battery lifespan. Combining density functional theory calculation, molecular dynamic simulation, and in situ Raman analysis, we demonstrate that fluorinated COF eliminates polysulfides shutting and dendritic lithium formation. Consequently, Li symmetrical cells demonstrate Li plating/stripping behaviors for 2000 h under 1 mA cm-2. More importantly, Li-S batteries based on the 4F-COF/PP separator achieve cycling retention of 82.3% over 1000 cycles at 2 C, rate performance of 568.0 mA h g-1 at 10 C, and an areal capacity of 7.60 mA h cm-2 with a high sulfur loading (∼9 mg cm-2). This work demonstrates that functionalizing nanochannels in COFs can impart permselectivity for energy storage applications.

11.
Clin Interv Aging ; 17: 1851-1861, 2022.
Article in English | MEDLINE | ID: mdl-36545348

ABSTRACT

Purpose: Muscle mass, a key index for the diagnosis of sarcopenia, is currently assessed using the appendicular skeletal muscle mass index (ASMI) by bioelectrical impedance analysis (BIA). Muscle thickness (MT) assessed by ultrasonography (US) may be a better determinant and/or predictor of muscle condition than ASMI. Thus, we compared it to the ASMI determined by the BIA. Patients and Methods: Our study included 165 ambulatory older adults (84 males, 81 females, mean age: 76.82 years). The ASMI by the BIA method, MT by US, and the distribution of body mass index (BMI) and body fat percentage (BFP) were examined using defined values for men and women. These were used as the basis for examining the association of MT and ASMI with handgrip strength (HGS), leg muscle strength (LMS), gait speed (GS), and echo intensity (EI). We compared HGS, LMS, GS, and EI for high and low ASMI among lower BMI or BFP. The same was also done for MT assessed by US. Results: MT, as well as ASMI, was strongly associated with HGS and LMS. There was a correlation between MT and GS and EI but not between ASMI and GS and EI. There were significant differences in the prevalence between high ASMI and high MT or low ASMI and low MT in those with lower BMI or BFP. In non-overweight participants, HGS, LMS, GS, and EI were significantly higher in those with high MT than in those with low MT; however, there were no significant differences in them between those with high and low ASMI. Conclusion: In the non-overweight group, the MT assessment by US showed a stronger relationship to muscle strength and muscle quality than the ASMI assessment by BIA. The MT assessment using US is a useful alternative to BIA-assessed ASMI, especially in non-overweight participants.


Subject(s)
Hand Strength , Sarcopenia , Male , Humans , Female , Aged , Electric Impedance , Sarcopenia/diagnostic imaging , Sarcopenia/epidemiology , Muscle, Skeletal/physiology , Ultrasonography/methods
12.
Int J Mol Sci ; 23(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36430558

ABSTRACT

In this study, Irisensata Thunb grass (ITG) was used as a biomass carbon resource to prepare biochars for the first time. After microbial treatment, the obtained microbial-treated ITG (MITG) was activated by using a mixed base as an activator for preparation of biochar (MITGB). The specific surface area and total pore volume of MITGB were 3036.4 m2/g and 1.5252 cm3/g, which were higher than those of biochar prepared without microbial treatment (ITGB, 2930.0 m2/g and 1.5062 cm3/g). Besides, the physicochemical properties of MITGB and ITGB were also quite different including micro morphology, surface chemistry, functional groups, etc. In the experiment of removing organic pollutants with synthetic dye RhB and antibiotic TH as the models, MITGB showed excellent treatment ability. The maximum adsorption capacities of MITGB for RhB and TH were 1354.2 and 1462.6 mg/g, which were higher than most of the biochars. In addition, after five cycles of recycling, the adsorption capacities of the organic pollutant models can still be maintained at more than 80%, which showed high stability. This work verified the feasibility of microbial treatment to further improve the performance of biochar and provided a new idea and direction for exploring other biochars.


Subject(s)
Environmental Pollutants , Porosity , Charcoal/chemistry , Adsorption
13.
Adv Mater ; 34(39): e2204810, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35953449

ABSTRACT

Designing efficient electrocatalysts with high electroconductivity, strong chemisorption, and superior catalytical efficiency to realize rapid kinetics of the lithium polysulfides (LiPSs) conversion process is crucial for practical lithium-sulfur (Li-S) battery applications. Unfortunately, most current electrocatalysts cannot maintain long-term stability due to the possible failure of catalytic sites. Herein, a novel dynamic electrocatalytic strategy with the liquid metal (i.e., gallium-tin, EGaSn) to facilitate LiPSs redox reaction is reported. The combined theoretical simulations and microstructure experiment analysis reveal that Sn atoms dynamically distributed in the liquid Ga matrix act as the main active catalytic center. Meanwhile, Ga provides a uniquely dynamic environment to maintain the long-term integrity of the catalytic system. With the participation of EGaSn, a tailor-made 2 Ah Li-S pouch cell with a specific energy density of 307.7 Wh kg-1 is realized. This work opens up new opportunities for liquid-phase binary alloys as electrocatalysts for high-specific-energy Li-S batteries.

14.
Nanoscale ; 14(25): 8959-8966, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35635359

ABSTRACT

Hard carbon (HC) is most likely to be a commercialized anode material for sodium-ion batteries (SIBs). However, its low initial coulombic efficiency (ICE) impedes its further large-scale industrialization. Since the ICE is greatly related to the side reactions of the electrolyte on the HC surface, herein, we focus on tailoring the surface chemistry of HC via a facile low-temperature oxygen plasma (LTOP) treatment technique. The modified HC after a suitable treatment time possesses a highly ordered and low defect surface without a negligible change in layer spacing, thus facilitating Na+ deinsertion/insertion and reducing the HC/electrolyte side reactions. Moreover, LTOP treatment also brings oxygen functional groups (CO) to the HC surface to enrich Na+ storage active sites. Consequently, the modified HC reveals a higher ICE of 80.9% compared to 60.6% in the bare HC. Also, the modified HC delivers an ultrahigh specific capacity of 331.0 mA h g-1 at 0.1 A g-1 and exhibits superior rate performance with a high specific capacity of 211.0 mA h g-1 at 5 A g-1. This work provides a feasible strategy to tailor the surface chemistry of HC for high-efficiency Na-storage and provides a novel avenue to construct high-efficiency SIBs.

15.
Adv Mater ; 34(28): e2202869, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35522057

ABSTRACT

Phase-change materials (PCMs) are a unique and exciting class of materials with bright prospects in wide-ranging sustainable technologies such as thermal and electrochemical energy storage. While impressive, the effect of gaseous species on PCMs remains largely unexplored hitherto. Here, a gaseous co-solvent is reported that can facilitate melting and modulate physical properties such as viscosity and ion conduction of PCMs. Especially for the appealing application of PCMs as electrolytes, gaseous species also have a critical influence on both Li+ -electrolyte structure and resultant solid electrolyte interphase (SEI). Specifically, theoretical simulations and experimental analysis evidence that CO2 can promote melting while reconfiguring the solvation structure of a succinonitrile (SCL)-derived Li+ phase-change electrolyte (Li+ -PCE) model system. Due to the enhanced interaction between Li+ cations and bis(trifluoromethanesulfonyl)imide (TFSI- ) anions in the reconfigured solvation structure, more TFSI- -derived F-rich component and extra CO2 -derived Li2 CO3 form in the upgraded SEI layer, thereby endowing proof-of-concept Li-metal batteries with prolonged cyclability. These findings may stimulate widespread interest in gas leverage to innovate electrolyte chemistry.

16.
Exp Physiol ; 107(3): 222-232, 2022 03.
Article in English | MEDLINE | ID: mdl-35100657

ABSTRACT

NEW FINDINGS: What is the central question of this study? How are the dynamics of interleukin (IL)-15 and its receptors altered during the differentiation of myoblasts into myotubes, and how is IL-15 regulated? What is the main finding and its importance? The mRNA levels of IL-15 and interleukin-2 receptor subunits beta and gamma increase during skeletal muscle differentiation, whereas interleukin-15 receptor subunit alpha (IL-15RA) exhibits different kinetics. IL-15RA regulates the localization and expression of IL-15 at the protein level. ABSTRACT: Interleukin-15 (IL-15) is a myokine in the interleukin-2 (IL-2) family that is generated in the skeletal muscle during exercise. The functional effect of IL-15 involves muscle regeneration and metabolic regulation in skeletal muscle. Reports have indicated that interleukin-15 receptor subunit alpha (IL-15RA) acts by regulating IL-15 localization in immune cells. However, the dynamics of IL-15 and its receptors, which regulate the IL-15 pathway in skeletal muscle differentiation, have not yet been clarified. In this study, we investigated the mechanism of IL-15 regulation using a mouse skeletal muscle cell line, C2C12 cells. We found that the mRNA expression of IL-15, interleukin-2 receptor subunit beta (IL-2RB; CD122) and interleukin-2 receptor subunit gamma (IL-2RG; CD132) increased, but that IL-15RA exhibited different kinetics as differentiation progressed. We also found that IL-15, mainly present in the cytosol, pre-assembled with IL-15RA in the cytosol and fused to the plasma membrane. Moreover, IL-15RA increased IL-15 protein levels. Our findings suggest that genes involved in the IL-15 signalling complex are enhanced with the differentiation of myotubes and that IL-15RA regulates the protein kinetics of IL-15 signalling in skeletal muscle.


Subject(s)
Interleukin-15 Receptor alpha Subunit , Interleukin-15 , Interleukin-15/genetics , Interleukin-15 Receptor alpha Subunit/genetics , Interleukin-15 Receptor alpha Subunit/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/physiology , Myoblasts/metabolism
17.
Nat Commun ; 13(1): 5, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35013151

ABSTRACT

Extra-terrestrial explorations require electrochemical energy storage devices able to operate in gravity conditions different from those of planet earth. In this context, lithium (Li)-based batteries have not been fully investigated, especially cell formation and cycling performances under supergravity (i.e., gravity > 9.8 m s-2) conditions. To shed some light on these aspects, here, we investigate the behavior of non-aqueous Li metal cells under supergravity conditions. The physicochemical and electrochemical characterizations reveal that, distinctly from earth gravity conditions, smooth and dense Li metal depositions are obtained under supergravity during Li metal deposition on a Cu substrate. Moreover, supergravity allows the formation of an inorganic-rich solid electrolyte interphase (SEI) due to the strong interactions between Li+ and salt anions, which promote significant decomposition of the anions on the negative electrode surface. Tests in full Li metal pouch cell configuration (using LiNi0.8Co0.1Mn0.1O2-based positive electrode and LiFSI-based electrolyte solution) also demonstrate the favorable effect of the supergravity in terms of deposition morphology and SEI composition and ability to carry out 200 cycles at 2 C (400 mA g-1) rate with a capacity retention of 96%.

18.
Genes (Basel) ; 14(1)2022 12 23.
Article in English | MEDLINE | ID: mdl-36672785

ABSTRACT

Ferroptosis, an iron-dependent type of regulated cell death, is triggered by the accumulation of lethal lipid peroxides. Due to its potential in exploring disease progression and highly targeted therapies, it is still a widely discussed topic nowadays. In recent studies, it was found that ferroptosis was induced when testicular tissue was exposed to some high-risk factors, such as cadmium (Cd), busulfan, and smoking accompanied by a variety of reproductive damage characteristics, including changes in the specific morphology and ferroptosis-related features. In this literature-based review, we summarize the related mechanisms of ferroptosis and elaborate upon its relationship network in the male reproductive system in terms of three significant events: the abnormal iron metabolism, dysregulation of the Cyst(e)ine/GSH/GPX4 axis, and lipid peroxidation. It is meaningful to deeply explore the relationship between ferroptosis and the male reproductive system, which may provide suggestions regarding pristine therapeutic targets and novel drugs.


Subject(s)
Ferroptosis , Male , Humans , Ferroptosis/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase , Cell Death , Iron/metabolism , Lipid Peroxidation
19.
Biosci Rep ; 2021 May 10.
Article in English | MEDLINE | ID: mdl-33969379

ABSTRACT

Ischemic heart diseases have emerged as great threats to human health. Nowadays, restoration of cardiac blood flow supply is widely regarded as a feasible treatment choice for ischemic heart diseases; however, this intervention would contradictorily elicit reperfusion injury. Recently, myocardial ischemia/reperfusion injury (MI/RI) has aroused widespread public concerns. Remifentanil, an ultra-short acting opioid analgesic, is frequently used for surgical anesthesia. Previous studies have demonstrated the cardioprotective effects of remifentanil preconditioning in clinical practice and in vitro experimental models; however, its exact mechanisms remain largely unclear. This study aimed to further evaluate the protective effects of remifentanil preconditioning against MI/RI and elucidate the potential molecular mechanisms. Rat models of MI/RI were successfully established via ligation of left anterior descending coronary artery for 30 minutes and restoration of blood flow for 2 hours. Herein, animal experiments displayed that remifentanil preconditioning could alleviate myocardial damage in rat models of MI/RI. Consistently, cell model experiments implied that remifentanil preconditioning attenuated hypoxia/reoxygenation exposure-induced injury in rat cardiomyocytes. Moreover, our findings verified the involvement of Notch signaling pathway in the protective effects of remifentanil preconditioning. In addition, mechanistic studies revealed that remifentanil preconditioning could up-regulate Jagged-1 expression and that Jagged-1 mediated the cardioprotective effects of remifentanil preconditioning through activating Notch signaling pathway. Taken together, our data indicate that remifentanil preconditioning ameliorates myocardial damage in rat MI/RI models via Jagged-1-mediated Notch signaling pathway activation. Thus, this study may offer some novel clues for understanding the cardioprotective mechanisms of remifentanil preconditioning against MI/RI.

20.
Angew Chem Int Ed Engl ; 60(21): 11943-11948, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33689220

ABSTRACT

Water-in-salt electrolytes (WISE) have largely widened the electrochemical stability window (ESW) of aqueous electrolytes by formation of passivating solid electrolyte interphase (SEI) on anode and also absorption of the hydrophobic anion-rich double layer on cathode. However, the cathodic limiting potential of WISE is still too high for most high-capacity anodes in aqueous sodium-ion batteries (ASIBs), and the cost of WISE is also too high for practical application. Herein, a low-cost 19 m (m: mol kg-1 ) bi-salts WISE with a wide ESW of 2.8 V was designed, where the low-cost 17 m NaClO4 extends the anodic limiting potential to 4.4 V, while the fluorine-containing salt (2 m NaOTF) extends the cathodic limiting potential to 1.6 V by forming the NaF-Na2 O-NaOH SEI on anode. The 19 m NaClO4 -NaOTF-H2 O electrolyte enables a 1.75 V Na3 V2 (PO4 )3 ∥Na3 V2 (PO4 )3 full cell to deliver an appreciable energy density of 70 Wh kg-1 at 1 C with a capacity retention of 87.5 % after 100 cycles.

SELECTION OF CITATIONS
SEARCH DETAIL
...