Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 443(Pt B): 130321, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36368062

ABSTRACT

Soil environment criteria (SEC) are commonly derived from the total concentration of pollutants in soils, resulting in overly stringent values. Herein, we examined the feasibility of deriving the SEC by using the bioaccessibility of pollutants. In this regard, soil samples from 33 locations at 12 mining/smelting sites in China were collected and examined in terms of soil properties, chemical fraction distributions, and bioaccessibilities of cadmium (Cd), lead (Pb), and arsenic (As). The gastric (GP) and intestinal phases (IP) of the potentially hazardous trace elements (PHEs) were measured by in vitro assays, showing that these values varied from 11 % to 72 %, 1-79 %, and 2-27 % for Cd, Pb and As, respectively. Pearson analysis showed that the GP and IP bioaccessibilities of these PHEs were mainly influenced by soil pH, CEC, and clay fraction and positively correlated with the sequential extraction form. The random forest regression (RF) model showed excellent performance in predicting the gastric phase (GP) bioaccessibilities of Cd, Pb, and As, with a mean R2 and RMSE of 0.86 and 0.31, respectively. Both the measured and predicted bioaccessibilities were feasible to be used to derive SEC. This work will contribute to the development of regional soil environmental standards based on bioaccessibility for Cd-, Pb-, and As-contaminated mining/smelting soils.


Subject(s)
Arsenic , Soil Pollutants , Cadmium/analysis , Soil/chemistry , Arsenic/analysis , Lead/analysis , Soil Pollutants/analysis , Environmental Monitoring/methods
2.
Water Res ; 208: 117875, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34837813

ABSTRACT

Photochemical properties of dissolved organic matter (DOM) vary widely in natural and engineered water systems due to the different dominant compositions. However, seasonal patterns of DOM photochemical properties in urban rivers remain unclear. In this study, two seasons (wet and dry) of water samples were collected from eleven sites throughout the Pearl River (China) to investigate the spatiotemporal variability of DOM optical and photochemical properties. The optical properties of DOM in the Pearl River were characterized by UV-vis and fluorescence spectroscopies, which showed the substantial decrease in absorption coefficient and fluorescence intensity and increase in absorbence ratio (E2/E3) and specific absorption coefficient (SUVA) from the wet to dry season. The photochemical properties in terms of the apparent quantum yields of 3DOM*, 1O2 and ·OH from DOM (Φ3DOM*, Φ1O2 and Φ·OH, DOM) under illumination also displayed a significant decrease from the wet to the dry season. Spearman's rank correlation analysis revealed the strongest relationships between Φ3DOM*, Φ1O2 and Φ·OH, DOM and the relative abundance of microbial humic-like component (C2%) derived from parallel factor analysis (PARAFAC). Partial least squares regression (PLSR) modelling exhibited an excellent prediction strength for steady-state concentrations of 1O2 ([1O2]ss) and ·OH ([·OH]ss) with adjusted R2 values of 0.85 and 0.91, respectively, by using DOC concentration ([DOC]), optical properties, nitrate and nitrite concentrations as the response variables. In addition, the model identified that the Fmax of humic-like component C4 (Fmax-C4) was the most effective predictor amongst the used response variables. This study provides an approach to describe and predict the seasonal patterns of DOM photochemical properties in urbanized rivers, offering a good understanding of the formation mechanism of reactive species from river DOM.


Subject(s)
Dissolved Organic Matter , Rivers , China , Seasons , Spectrometry, Fluorescence , Water
SELECTION OF CITATIONS
SEARCH DETAIL