Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1730: 465139, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38970876

ABSTRACT

Adsorbents with good dispersibility and high efficiency are crucial for magnetic solid-phase extraction (MSPE). In this study, flower-like magnetic nanomaterials (F-Ni@NiO@ZnO2-C) were successfully prepared by calcination of metal-organic framework (MOF) precursors that was stacked by two-dimensional (2D) nanosheet. The synthesized F-Ni@NiO@ZnO2-C has a flower-like layered structure with a large amount of pore space, promoting the rapid diffusion of targets. In addition, Zn2+ doped in MOF precursors was still retained that further produced strong metal chelation with targets. The unique structure of F-Ni@NiO@ZnO2-C was used as MSPE adsorbent, and combined with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for extraction of three microcystins (MCs) detection, including microcystin-LR (MC-LR), microcystin-RR (MC-RR), microcystin-YR (MC-YR). The resulting method has a detection limit of 0.2-1.0 pg mL-1, a linear dynamic range of 0.6-500.0 pg mL-1 and has good linearity (R ≥ 0.9996). Finally, the established method was applied to the highly selective enrichment of MCs in biological samples, successfully detecting trace amounts of MCs (8.4-15.0 pg mL-1) with satisfactory recovery rates (83.7-103.1 %). The results indicated that flower-like magnetic F-Ni@NiO@ZnO2-C was a promising adsorbent, providing great potential for the determination of trace amounts of MCs in biological samples.


Subject(s)
Limit of Detection , Microcystins , Solid Phase Extraction , Tandem Mass Spectrometry , Microcystins/isolation & purification , Microcystins/chemistry , Microcystins/analysis , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Metal-Organic Frameworks/chemistry , Nanostructures/chemistry , Adsorption , Carbon/chemistry , Aquatic Organisms/chemistry , Animals , Reproducibility of Results , Nickel/chemistry
2.
J Chromatogr A ; 1727: 465000, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38763086

ABSTRACT

Design and preparation of fiber coatings with excellent electrochemical performance and high polarity is significant for efficient extraction of polar targets in electro-enhanced solid-phase microextraction (EE-SPME). In this work, a combination strategy for structure regulation of covalent organic framework (COF) was proposed to fabricate a nitrogen-rich thiocarbamide linked COF coating (Thiocarbamide-TZ-DHTP) via molecular design and post-synthetic thiocarbamide conversion. The prepared COF coating possesses a large number of O, N, and S functional groups, which not only endow the coating with higher polarity but also significantly enhance its electrochemical performance. The COF coating was used for EE-SPME of polar bisphenols (BPs), demonstrating excellent enrichment efficiency and durability. Subsequently, coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS), a sensitive method was developed for determination of trace BPs. The established method possess wide linear ranges (2.0-800.0 ng L-1), good correlation coefficients (0.9985-0.9994) and low detection limits (0.1-2.0 ng L-1). Moreover, the established method had been successfully applied to detection of trace BPs in tea beverage with satisfactory recoveries (81.6 % to 118.6 %). This research provides a feasible pathway for preparing COF coating with excellent electrochemical performance and high polarity for EE-SPME.


Subject(s)
Solid Phase Microextraction , Tea/chemistry , Urea/chemistry , Sulfhydryl Compounds/chemistry , Nitrogen/chemistry , Electrons , Solid Phase Microextraction/instrumentation , Solid Phase Microextraction/methods , Phenols/chemistry , Metal-Organic Frameworks/chemistry , Spectroscopy, Fourier Transform Infrared
3.
J Mater Chem B ; 12(8): 2114-2122, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38294239

ABSTRACT

Flower-like particles have attracted much attention due to their efficient surface accessible sites and unique hierarchical porous structure. However, their synthesis is usually challenging and requires complex procedures. Herein, we present a simple method for rapid preparation of flower-like hierarchical porous TiO2 (FHP-TiO2) at room temperature for the first time. This method can accurately control the size of FHP-TiO2 from 150 nm to 400 nm by combining co-assembly and Stober reaction. The formation mechanism and influencing factors of FHP-TiO2 were systematically investigated, and its excellent metal oxide affinity was confirmed by theoretical calculations. Due to its hierarchical porous structure, large surface area and high specificity performance, FHP-TiO2 served as an appealing restricted-access adsorbent for specific and efficient enrichment of molecules with phosphate groups in a complex sample matrix, thereby realizing the quantitative analysis of these important biomolecules by coupling with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Moreover, compared with other morphologies (rough surface, and hollow dendritic and mesoporous structure) of TiO2 and flower-like SiO2, FHP-TiO2 showed the best affinity binding ability. This research not only presents a novel approach for tunable room-temperature synthesis of FHP-TiO2 with different sizes, but also expands the application of FHP-TiO2 as an appealing sample-enricher for food safety monitoring and early disease diagnosis.


Subject(s)
Silicon Dioxide , Tandem Mass Spectrometry , Porosity , Temperature , Titanium/chemistry
4.
Talanta ; 269: 125485, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38048683

ABSTRACT

Pipette tip solid-phase extraction (PT-SPE) as a miniaturized solid-phase extraction technique have a wide range of applications in the field of sample pretreatment. In this study, ionic covalent organic frameworks@cotton (iCOF@cotton) were facilely synthesized by mechanochemical grinding method only in half an hour, and used as the adsorbents of PT-SPE. The synthesized iCOF@cotton not only had high specific surface area, suitable pore structure and cationic charge groups of iCOF that can extract polar targets quickly, but also reduced the problem of high back pressure of PT-SPE by the addition of cotton, thus accelerating extraction time. Combined with high performance liquid chromatographic tandem mass spectrometry (HPLC-MS/MS), an efficient and sensitive method was established for detection of domoic acid (DA, a toxin produced by algae). Under the optimal conditions, the proposed analysis method displayed excellent analytical performance, including broad range of linearity (10-1000 pg mL-1), low limit of detection (LOD, 5 pg mL-1), high correlation coefficient (0.9993), satisfactory precision (RSDs ≤6.4 %). In addition, the developed method was applied to the detection of DA in marine samples, and detected trace DA (18.6 pg mL-1) with satisfactory recovery (85.7%-107.2 %). The above results indicated that the prepared iCOF@cotton have great potential as the adsorbents for PT-SPE.


Subject(s)
Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Seafood/analysis , Solid Phase Extraction/methods
5.
Anal Methods ; 15(47): 6590-6602, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38018453

ABSTRACT

Algal toxins are important metabolites of toxic harmful algal blooms (HABs), and their qualitative and qualitative detection can serve as early warning indicators for toxic HABs, complementing traditional HAB monitoring and improving the accuracy of early warning. Therefore, this work took the detection of domoic acid (DA) as an example and prepared zeolitic imidazolate framework-8 (ZIF-8) with high enrichment performance and high water stability and its core-shell composite material SiO2@ZIF-8 as an adsorbent filler. Density functional theory (DFT) calculations and interference experiments verified that Zn2+ on SiO2@ZIF-8 played a crucial role in enriching DA on SiO2@ZIF-8. By using it as a solid-phase extraction (SPE) filler, it showed excellent performance compared with other SPE columns (C18/HLB/SAX/ZIF-8). Therefore, the SiO2@ZIF-8 column was coupled to high-performance liquid chromatography-mass spectrometry (SPE-HPLC-MS/MS) to establish a highly sensitive detection method for algal toxins in seawater, which had a wide linear range (12.0-5000.0 ng L-1), good reproducibility (RSD) and low limit of detection (4.0 ng L-1), and realized the monitoring of trace DA in the Pingtan sea area of Fujian Province from 2021 to 2022. By comparing other HAB early warning indicators such as salinity and pH and combining them with the information released by the Fujian Provincial Ocean and Fisheries Bureau, the content of DA in seawater measured by the established SPE-HPLC-MS/MS method can provide reference information for HAB monitoring and early warning.


Subject(s)
Silicon Dioxide , Zeolites , Tandem Mass Spectrometry/methods , Adsorption , Zeolites/chemistry , Reproducibility of Results , Density Functional Theory , Seawater/chemistry , Marine Toxins/analysis , Solid Phase Extraction/methods
SELECTION OF CITATIONS
SEARCH DETAIL