Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 542
Filter
2.
Insights Imaging ; 15(1): 186, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090273

ABSTRACT

OBJECTIVE: To evaluate whether and how the radiological journals present their policies on the use of large language models (LLMs), and identify the journal characteristic variables that are associated with the presence. METHODS: In this meta-research study, we screened Journals from the Radiology, Nuclear Medicine and Medical Imaging Category, 2022 Journal Citation Reports, excluding journals in non-English languages and relevant documents unavailable. We assessed their LLM use policies: (1) whether the policy is present; (2) whether the policy for the authors, the reviewers, and the editors is present; and (3) whether the policy asks the author to report the usage of LLMs, the name of LLMs, the section that used LLMs, the role of LLMs, the verification of LLMs, and the potential influence of LLMs. The association between the presence of policies and journal characteristic variables was evaluated. RESULTS: The LLM use policies were presented in 43.9% (83/189) of journals, and those for the authors, the reviewers, and the editor were presented in 43.4% (82/189), 29.6% (56/189) and 25.9% (49/189) of journals, respectively. Many journals mentioned the aspects of the usage (43.4%, 82/189), the name (34.9%, 66/189), the verification (33.3%, 63/189), and the role (31.7%, 60/189) of LLMs, while the potential influence of LLMs (4.2%, 8/189), and the section that used LLMs (1.6%, 3/189) were seldomly touched. The publisher is related to the presence of LLM use policies (p < 0.001). CONCLUSION: The presence of LLM use policies is suboptimal in radiological journals. A reporting guideline is encouraged to facilitate reporting quality and transparency. CRITICAL RELEVANCE STATEMENT: It may facilitate the quality and transparency of the use of LLMs in scientific writing if a shared complete reporting guideline is developed by stakeholders and then endorsed by journals. KEY POINTS: The policies on LLM use in radiological journals are unexplored. Some of the radiological journals presented policies on LLM use. A shared complete reporting guideline for LLM use is desired.

3.
Nat Commun ; 15(1): 6964, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138195

ABSTRACT

Though RNAi and RNA-splicing machineries are involved in regulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, their precise roles in coronavirus disease 2019 (COVID-19) pathogenesis remain unclear. Herein, we show that decreased RNAi component (Dicer and XPO5) and splicing factor (SRSF3 and hnRNPA3) expression correlate with increased COVID-19 severity. SARS-CoV-2 N protein induces the autophagic degradation of Dicer, XPO5, SRSF3, and hnRNPA3, inhibiting miRNA biogenesis and RNA splicing and triggering DNA damage, proteotoxic stress, and pneumonia. Dicer, XPO5, SRSF3, and hnRNPA3 knockdown increases, while their overexpression decreases, N protein-induced pneumonia's severity. Older mice show lower expression of Dicer, XPO5, SRSF3, and hnRNPA3 in their lung tissues and exhibit more severe N protein-induced pneumonia than younger mice. PJ34, a poly(ADP-ribose) polymerase inhibitor, or anastrozole, an aromatase inhibitor, ameliorates N protein- or SARS-CoV-2-induced pneumonia by restoring Dicer, XPO5, SRSF3, and hnRNPA3 expression. These findings will aid in developing improved treatments for SARS-CoV-2-associated pneumonia.


Subject(s)
COVID-19 , Karyopherins , Ribonuclease III , SARS-CoV-2 , Serine-Arginine Splicing Factors , Animals , Serine-Arginine Splicing Factors/metabolism , Serine-Arginine Splicing Factors/genetics , Humans , Ribonuclease III/metabolism , Ribonuclease III/genetics , SARS-CoV-2/genetics , COVID-19/metabolism , COVID-19/virology , COVID-19/genetics , Mice , Karyopherins/metabolism , Karyopherins/genetics , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Down-Regulation , Lung/metabolism , Lung/pathology , Lung/virology , Male , Female , MicroRNAs/genetics , MicroRNAs/metabolism , RNA Splicing , Autophagy/genetics , DNA Damage , Heterogeneous-Nuclear Ribonucleoprotein Group A-B
4.
Eur Radiol ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048741

ABSTRACT

OBJECTIVES: To evaluate the robustness of radiomics features among photon-counting detector CT (PCD-CT) and dual-energy CT (DECT) systems. METHODS: A texture phantom consisting of twenty-eight materials was scanned with one PCD-CT and four DECT systems (dual-source, rapid kV-switching, dual-layer, and sequential scanning) at three dose levels twice. Thirty sets of virtual monochromatic images at 70 keV were reconstructed. Regions of interest were delineated for each material with a rigid registration. Ninety-three radiomics were extracted per PyRadiomics. The test-retest repeatability between repeated scans was assessed by Bland-Altman analysis. The intra-system reproducibility between dose levels, and inter-system reproducibility within the same dose level, were evaluated by intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC). Inter-system variability among five scanners was assessed by coefficient of variation (CV) and quartile coefficient of dispersion (QCD). RESULTS: The test-retest repeatability analysis presented that 97.1% of features were repeatable between scan-rescans. The mean ± standard deviation ICC and CCC were 0.945 ± 0.079 and 0.945 ± 0.079 for intra-system reproducibility, respectively, and 86.0% and 85.7% of features were with ICC > 0.90 and CCC > 0.90, respectively, between different dose levels. The mean ± standard deviation ICC and CCC were 0.157 ± 0.174 and 0.157 ± 0.174 for inter-system reproducibility, respectively, and none of the features were with ICC > 0.90 or CCC > 0.90 within the same dose level. The inter-system variability suggested that 6.5% and 12.8% of features were with CV < 10% and QCD < 10%, respectively, among five CT systems. CONCLUSION: The radiomics features were non-reproducible with significant variability in values among different CT techniques. CLINICAL RELEVANCE STATEMENT: Radiomics features are non-reproducible with significant variability in values among photon-counting detector CT and dual-energy CT systems, necessitating careful attention to improve the cross-system generalizability of radiomic features before implementation of radiomics analysis in clinical routine. KEY POINTS: CT radiomics stability should be guaranteed before the implementation in the clinical routine. Radiomics robustness was on a low level among photon-counting detectors and dual-energy CT techniques. Limited inter-system robustness of radiomic features may impact the generalizability of models.

5.
BMC Genomics ; 25(1): 719, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054472

ABSTRACT

BACKGROUND: Pigs serve as a crucial source of protein in the human diet and play a fundamental role in ensuring food security. However, infectious diseases caused by bacteria or viruses are a major threat to effective global pig farming, jeopardizing human health. Peripheral blood mononuclear cells (PBMCs) are a mixture of immune cells that play crucial roles in immunity and disease resistance in pigs. Previous studies on the gene expression regulation patterns of PBMCs have concentrated on a single immune stimulus or immune cell subpopulation, which has limited our comprehensive understanding of the mechanisms of the pig immune response. RESULTS: Here, we integrated and re-analyzed RNA-seq data published online for porcine PBMC stimulated by lipopolysaccharide (LPS), polyinosinic acid (PolyI:C), and various unknown microorganisms (EM). The results revealed that gene expression and its functional characterization are highly specific to the pathogen, identifying 603, 254, and 882 pathogen-specific genes and 38 shared genes, respectively. Notably, LPS and PolyI:C stimulation directly triggered inflammatory and immune-response pathways, while exposure to mixed microbes (EM) enhanced metabolic processes. These pathogen-specific genes were enriched in immune trait-associated quantitative trait loci (QTL) and eGenes in porcine immune tissues and were implicated in specific cell types. Furthermore, we discussed the roles of eQTLs rs3473322705 and rs1109431654 in regulating pathogen- and cell-specific genes CD300A and CD93, using cellular experiments. Additionally, by integrating genome-wide association studies datasets from 33 complex traits and diseases in humans, we found that pathogen-specific genes were significantly enriched for immune traits and metabolic diseases. CONCLUSIONS: We systematically analyzed the gene expression profiles of the three stimulations and demonstrated pathogen-specific and cell-specific gene regulation across different stimulations in porcine PBMCs. These findings enhance our understanding of shared and distinct regulatory mechanisms of genetic variants in pig immune traits.


Subject(s)
Leukocytes, Mononuclear , Lipopolysaccharides , Poly I-C , Quantitative Trait Loci , Animals , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Swine , Poly I-C/pharmacology , Lipopolysaccharides/pharmacology , Gene Expression Profiling , Transcriptome , Gene Expression Regulation
6.
Cardiovasc Diagn Ther ; 14(3): 367-376, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975006

ABSTRACT

Background: Single-branched stent grafts and the chimney technique are widely used in the treatment of type B aortic dissection (TBAD). The main objective of this study was to compare the outcomes of single-branched stent grafts and the chimney technique in the treatment of TBAD. Methods: From January 2019 to December 2021, the retrospective cohort study contained a cohort of 91 patients with TBAD undergoing thoracic endovascular aortic repair (TEVAR) using single-branched stent grafts and the chimney technique. Group A included 55 patients treated with single-branched covered stents, and Group B included 36 patients treated with the chimney technique. We compared the effects of the procedures on peri-/post-operative outcomes between the two groups. The primary endpoint is clinical death, and the secondary endpoints include the patency of branch stents, the incidence of cerebral infarction, false lumen thrombosis, and the proportion of paraplegia. Results: For the baseline data, the two groups of patients show no differences in terms of age, gender, and associated symptoms. All procedures were successfully performed in both groups. The median follow-up period was 17.6 months (range, 10-34 months). During TEVAR, 5 (9.1%) type I endoleaks occurred in group A, and 11 (30.6%) occurred in group B (P<0.05). During follow-up, there were 2 cases (3.6%) of paraplegia and 1 case (1.8%) of cerebral infarction in Group A, while Group B had 1 case (2.8%) of paraplegia. Three patients in group B reported retrograde type A aortic dissection (RTAD), and 1 of them died (2.8%); however, there were no RTAD cases in group A. Complete thrombosis of the false lumen in the thoracic aorta was observed in 45.5% (25/55) of patients in group A and in 41.7% (15/36) in group B (P=0.72). No significant difference in the thrombosis-volume ratio in the whole false lumen was found during follow-up between group A (81.0%±2.9%) and group B (81.8%±2.6%; P=0.23). Conclusions: Branched stent grafts can be used in cases with insufficient proximal landing zones and reduce the occurrence of type 1 endoleak compared to the chimney technique. This may help to prevent RTAD. Further research, including more cases and longer follow-up periods, is needed to substantiate these results.

7.
Respir Res ; 25(1): 288, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080603

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) is a significant risk factor for pulmonary hypertension (PH), a complication that adversely affects patient prognosis. However, the mechanisms underlying this association remain poorly understood. A major obstacle to progress in this field is the lack of a reliable animal model replicating CKD-PH. METHODS: This study aimed to establish a stable rat model of CKD-PH. We employed a combined approach, inducing CKD through a 5/6 nephrectomy and concurrently exposing the rats to a high-salt diet. The model's hemodynamics were evaluated dynamically, alongside a comprehensive assessment of pathological changes in multiple organs. Lung tissues and serum samples were collected from the CKD-PH rats to analyze the expression of angiotensin-converting enzyme 2 (ACE2), evaluate the activity of key vascular components within the renin-angiotensin-aldosterone system (RAAS), and characterize alterations in the serum metabolic profile. RESULTS: At 14 weeks post-surgery, the CKD-PH rats displayed significant changes in hemodynamic parameters indicative of pulmonary arterial hypertension. Additionally, right ventricular hypertrophy was observed. Notably, no evidence of pulmonary vascular remodeling was found. Further analysis revealed RAAS dysregulation and downregulated ACE2 expression within the pulmonary vascular endothelium of CKD-PH rats. Moreover, the serum metabolic profile of these animals differed markedly from the sham surgery group. CONCLUSIONS: Our findings suggest that the development of pulmonary arterial hypertension in CKD-PH rats is likely a consequence of a combined effect: RAAS dysregulation, decreased ACE2 expression in pulmonary vascular endothelial cells, and metabolic disturbances.


Subject(s)
Angiotensin II , Hypertension, Pulmonary , Nephrectomy , Sodium Chloride, Dietary , Animals , Male , Rats , Angiotensin II/blood , Angiotensin-Converting Enzyme 2/metabolism , Disease Models, Animal , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/chemically induced , Kidney/metabolism , Kidney/pathology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renin-Angiotensin System/physiology , Sodium Chloride, Dietary/adverse effects
8.
Plant Physiol Biochem ; 214: 108875, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38972243

ABSTRACT

Potassium (K) and magnesium (Mg) play analogous roles in regulating plant photosynthesis and carbon and nitrogen (C-N) metabolism. Based on this consensus, we hypothesize that appropriate Mg supplementation may alleviate growth inhibition under low K stress. We monitored morphological, physiological, and molecular changes in G935 apple plants under different K (0.1 and 6 mmol L-1) and Mg supply (3 and 6 mmol L-1) conditions. Low K stress caused changes in root and leaf structure, inhibited photosynthesis, and limited the root growth of the apple rootstock. Further study on Mg supplementation showed that it could promote the uptake of K+ and NO3- by upregulating the expression of K+ transporter proteins such as Arabidopsis K+ transporter 1 (MdAKT1), high-affinity K+ transporter 1 (MdHKT1), and potassium transporter 5 (MdPT5) and nitrate transporters such as nitrate transporter 1.1/1.2/2.1/2.4 (MdNRT 1.1/1.2/2.1/2.4). Mg promoted the translocation of 15N from roots to leaves and enhanced photosynthetic N utilization efficiency (PNUE) by increasing the proportion of photosynthetic N and alleviating photosynthetic restrictions. Furthermore, Mg supplementation improved the synthesis of photosynthates by enhancing the activities of sugar-metabolizing enzymes (Rubisco, SS, SPS, S6PDH). Mg also facilitated the transport of sucrose and sorbitol from leaves to roots by upregulating the expression of sucrose transporter 1.1/1.2/4.1/4.2 (MdSUT 1.1/1.2/4.1/4.2) and sorbitol transporter 1.1/1.2 (MdSOT 1.1/1.2). Overall, Mg effectively alleviated growth inhibition in apple rootstock plants under low K stress by facilitating the uptake of N and K uptake, optimizing nitrogen partitioning, enhancing nitrogen use efficiency (NUE) and PNUE, and promoting the photosynthate synthesis and translocation.


Subject(s)
Carbon , Magnesium , Malus , Nitrogen , Photosynthesis , Potassium , Malus/metabolism , Malus/drug effects , Malus/growth & development , Nitrogen/metabolism , Photosynthesis/drug effects , Carbon/metabolism , Magnesium/metabolism , Potassium/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Proteins/metabolism , Gene Expression Regulation, Plant/drug effects
10.
Sci Adv ; 10(29): eado2957, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39018407

ABSTRACT

Enzymatic cleavage of C─F bonds in per- and polyfluoroalkyl substances (PFAS) is largely unknown but avidly sought to promote systems biology for PFAS bioremediation. Here, we report the reductive defluorination of α, ß-unsaturated per- and polyfluorocarboxylic acids by Acetobacterium spp. The microbial defluorination products were structurally confirmed and showed regiospecificity and stereospecificity, consistent with their formation by enzymatic reactions. A comparison of defluorination activities among several Acetobacterium species indicated that a functional fluoride exporter was required for the detoxification of the released fluoride. Results from both in vivo inhibition tests and in silico enzyme modeling suggested the involvement of enzymes of the flavin-based electron-bifurcating caffeate reduction pathway [caffeoyl-CoA reductase (CarABCDE)] in the reductive defluorination. This is a report on specific microorganisms carrying out enzymatic reductive defluorination of PFAS, which could be linked to electron-bifurcating reductases that are environmentally widespread.


Subject(s)
Acetobacterium , Fluorides , Fluorides/metabolism , Fluorides/chemistry , Acetobacterium/metabolism , Carboxylic Acids/metabolism , Carboxylic Acids/chemistry , Electrons , Biodegradation, Environmental , Halogenation , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Fluorocarbons/metabolism , Fluorocarbons/chemistry
11.
Respir Res ; 25(1): 281, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014440

ABSTRACT

BACKGROUND: As a subtype of pulmonary hypertension (PH), pulmonary veno-occlusive disease (PVOD) is devastating and life-threatening disease without effective therapy. Hydrogen has been reported to exhibits antioxidant and anti-inflammatory effects in a rat model induced by monocrotaline of PH. In this study, we investigated the effects of inhaled hydrogen gas on the prevention and treatment of PVOD induced by mitomycin C (MMC) in rats. METHODS: PVOD was induced in female Sprague-Dawley rats through intraperitoneal injection of MMC at a concentration of 3 mg·kg- 1·wk- 1 for 2 weeks. Inhalation of hydrogen gas (H2) was administered through a designed rat cage concurrently or two weeks after MMC administration. The severity of PVOD was assessed by using hemodynamic measurements and histological analysis. The expression levels of general control nonderepressible 2 (GCN2), nuclear factor erythroid 2-related factor-2 (Nrf2), heme oxygenase-1 (HO-1) and endothelial-to-mesenchymal transition (EndoMT) related proteins in lung tissue were measured. Levels of lipid peroxidation pro-inflammatory cytokines in serum were determined. RESULTS: Inhaled H2 improved hemodynamics and right heart function, reversed right ventricular hypertrophy, and prevented pulmonary vessel reconstitution in both prevention and treatment approaches. It decreased malondialdehyde (MDA) levels in the serum and the expression of NADPH oxidase 1 (NOX-1) in lung tissue. It regulated Nrf2/HO-1 signaling pathway and anti-inflammatory factor GCN2 in lung tissue, accompanied by a decrease in macrophages and pro-inflammatory cytokines. Our data suggested that H2 inhalation effectively countered EndoMT induced by MMC, as evidenced by the detection of endothelial markers (e.g., VE-cadherin and CD31) and mesenchymal markers (e.g., vimentin and fibronectin). Further research revealed that H2 preserved p-Smad3 and induced p-Smad1/5/9. CONCLUSION: Inhalation of H2 effectively inhibits the pathogenesis of PVOD induced by MMC in rats. This inhibitory effect may be attributed to the antioxidant and anti-inflammatory properties of H2.


Subject(s)
Hydrogen , Mitomycin , Pulmonary Veno-Occlusive Disease , Rats, Sprague-Dawley , Animals , Hydrogen/pharmacology , Hydrogen/administration & dosage , Female , Administration, Inhalation , Rats , Mitomycin/administration & dosage , Pulmonary Veno-Occlusive Disease/chemically induced , Pulmonary Veno-Occlusive Disease/prevention & control , Disease Models, Animal , Lung/drug effects , Lung/metabolism , Lung/pathology
12.
Poult Sci ; 103(9): 104057, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39032309

ABSTRACT

This study aimed to compare the effects of various dietary selenium (Se) sources (0.5 mg/kg) on performance, meat quality, and antioxidant capacity in broilers as well as essential trace elements concentrations in their blood and tissues. A total of 360 one-day-old male yellow-feathered chickens (37.00 ± 0.17 g) were randomly allocated to 5 diet treatments: the basal diet (CON) and 4 diets supplemented with sodium selenite (SS), selenomethionine (SM), selenium-enriched yeast (SY), and nano-selenium (NS) for 56 d, respectively, with 6 replicates per treatment and 12 chickens per replicate. Dietary Se supplementation did not affect growth performance and carcass characteristics in broilers (P > 0.05). Supplemental SM enhanced the redness in the pectoral muscle compared to CON and NS (P < 0.05). Supplementation of SY and NS improved the concentrations of Se, copper, manganese, and zinc in the serum (P < 0.05). Supplemental SS also elevated the zinc content in the serum (P < 0.05). Broilers fed the SY diet showed increased Se content in the liver and pectoral muscle compared to those fed CON, SM, and NS diets (P < 0.05). Also, SY improved the pectoral muscle Se concentration compared to SS (P < 0.05). Besides, dietary Se supplementation increased the Se content in the thigh muscle (P < 0.05), with SY showing highest Se deposition. Dietary supplementation with SS, SM, and NS improved the activities of total superoxide dismutase and total antioxidant capacity (T-AOC) in the serum (P < 0.05). Supplemental SY also elevated the T-AOC in the serum (P < 0.05). Additionally, SS and SM enhanced the T-AOC in the liver (P < 0.05). In conclusion, supplemental SM affected meat color. Supplementing diets with various Se sources increased antioxidant capacity and Se content in the thigh muscle of broilers, with SY showing a more pronounced deposition efficiency. Besides, diets supplemented with different Se sources had variable effects on the concentrations of essential trace elements in the serum and tissues of broilers.

13.
Acta Radiol ; : 2841851241262765, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39033390

ABSTRACT

BACKGROUND: The best settings of deep learning image reconstruction (DLIR) algorithm for abdominal low-kiloelectron volt (keV) virtual monoenergetic imaging (VMI) have not been determined. PURPOSE: To determine the optimal settings of the DLIR algorithm for abdominal low-keV VMI. MATERIAL AND METHODS: The portal-venous phase computed tomography (CT) scans of 109 participants with 152 lesions were reconstructed into four image series: VMI at 50 keV using adaptive statistical iterative reconstruction (Asir-V) at 50% blending (AV-50); and VMI at 40 keV using AV-50 and DLIR at medium (DLIR-M) and high strength (DLIR-H). The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of nine anatomical sites were calculated. Noise power spectrum (NPS) using homogenous region of liver, and edge rise slope (ERS) at five edges were measured. Five radiologists rated image quality and diagnostic acceptability, and evaluated the lesion conspicuity. RESULTS: The SNR and CNR values, and noise and noise peak in NPS measurements, were significantly lower in DLIR images than AV-50 images in all anatomical sites (all P < 0.001). The ERS values were significantly higher in 40-keV images than 50-keV images at all edges (all P < 0.001). The differences of the peak and average spatial frequency among the four reconstruction algorithms were significant but relatively small. The 40-keV images were rated higher with DLIR-M than DLIR-H for diagnostic acceptance (P < 0.001) and lesion conspicuity (P = 0.010). CONCLUSION: DLIR provides lower noise, higher sharpness, and more natural texture to allow 40 keV to be a new standard for routine VMI reconstruction for the abdomen and DLIR-M gains higher diagnostic acceptance and lesion conspicuity rating than DLIR-H.

14.
J Affect Disord ; 361: 556-563, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38925314

ABSTRACT

OBJECTIVE: To investigate the effect of 20/4Hz transcutaneous auricular vagus nerve stimulation (taVNS) on anxiety symptoms in Parkinson's disease (PD) and the potential neural mechanism. METHODS: In the current randomized, double-blind, sham-controlled trial, 30 PD patients with anxiety (PD-A), 30 PD patients without anxiety (PD-nA), and 30 healthy controls (HCs) were enrolled. PD-A patients were randomly (1:1) allotted to real taVNS stimulation group (RS) or sham stimulation group (SS) to explore the efficacy of a two-week treatment of taVNS to promote anxiety recovery. Simultaneously, all participants were measured activation in the bilateral prefrontal cortex during verbal fluency task (VFT) using functional near-infrared spectroscopy. RESULTS: PD-A patients showed significantly decreased oxyhemoglobin in the left triangle part of the inferior frontal gyrus (IFG) during VFT, which was negatively related to the severity of anxiety symptoms. After two-week treatment of taVNS, the interaction of group and time had significant effect on HAMA scores (F = 18.476, p < 0.001, η2 = 0.398). In RS group, compared with baseline, HAMA scores decreased significantly in the post-treatment and follow-up condition (both p < 0.001). Meanwhile, in RS group, HAMA scores were lower than those in SS group in the post-treatment and follow-up condition (p = 0.006, <0.001, respectively). Furthermore, the 20/4Hz taVNS remarkably ameliorated anxiety symptoms in PD patients, directly correlated with the increased activation of the left triangle part of the IFG during VFT in RS group. CONCLUSION: Our results depicted that taVNS could ameliorate the anxiety symptoms of PD-A patients and regulated the function of the left triangle part of the IFG.


Subject(s)
Anxiety , Parkinson Disease , Prefrontal Cortex , Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Humans , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Parkinson Disease/psychology , Parkinson Disease/complications , Male , Female , Vagus Nerve Stimulation/methods , Middle Aged , Double-Blind Method , Anxiety/therapy , Anxiety/physiopathology , Transcutaneous Electric Nerve Stimulation/methods , Prefrontal Cortex/physiopathology , Aged , Spectroscopy, Near-Infrared , Treatment Outcome
15.
Clin Nephrol ; 102(2): 89-96, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38856027

ABSTRACT

INTRODUCTION: IgA nephropathy (IgAN) is a kidney disorder characterized by the deposition of circulating immune complexes of IgG bound to galactose-deficient IgA1 (Gd-IgA1) in the mesangial glomeruli. However, limited research has been conducted on the levels of IgA binding in relation to the various sialylation profiles of IgG in IgAN. MATERIALS AND METHODS: Sialylated IgG (SA-IgG) and desialylated IgG (DSA-IgG) were isolated from IgAN patients. The IgG-IgA immune complex (IgG-IgA-IC) was detected using two customized commercial ELISA kits. Additionally, IgG was enzymatically digested with neuraminidase to produce DSA-IgG. Subsequently, the binding capacities of both intact IgG and the neuraminidase-digested DSA-IgG with Gd-IgA1 were determined using ELISA kits. RESULTS: Our research revealed that SA-IgG levels were negatively correlated with Gd-IgA1 (R = -0.16, p = 0.03) in IgAN patients. The optical density (OD) levels of IgG-IgA complexes in SA-IgG samples were significantly lower (0.58 ± 0.09) compared to those in DSA-IgG samples (0.78 ± 0.12) when using the Gd-IgA1 assay kit. These results were confirmed using an IgG assay kit, which showed that the SA-IgG groups had significantly lower IgA indices (0.31 ± 0.12) compared to the DSA-IgG groups (0.57 ± 0.19). Furthermore, we investigated the binding capacity of IgG with different sialic acid levels to Gd-IgA1. The results revealed that neuraminidase digestion of IgG increased its propensity to bind to Gd-IgA1. Additionally, we examined the binding capacity of both intact IgG and DSA-IgG to Gd-IgA1 at different mix ratios (IgG 1.5 µg and Gd-IgA1 1.5 µg, IgG 1.5 µg and Gd-IgA1 3 µg, IgG 3 µg and Gd-IgA1 1.5 µg). Interestingly, DSA-IgG demonstrated significantly higher binding capacity to Gd-IgA1 compared to intact IgG at all mix ratios tested. CONCLUSION: The preliminary findings from our present study indicate that the binding level of IgA in purified sialylated IgG is lower than that in desialylated IgG.


Subject(s)
Glomerulonephritis, IGA , Immunoglobulin A , Immunoglobulin G , Humans , Glomerulonephritis, IGA/immunology , Glomerulonephritis, IGA/metabolism , Immunoglobulin A/metabolism , Immunoglobulin A/immunology , Immunoglobulin G/metabolism , Immunoglobulin G/immunology , Immunoglobulin G/blood , Male , Female , Adult , Middle Aged , Antigen-Antibody Complex/metabolism , Antigen-Antibody Complex/immunology , Young Adult , Enzyme-Linked Immunosorbent Assay , N-Acetylneuraminic Acid/metabolism , Neuraminidase/metabolism , Neuraminidase/immunology
16.
Entropy (Basel) ; 26(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38920444

ABSTRACT

High-temperature creep refers to the slow and continuous plastic deformation of materials under the effects of high temperatures and mechanical stress over extended periods, which can lead to the degradation or even failure of the components' functionality. AlxCr0.2NbTiV (x = 0.2, 0.5, or 0.8) refractory high-entropy alloys were fabricated by arc melting. The effects of Al content on the microstructure of AlxCr0.2NbTiV alloys were studied using X-ray diffraction, scanning electron microscopy, and electron backscatter diffraction. The microhardness, compression properties, and nanoindentation creep properties of AlxCr0.2NbTiV alloys were also tested. The results show that the AlxCr0.2NbTiV series exhibits a BCC single-phase structure. As the Al content increases, the lattice constant of the alloys gradually decreases, and the intensity of the (110) crystal plane diffraction peak increases. Adding aluminum enhances the effect of solution strengthening; however, due to grain coarsening, the microhardness and room temperature compressive strength of the alloy are only slightly improved. Additionally, because the effect of solution strengthening is diminished at high temperatures, the compressive strength of the alloy at 1000 °C is significantly reduced. The creep mechanism of the alloys is predominantly governed by dislocation creep. Moreover, increasing the Al content helps to reduce the sensitivity of the alloy to the loading rate during the creep process. At a loading rate of 2.5 mN/s, the Al0.8Cr0.2NbTiV alloy exhibits the lowest creep strain rate sensitivity index (m), which is 0.0758.

17.
BMC Med Imaging ; 24(1): 159, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926711

ABSTRACT

BACKGROUND: To assess the improvement of image quality and diagnostic acceptance of thinner slice iodine maps enabled by deep learning image reconstruction (DLIR) in abdominal dual-energy CT (DECT). METHODS: This study prospectively included 104 participants with 136 lesions. Four series of iodine maps were generated based on portal-venous scans of contrast-enhanced abdominal DECT: 5-mm and 1.25-mm using adaptive statistical iterative reconstruction-V (Asir-V) with 50% blending (AV-50), and 1.25-mm using DLIR with medium (DLIR-M), and high strength (DLIR-H). The iodine concentrations (IC) and their standard deviations of nine anatomical sites were measured, and the corresponding coefficient of variations (CV) were calculated. Noise-power-spectrum (NPS) and edge-rise-slope (ERS) were measured. Five radiologists rated image quality in terms of image noise, contrast, sharpness, texture, and small structure visibility, and evaluated overall diagnostic acceptability of images and lesion conspicuity. RESULTS: The four reconstructions maintained the IC values unchanged in nine anatomical sites (all p > 0.999). Compared to 1.25-mm AV-50, 1.25-mm DLIR-M and DLIR-H significantly reduced CV values (all p < 0.001) and presented lower noise and noise peak (both p < 0.001). Compared to 5-mm AV-50, 1.25-mm images had higher ERS (all p < 0.001). The difference of the peak and average spatial frequency among the four reconstructions was relatively small but statistically significant (both p < 0.001). The 1.25-mm DLIR-M images were rated higher than the 5-mm and 1.25-mm AV-50 images for diagnostic acceptability and lesion conspicuity (all P < 0.001). CONCLUSIONS: DLIR may facilitate the thinner slice thickness iodine maps in abdominal DECT for improvement of image quality, diagnostic acceptability, and lesion conspicuity.


Subject(s)
Contrast Media , Deep Learning , Radiographic Image Interpretation, Computer-Assisted , Radiography, Abdominal , Radiography, Dual-Energy Scanned Projection , Tomography, X-Ray Computed , Humans , Prospective Studies , Female , Male , Middle Aged , Aged , Tomography, X-Ray Computed/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Radiography, Abdominal/methods , Radiography, Dual-Energy Scanned Projection/methods , Adult , Iodine , Aged, 80 and over
18.
BMC Plant Biol ; 24(1): 524, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853253

ABSTRACT

BACKGROUND: Amylose, a prebiotic found in yams is known to be beneficial for the gut microflora and is particularly advantageous for diabetic patients' diet. However, the genetic machinery underlying amylose production remains elusive. A comprehensive characterization of the genetic basis of amylose content in yam tubers is a prerequisite for accelerating the genetic engineering of yams with respect to amylose content variation. RESULTS: To uncover the genetic variants underlying variation in amylose content, we evaluated amylose content in freshly harvested tubers from 150 accessions of Dioscorea zingibensis. With 30,000 high-quality single nucleotide polymorphisms (SNP), we performed a genome-wide association analysis (GWAS). The population structure analysis classified the D. zingiberensis accessions into three groups. A total of 115 significant loci were detected on four chromosomes. Of these, 112 significant SNPs (log10(p) = 5, q-value < 0.004) were clustered in a narrow window on the chromosome 6 (chr6). The peak SNP at the position 75,609,202 on chr6 could explain 63.15% of amylose variation in the population and fell into the first exon of the ADP-glucose pyrophosphorylase (AGPase) small subunit gene, causing a non-synonymous modification of the resulting protein sequence. Allele segregation analysis showed that accessions with the rare G allele had a higher amylose content than those harboring the common A allele. However, AGPase, a key enzyme precursor of amylose biosynthesis, was not expressed differentially between accessions with A and G alleles. Overexpression of the two variants of AGPase in Arabidopsis thaliana resulted in a significantly higher amylose content in lines transformed with the AGPase-G allele. CONCLUSIONS: Overall, this study showed that a major genetic variant in AGPase probably enhances the enzyme activity leading to high amylose content in D. zingiberensis tuber. The results provide valuable insights for the development of amylose-enriched genotypes.


Subject(s)
Amylose , Dioscorea , Genome-Wide Association Study , Plant Tubers , Polymorphism, Single Nucleotide , Amylose/metabolism , Dioscorea/genetics , Dioscorea/metabolism , Plant Tubers/genetics , Plant Tubers/metabolism , Plants, Genetically Modified/genetics , Genes, Plant
19.
bioRxiv ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38746212

ABSTRACT

The Mediator complex, composed of about 30 conserved subunits, plays a pivotal role in facilitating RNA polymerase II-dependent transcription in eukaryotes. Within this complex, the CDK8 kinase module (CKM), comprising Med12, Med13, CDK8, and CycC (Cyclin C), serves as a dissociable subcomplex that modulates the activity of the small Mediator complex. Genetic studies in Drosophila have revealed distinct phenotypes of CDK8-CycC and Med12-Med13 mutations, yet the underlying mechanism has remained unknown. Here, using Drosophila as a model organism, we show that depleting CDK8-CycC enhances E2F1 target gene expression and promotes cell-cycle progression. Conversely, depletion of Med12-Med13 affects the expression of ribosomal protein genes and fibrillarin, indicating a more severe reduction in ribosome biogenesis and cellular growth compared to the loss of CDK8-CycC. Moreover, we found that the stability of CDK8 and CycC relies on Med12 and Med13, with a mutually interdependent relationship between Med12 and Med13. Furthermore, CycC stability depends on the other three CKM subunits. These findings reveal distinct roles for CKM subunits in vivo , with Med12-Med13 disruption exerting a more pronounced impact on ribosome biogenesis and cellular growth compared to the loss of CDK8-CycC. Significance: The CDK8 kinase module (CKM), comprising CDK8, CycC, Med12, and Med13, is essential in the Mediator complex for RNA polymerase II-dependent transcription in eukaryotes. While expected to function jointly, CKM subunit mutations result in distinct phenotypes in Drosophila . This study investigates the mechanisms driving these differing effects. Our analysis reveals the role of Med12-Med13 pair in regulating ribosomal biogenesis and cellular growth, contrasting with the involvement of CDK8-CycC in E2F1-dependent cell-cycle progression. Additionally, an asymmetric interdependence in the stability of CDK8-CycC and Med12-Med13 was observed. CKM mutations or overexpression are associated with cancers and cardiovascular diseases. Our findings underscore the distinct impacts of CKM mutations on cellular growth and proliferation, advancing our understanding of their diverse consequences in vivo .

20.
Immunity ; 57(7): 1665-1680.e7, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38772365

ABSTRACT

Inflammatory epithelial diseases are spurred by the concomitant dysregulation of immune and epithelial cells. How these two dysregulated cellular compartments simultaneously sustain their heightened metabolic demands is unclear. Single-cell and spatial transcriptomics (ST), along with immunofluorescence, revealed that hypoxia-inducible factor 1α (HIF1α), downstream of IL-17 signaling, drove psoriatic epithelial remodeling. Blocking HIF1α in human psoriatic lesions ex vivo impaired glycolysis and phenocopied anti-IL-17 therapy. In a murine model of skin inflammation, epidermal-specific loss of HIF1α or its target gene, glucose transporter 1, ameliorated epidermal, immune, vascular, and neuronal pathology. Mechanistically, glycolysis autonomously fueled epithelial pathology and enhanced lactate production, which augmented the γδ T17 cell response. RORγt-driven genetic deletion or pharmacological inhibition of either lactate-producing enzymes or lactate transporters attenuated epithelial pathology and IL-17A expression in vivo. Our findings identify a metabolic hierarchy between epithelial and immune compartments and the consequent coordination of metabolic processes that sustain inflammatory disease.


Subject(s)
Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit , Interleukin-17 , Animals , Humans , Interleukin-17/metabolism , Interleukin-17/immunology , Mice , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Skin/immunology , Skin/pathology , Skin/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/genetics , Psoriasis/immunology , Psoriasis/metabolism , Epithelium/immunology , Epithelium/metabolism , Mice, Knockout , Signal Transduction/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Disease Models, Animal , Lactic Acid/metabolism , Chronic Disease , Inflammation/immunology , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL