Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Fish Shellfish Immunol ; 144: 109272, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38061442

ABSTRACT

Yellow catfish (Pelteobagrus fulvidraco) is an important economic species of freshwater fish, widely distributed in China. Recently, viral diseases of yellow catfish have been identified in Chian (Hubei province), arising more attention to the viral immunity in P. fulvidraco. Tumor necrosis factor (TNF) receptor-associated factor NF-κB activator (TANK)-binding kinase 1 (TBK1) plays an essential role in IFN production and innate antiviral immunity. In the present study, we characterized the P. fulvidraco TBK1 (PfTBK1) and reported its function in interferon response. The full-length open reading frame (ORF) is 2184 bp encoding a protein with 727 amino acids, which is composed of four conserved domains, including KD, ULD, CCD1, and CCD2, similar to TBK1 in other species. Pftbk1 was widely expressed in all detected tissues by qPCR and was not inducible by the spring viremia of carp virus (SVCV), a single-strand RNA virus. In addition, the cellular distribution indicated that PfTBK1 was only located in the cytoplasm. Moreover, PfTBK1 induced strong IFN promoter activities through the Jak-stat pathway, and PfTBK1 interacted with and significantly phosphorylated IFN regulatory factor 3/7 (IRF3/7) in P. fulvidraco, promoting the nuclear translocation of pfIRF3 and PfIRF7, and PfTBK1 upregulated IFN response by PfTBK1-PfIRF3/7 axis. Above all, PfTBK1 triggered IFN response and strongly inhibited the replication of SVCV in EPC cells through induction of IFN downstream IFN-stimulated genes (ISGs). Summarily, this work reveals that PfTBK1 plays a positive regulatory role in IFN induction through the TBK1-IRF3/7 axis, laying a foundation for further exploring the molecular mechanism of the antiviral process in P. fulvidraco.


Subject(s)
Catfishes , Interferons , Animals , Interferons/metabolism , Signal Transduction , Interferon Regulatory Factor-3/genetics , Catfishes/genetics , Catfishes/metabolism , Janus Kinases , STAT Transcription Factors , Immunity, Innate/genetics
2.
Cancer Cell Int ; 23(1): 323, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38102641

ABSTRACT

BACKGROUND: Breast cancer is the leading cause of cancer death for women worldwide. Most of the breast cancer death are due to disease recurrence and metastasis. Increasingly accumulating evidence indicates that mitochondria play key roles in cancer progression and metastasis. Our recent study revealed that transmembrane protein PRRG4 promotes the metastasis of breast cancer. However, it is not clear whether PRRG4 can affect the migration and invasion of breast cancer cells through regulating mitochondria function. METHODS: RNA-seq analyses were performed on breast cancer cells expressing control and PRRG4 shRNAs. Quantitative PCR analysis and measurements of mitochondrial ATP content and oxygen consumption were carried out to explore the roles of PRRG4 in regulating mitochondrial function. Luciferase reporter plasmids containing different lengths of promoter fragments were constructed. Luciferase activities in breast cancer cells transiently transfected with these reporter plasmids were analyzed to examine the effects of PRRG4 overexpression on promoter activity. Transwell assays were performed to determine the effects of PRRG4-regulated pathway on migratory behaviors of breast cancer cells. RESULTS: Analysis of the RNA-seq data revealed that PRRG4 knockdown decreased the transcript levels of all the mitochondrial protein-encoding genes. Subsequently, studies with PRRG4 knockdown and overexpression showed that PRRG4 expression increased mitochondrial DNA (mtDNA) content. Mechanistically, PRRG4 via Src activated STAT3 in breast cancer cells. Activated STAT3 in turn promoted the transcription of mtDNA polymerase POLG through a STAT3 DNA binding site present in the POLG promoter region, and increased mtDNA content as well as mitochondrial ATP production and oxygen consumption. In addition, PRRG4-mediated activation of STAT3 also enhanced filopodia formation, migration, and invasion of breast cancer cells. Moreover, PRRG4 elevated migratory behaviors and mitochondrial function of breast cancer cells through POLG. CONCLUSION: Our results indicate that PRRG4 via the Src-STAT3-POLG axis enhances mitochondrial function and promotes migratory behaviors of breast cancer cells.

3.
Carbohydr Polym ; 319: 121172, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37567713

ABSTRACT

Accurate and controlled release of drug molecules is crucial for transdermal drug delivery. Electricity, as an adjustable parameter, offers the potential for precise and controllable drug delivery. However, challenges exist in selecting the appropriate drug carrier, electrical parameters, and release model to achieve controlled electronic drug release. To overcome these challenges, this study designed a functional hydrogel using polyvinyl alcohol, chitosan, and graphene oxide as components that can conduct electricity, and constructed a drug transdermal release model using fluorescein sodium salt with proper electrical parameters. The results demonstrated that the hydrogel system exhibited low cytotoxicity, good conductivity, and desirable drug delivery characteristics. The study also integrated the effects of drug release and tissue repair promotion under electrical stimulation. Cell growth was enhanced under low voltage direct current pulses, promoting cell migration and the release of VEGF and FGF. Furthermore, the permeability of fluorescein sodium salt in the hydrogel increased with direct current stimulation. These findings suggest that the carbohydrate polymers hydrogel could serve as a drug carrier for controlled release, and electrical stimulation offers new possibilities for functional drug delivery and transdermal therapy.


Subject(s)
Chitosan , Graphite , Hydrogels/pharmacology , Polyvinyl Alcohol , Delayed-Action Preparations , Fluorescein , Polyvinyls , Drug Delivery Systems , Electricity , Drug Carriers/toxicity , Oxides
4.
Int J Biol Macromol ; 250: 126177, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37558037

ABSTRACT

Tracheoesophageal fistula (TEF) is an abnormal connection between the trachea and esophagus that severely impairs quality of life. Current treatment options have limitations, including conservative treatment, surgical repair, and esophageal stent implantation. Here, we introduced laponite (LP) nano-clay to improve chitosan-based hydrogels' rheological properties and mechanical properties and developed an endoscopically injectable nanocomposite shear-thinning hydrogel to seal and repair fistulas as an innovative material for the treatment of TEF. Excellent injectability, rheological properties, mechanical strength, self-healing, biodegradability, biocompatibility, and tissue repair characterize the new hydrogel. The introduction of LP nano-clay improves the gel kinetics problem of hydrogels to realize the sol-gel transition immediately after injection, avoiding gel flow to non-target sites. The addition of LA nano-clay can significantly improve the rheological properties and mechanical strength of hydrogels, and hydrogel with LP content of 3 % shows better comprehensive performance. The nanocomposite hydrogel also shows good cytocompatibility and can promote wound repair by promoting the migration of HEEC cells and the secretion of VEGF and FGF. These findings suggest that this nanocomposite hydrogel is a promising biomaterial for TEF treatment.


Subject(s)
Chitosan , Tracheoesophageal Fistula , Humans , Nanogels , Quality of Life , Hydrogels
5.
6.
J Mater Chem B ; 11(23): 5207-5222, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37272389

ABSTRACT

Ulcerative arterial bleeding is characterized by sudden onset, rapid disease development, and high mortality, which is a great challenge for clinicians to treat, specially bleeding in areas where endoscopic operation is difficult, or in the case of diffuse bleeding, tumor bleeding, and recurrent bleeding. Herein, we proposed a novel treatment strategy using biomaterials to protect the wound and isolate the erosion of digestive tract contents to prevent arterial bleeding in advance. By introducing chitosan to construct multihydrogen-bonding and an electrostatic interaction system, we developed polyethyleneimine/polyacrylic acid/chitosan (PEI/PAA/CS) multifunctional hydrogel. The new hydrogel is characterized by ultrafast gelation, strong tissue adhesion, gastric acid resistance, burst resistance, biocompatibility, hemostasis, and tissue repair. The addition of CS significantly improved the tissue adhesion, biocompatibility, hemostasis, and tissue repair ability of the hydrogel. The PEI/PAA/CS hydrogel could adhere to the ulcer surface and form a protective layer on the wound to prevent arterial bleeding. Importantly, the PEI/PAA/CS hydrogel also has the ability to stop bleeding and promote wound repair, which has been demonstrated in a variety of hemorrhage models in rats and rabbits. All of these factors indicate that the PEI/PAA/CS hydrogel is a promising biomaterial for reducing the risk of ulcerative arterial bleeding.


Subject(s)
Chitosan , Rats , Rabbits , Animals , Chitosan/pharmacology , Hydrogels/pharmacology , Polyethyleneimine , Tissue Adhesions , Ulcer , Hemorrhage/chemically induced , Hemorrhage/drug therapy , Biocompatible Materials/pharmacology
7.
Small ; 19(40): e2302152, 2023 10.
Article in English | MEDLINE | ID: mdl-37282789

ABSTRACT

Cell migration is an essential bioactive ceramics property and critical for bone induction, clinical application, and mechanism research. Standardized cell migration detection methods have many limitations, including a lack of dynamic fluid circulation and the inability to simulate cell behavior in vivo. Microfluidic chip technology, which mimics the human microenvironment and provides controlled dynamic fluid cycling, has the potential to solve these questions and generate reliable models of cell migration in vitro. In this study, a microfluidic chip is reconstructed to integrate the bioactive ceramic into the microfluidic chip structure to constitute a ceramic microbridge microfluidic chip system. Migration differences in the chip system are measured. By combining conventional detection methods with new biotechnology to analyze the causes of cell migration differences, it is found that the concentration gradients of ions and proteins adsorbed on the microbridge materials are directly related to the occurrence of cell migration behavior, which is consistent with previous reports and demonstrates the effectiveness of the microfluidic chip model. This model provides in vivo environment simulation and controllability of input and output conditions superior to standardized cell migration detection methods. The microfluidic chip system provides a new approach to studying and evaluating bioactive ceramics.


Subject(s)
Lab-On-A-Chip Devices , Microfluidics , Humans , Computer Simulation , Cell Movement , Biotechnology
8.
PLoS Pathog ; 19(4): e1011320, 2023 04.
Article in English | MEDLINE | ID: mdl-37099596

ABSTRACT

Viral seasonality in the aquaculture industry is an important scientific issue for decades. While the molecular mechanisms underpinning the temperature-dependent pathogenesis of aquatic viral diseases remain largely unknown. Here we report that temperature-dependent activation of IL6-STAT3 signaling was exploited by grass carp reovirus (GCRV) to promote viral entry via increasing the expression of heat shock protein 90 (HSP90). Deploying GCRV infection as a model system, we discovered that GCRV induces the IL6-STAT3-HSP90 signaling activation to achieve temperature-dependent viral entry. Further biochemical and microscopic analyses revealed that the major capsid protein VP7 of GCRV interacted with HSP90 and relevant membrane-associated proteins to boost viral entry. Accordingly, exogenous expression of either IL6, HSP90, or VP7 in cells increased GCRV entry in a dose-dependent manner. Interestingly, other viruses (e.g., koi herpesvirus, Rhabdovirus carpio, Chinese giant salamander iridovirus) infecting ectothermic vertebrates have evolved a similar mechanism to promote their infection. This work delineates a molecular mechanism by which an aquatic viral pathogen exploits the host temperature-related immune response to promote its entry and replication, instructing us on new ways to develop targeted preventives and therapeutics for aquaculture viral diseases.


Subject(s)
Carps , Fish Diseases , Orthoreovirus , Reoviridae Infections , Reoviridae , Animals , Virus Internalization , Interleukin-6/metabolism , Reoviridae Infections/metabolism , Capsid Proteins/metabolism , Antibodies, Viral/metabolism
9.
Int J Biol Macromol ; 240: 124384, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37054851

ABSTRACT

Membrane-associated RING-CH-type finger (MARCH) proteins have been reported to regulate type I IFN production during host antiviral innate immunity. The present study reported the zebrafish MARCH family member, MARCH7, as a negative regulator in virus-triggered type I IFN induction via targeting TANK-binding kinase 1 (TBK1) for degradation. As an IFN-stimulated gene (ISG), we discovered that MARCH7 was significantly induced by spring viremia of carp virus (SVCV) or poly(I:C) stimulation. Ectopic expression of MARCH7 reduced the activity of IFN promoter and dampened the cellular antiviral responses triggered by SVCV and grass carp reovirus (GCRV), which concomitantly accelerated the viral replication. Accordingly, the knockdown of MARCH7 by siRNA transfection significantly promoted the transcription of ISG genes and inhibited SVCV replication. Mechanistically, we found that MARCH7 interacted with TBK1 and degraded it via K48-linked ubiquitination. Further characterization of truncated mutants of MARCH7 and TBK1 confirmed that the C-terminal RING of MARCH7 is essential in the MARCH7-mediated degradation of TBK1 and the negative regulation of IFN antiviral response. This study reveals a molecular mechanism by which zebrafish MARCH7 negatively regulates the IFN response by targeting TBK1 for protein degradation, providing new insights into the essential role of MARCH7 in antiviral innate immunity.


Subject(s)
Carps , Rhabdoviridae , Animals , Zebrafish , Rhabdoviridae/physiology , Immunity, Innate/genetics , Antiviral Agents
10.
Front Genet ; 13: 1015796, 2022.
Article in English | MEDLINE | ID: mdl-36437928

ABSTRACT

The G proteins have emerged as essential molecular switches in a wide variety of signal transduction pathways. Gαq, encoded by G protein subunit alpha q (gnaq), is a member of the G proteins and participates in regulating important biological activities in mammals; however, its function and regulatory mechanism in teleost remain largely unclear. In the current study, we cloned the cDNA of gnaq from zebrafish (Danio rerio) and investigated the expression characteristics of Gαq/gnaq in reproductive tissues. RT-PCR and WISH analyses showed that gnaq was widely expressed in zebrafish tissues, with high expression in the brain, olfactory brain, and hypothalamus. During the embryonic development stage, the gnaq was mainly distributed in the hypothalamus after 72 h post-fertilization. In addition, immunohistochemistry analysis revealed that the Gαq protein was highly expressed in the diffuse nucleus of the inferior hypothalamic lobe (DIL), ventral zone of the periventricular hypothalamus (Hv), and caudal zone of the periventricular hypothalamus (Hc) in adult zebrafish. Furthermore, in the gonads, the Gαq protein was found in oocytes of all stages, except spermatids. Lastly, the gnaq mRNA exhibited relatively low expression in gonads on Day 4 during the reproductive cycle, while increasing drastically in the hypothalamus and pituitary afterward. Altogether, our results suggest that gnaq/Gαq might be important in fish reproduction.

11.
Int J Biol Macromol ; 220: 109-116, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35970363

ABSTRACT

Wound management requires the preparation of controllable, safe and effective dressings to isolate the wound from the external environment. Currently, widely used commercial dressings focus on the isolation effect rather than an environment conducive to wound healing. To provide the dressing with beneficial properties such as wetting and antioxidant and antibacterial activity, this study used polyvinyl alcohol (PVA) hydrogel as the base material and introduced chitosan (CS) and vanillin (V) to design a PVA/CS/V three-phase hydrogel dressing. The dressings were prepared using a freeze-thaw cycle to achieve properties. We conducted a comparative analysis of PVA/V and PVA/CS two-phase hydrogels. The PVA/CS/V (PCV) hydrogel dressing maintaining an elastic modulus at >5 kPa at 15-40 °C. An in vitro antibacterial assay showed the potent antibacterial ability of hydrogels against gram-positive and -negative bacteria, and cells in some PCV groups showed higher activity. The antioxidant results showed that PCV hydrogel had a potent scavenging effect on DPPH, ABTS+, and PTIO free radical. The antibacterial and antioxidant properties of three-phase hydrogel showed the best performance in all experimental groups. These results suggest that PCV hydrogel has value in commercial applications due to its simple preparation process and excellent biological properties.


Subject(s)
Chitosan , Polyvinyl Alcohol , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Bandages , Benzaldehydes , Chitosan/chemistry , Hydrogels/chemistry , Polyvinyl Alcohol/chemistry
12.
BMJ Open ; 12(7): e060978, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35851009

ABSTRACT

PURPOSE: The Liyang cohort study on chronic diseases and risk factors monitoring in China (Liyang Study) is a prospective population-based study which aims to investigate and identify the determinants of the most prevalent chronic non-communicable diseases (NCDs) and to evaluate the impact of demographic characteristics, lifestyle, dietary habits, cognition, disability and NCDs on the health-related quality of life. PARTICIPANTS: Between March 2019 and June 2020, 10 056 individuals aged ≥18 years were administered a baseline survey through a multistage cluster random sampling in Liyang City, southern Jiangsu Province, China. FINDINGS TO DATE: The Liyang Study included detailed sociodemographic, anthropometric and health-related behaviour, common NCDs and blood sample information. Moreover, the study gathered a series of data on specific scales including the activities of daily living, instrumental activities of daily living, abbreviated mental test, Food Frequency Questionnaire and EuroQol 5-Dimensions 5-Levels Scale. Of the 10 056 participants, 52.92% (n=5322) were female and 92.26% (n=9278) came from rural areas. The mean age was 49.9±16.2 years. Men were more likely to have a higher level of education, annual income and a paid job than women (p<0.05). The top three overall most prevalent NCDs in the study were hypertension (18.06%, n=1815), digestive diseases (7.88%, n=791), and arthritis or rheumatism (5.28%, n=530). Women had a significantly higher prevalence of diabetes (5.46%, n=290 vs 4.42%, n=209, p=0.016) and arthritis (6.04%, n=321 vs 4.42%, n=209, p<0.001) than men, while the opposite was true for chronic lung diseases such as chronic obstructive pulmonary disease (1.37%, n=65 vs 0.92%, n=49, p=0.032) and chronic hepatic diseases (0.80%, n=38 vs 0.47%, n=25, p=0.035). FUTURE PLANS: The current study will give valuable insights into the association between sociodemographic factors, health-related behaviour, diet, cognition, disability and genetic factors and the most prevalent NCDs among local community residents. Starting from 2022, a follow-up survey will be conducted every 3 years to further explore the causal relationship between the above factors and NCDs.


Subject(s)
Arthritis , Noncommunicable Diseases , Activities of Daily Living , Adolescent , Adult , Aged , China/epidemiology , Chronic Disease , Cohort Studies , Female , Humans , Male , Middle Aged , Noncommunicable Diseases/epidemiology , Prevalence , Prospective Studies , Quality of Life , Risk Factors
13.
Chemosphere ; 262: 127853, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32777616

ABSTRACT

Green rusts (GRs) are redox active towards contaminants but they are not stable for long distance transport during the soil and groundwater remediation. In this study, green rust chloride (GR) was stabilized by selected regents, including silicate (Si), phosphate (P), fulvic acid (FA), carboxymethyl cellulose (CMC) and bone char (BC), then these stabilized GR, collectively named GR-X, would be further applied for Cr(VI) removal from aqueous solution. The stabilization experiment demonstrated that the release of Fe(II) from GR was effectively suppressed by above reagents, enabling at least 50% lower Fe(II) leaching from the stabilized GR-X than that from the pristine GR. The intact hexagonal GR plates and crystallinity were also confirmed by the SEM images and XRD patterns after storage for 7 days, indicating the stable structure of GR-X was remained. In the Cr(VI) removal tests, Cr(VI) was eliminated by GR-X in seconds with a Fe(II) utilization efficiency over 90%. The Cr species examination demonstrated that the GR-X was able to transfer Cr(VI) into stable Cr(III)-Fe(III) precipitates (Fe-Mn oxides fraction). After Cr(VI) removal tests, all reactors were exposed to the air for 1 week to monitor pH fluctuation and evaluated the risk of acidification. The results indicate that, except for GR-Si system, the other post-remediation systems are stable and the pH buffering ability of GR-X could avoid acidification and lower the Cr leaching risk.


Subject(s)
Chromium/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Carboxymethylcellulose Sodium , Chromium/analysis , Groundwater , Iron/chemistry , Kinetics , Oxidation-Reduction , Oxides , Soil/chemistry , Water/chemistry , Water Pollutants, Chemical/analysis
14.
Biol Reprod ; 103(4): 769-778, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32697314

ABSTRACT

The reproductive process is usually controlled by the hypothalamic-pituitary-gonad axis in vertebrates, while Kiss/gonadotropin-releasing hormone (GnRH) system in the hypothalamus is required for mammalian reproduction but dispensable for fish reproduction. The regulation of follicle stimulating hormone/luteinizing hormone (LH) expression in fish species is still unknown. Here, we identified miR-200s on chromosome 23 (chr23-miR-200s) as important regulators for female zebrafish reproduction. Knockout of chr23-miR-200s (chr23-miR-200s-KO) resulted in dysregulated expression of luteinizing hormone beta lhb (luteinizing hormone beta) and some hormone genes in the pituitary as revealed by comparative transcriptome profiling, leading to failure of oocyte maturation and ovulation as well as defects in reproductive duct development. Chr23-miR-200s mainly expressed in the pituitary and regulated lhb expression by targeting the transcription repressor wt1a. Injection of human chorionic gonadotropin (hCG) could rescue the defects of oocyte maturation in chr23-miR-200s-KO zebrafish, whereas GnRH or LHRH-A2 could not, suggesting that Chr23-miR-200s regulated lhb expression in a GnRH-independent pathway. It was remarkable that either injection of carp pituitary extraction, or co-injection of hCG with synthetic oxytocin and vasotocin could greatly rescue the defects of both oocyte maturation and ovulation in chr23-miR-200s-KO zebrafish. Altogether, our findings highlight an important function of chr23-miR-200s in controlling oocyte maturation by regulation LH expression, and oxytocin and vasotocin are potentially responsible for the ovulation in fish species.


Subject(s)
Chromosomes/genetics , Gene Expression Regulation/physiology , MicroRNAs/metabolism , Zebrafish Proteins/metabolism , Animals , Chorionic Gonadotropin/pharmacology , Female , Follicle Stimulating Hormone , Gene Deletion , Gene Expression Regulation/drug effects , In Vitro Oocyte Maturation Techniques , Luteinizing Hormone , Oocytes , Ovulation , Oxytocin/pharmacology , Vasotocin/pharmacology , Zebrafish , Zebrafish Proteins/genetics
15.
Article in English | MEDLINE | ID: mdl-32500064

ABSTRACT

The economic feasibility and waste treatment problem are challenges to the industrialization of lycopene production from Saccharomyces cerevisiae. In this study, fermentation wastewater, biomass residue, and residual D-galactose are recycled for lycopene production. Results show that when fresh water is totally replaced by wastewater, lycopene titer attains 1.21 ± 0.02 g/L, which is 14.2% higher than the fresh water group (P < 0.05). An 80% replacement ratio of yeast extract by biomass residue causes no significant difference to lycopene production while 100% replacement ratio significantly lowers lycopene titer compared with the yeast extract group. Then, a novel fermentation medium containing wastewater and biomass residue with supplementing 3 g/L yeast extract and D-galactose is used for lycopene production. Lycopene titer increases 22.4% than the traditional fermentation in shake flasks (P < 0.05). Continuous self-cycling strategy using wastewater and biomass residue was tested in shake flasks. The mean lycopene titer of the first five recycles shows no significant difference with the start batch. Scaling up to 70 L fermenter, the mean lycopene titer attains 5.88 ± 0.15 g/L in three recycles, which is 22.25% higher than the start batch (P < 0.05). Economic analysis shows that the lowest unite product cost is achieved when four recycles are accomplished, which is 29.6% lower than the traditional fermentation while the chemical oxygen demand decreases 64.0%. Our study shows that continuous self-cycling fermentation process for lycopene production is feasible for the first time. The comprehensive utilization of wastewater and biomass residue from lycopene production by S. cerevisiae and achievement of high lycopene titer will hopefully accelerate industrialization of microbial production of lycopene.

16.
Front Physiol ; 9: 676, 2018.
Article in English | MEDLINE | ID: mdl-29904357

ABSTRACT

Sexual size dimorphism is an interesting phenomenon occurred in many fish species. Wildtype zebrafish exhibits a significant sexual dimorphism in body size at the adult stage. Previous studies indicated that sexual size dimorphism was eliminated in stat5b-mutated zebrafish. Herein, the comparative transcriptome analysis was conducted to observe the genes and pathways involved in sexual size dimorphism. The number of male-biased and female-biased genes was much less in the liver of stat5b mutant zebrafish than in wildtype. Gene ontology (GO) enrichment and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis indicated that multiple pathways related to metabolism were affected upon loss of stat5b function. qRT-PCR results also validated that sexually dimorphic expression of a set of genes was lost when stat5b was mutated. Furthermore, the weighted correlation network analysis (WGCNA) detected many candidate genes related to the growth traits and stat5b function, such as greb1, lepr, and igf2b. Our data suggest that stat5b should regulate the sexually dimorphic gene expression in zebrafish liver and add in understanding of the molecular mechanisms underlying sexual size dimorphism in fish species.

17.
Endocrinology ; 159(5): 1982-1991, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29579206

ABSTRACT

Besides its well-documented roles in cell proliferation, apoptosis, and carcinogenesis, the function of the p53-microRNA axis has been recently revealed in the reproductive system. Recent studies indicated that miR-200 family members are dysregulated in nonobstructive azoospermia patients, whereas their functions remain poorly documented. The aim of this study was to investigate the function of the miR-200 family on zebrafish testis development and sperm activity. There was no substantial difference in testis morphology and histology between wild-type (WT) and knockout zebrafish with deletion of miR-200 cluster on chromosome 6 (chr6-miR-200-KO) or on chromosome 23 (chr23-miR-200-KO). Interestingly, compared with WT zebrafish, the chr6-miR-200-KO zebrafish had no difference on sperm motility, whereas chr23-miR-200-KO zebrafish showed significantly improved sperm motility. Consistently, ectopic expression of miR-429a, miR-200a, and miR-200b, which are located in the miR-200 cluster on chromosome 23, significantly reduced motility traits of sperm. Several sperm motility-related genes, such as amh, wt1a, and srd5a2b have been confirmed as direct targets of miR-200s on chr23. 17α-ethynylestradiol (EE2) exposure resulted in upregulated expression of p53 and miR-429a in testis and impairment of sperm motility. Strikingly, in p53 mutant zebrafish testis, the expression levels of miR-200s on chr23 were significantly reduced and accompanied by a stimulation of sperm motility. Moreover, the upregulation of miR-429a associated with EE2 treatment was abolished in testis with p53 mutation. And the impairment of sperm activity by EE2 treatment was also eliminated when p53 was mutated. Together, our results reveal that miR-200 cluster on chromosome 23 controls sperm motility in a p53-dependent manner.


Subject(s)
Chromosomes/genetics , MicroRNAs/genetics , Sperm Motility/genetics , Animals , Animals, Genetically Modified , Azoospermia/genetics , Estrogens/pharmacology , Ethinyl Estradiol/pharmacology , Gene Knockout Techniques , Male , Mutation , Sperm Motility/drug effects , Spermatozoa/drug effects , Testis/drug effects , Tumor Suppressor Protein p53/genetics , Up-Regulation , WT1 Proteins , Zebrafish , Zebrafish Proteins/genetics
18.
Sci Bull (Beijing) ; 63(21): 1420-1430, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-36658982

ABSTRACT

The sex-determining genes are found to be variable among different fish species. Yellow catfish (Pelteobagrus fulvidraco) is an important aquaculture fish species in China with XX/XY sex-determining type. Recently, YY super-male yellow catfish has been successfully produced by combining hormonal-induced sex reversal method with sex chromosome-linked markers. Here, we identified a novel PDZ domain-containing gene in yellow catfish designated as pfpdz1, in whose intron the sex-linked marker was located. The coding sequence of pfpdz1 in Y chromosome was identical to that in X chromosome except a missense SNP (A/T) that changes an amino acid (E8V) in the N-terminal region. Pfpdz1 displayed male-specific expression during sex differentiation. Overexpression of pfpdz1 using additive transgenesis induces XX ovary to differentiate into testis-like tissue, while the targeted inactivation of pfpdz1 in Y chromosome using CRISPR/Cas9-mediated mutagenesis triggers ovarian differentiation. Furthermore, we demonstrated that pfpdz1 initiates testicular differentiation through upregulating expression of amh, dmrt1 and sox9a1, as well as downregulating expression of cyp19a1, foxl2 and wnt4. Our data provide functional evidence that pfpdz1 is significant for male differentiation and maintenance in yellow catfish.

19.
Int J Mol Sci ; 18(12)2017 Dec 10.
Article in English | MEDLINE | ID: mdl-29232857

ABSTRACT

Increasing attention has been focused on the role of microRNAs in post-transcription regulation during spermatogenesis. Recently, the miR-34 family has been shown to be involved in the spermatogenesis, but the clear function of the miR-34 family in spermatogenesis is still obscure. Here we analyzed the function of miR-34a, a member of the miR-34 family, during spermatogenesis using miR-34a knockout zebrafish generated by the clustered regularly interspaced short palindromic repeats/associated protein 9 (CRISPR/Cas9) system. miR-34a knockout zebrafish showed no obvious defects on testis morphology and sperm quantity. However, we found a significant increase in progressive sperm motility that is one of the pivotal factors influencing in vitro fertilization rates, in the knockout zebrafish. Moreover, breeding experiments showed that, when miR-34a-knockout male zebrafish mated with the wide-type females, they had a higher fertilization rate than did the wide-type males. Glycogen synthase kinase-3a (gsk3a), a potential sperm motility regulatory gene was predicted to be targeted by miR-34a, which was further supported by luciferase reporter assays, since a significant decrease of luciferase activity was detected upon ectopic overexpression of miR-34a. Our findings suggest that miR-34a downregulates gsk3a by targeting its 3' untranslated region, and miR-34a/gsk3a interaction modulates sperm motility in zebrafish. This study will help in understanding in the role of the miR-34 family during spermatogenesis and will set paths for further studies.


Subject(s)
Glycogen Synthase Kinase 3/genetics , MicroRNAs/genetics , Sperm Motility/genetics , Spermatozoa/physiology , Zebrafish Proteins/genetics , Zebrafish/physiology , 3' Untranslated Regions , Animals , Female , Fertilization , Gene Knockout Techniques , Male , Sexual Behavior, Animal , Spermatogenesis , Zebrafish/genetics
20.
Front Physiol ; 8: 970, 2017.
Article in English | MEDLINE | ID: mdl-29249979

ABSTRACT

Sexual size dimorphism is the consequence of differential expression of sex-biased genes related to feeding and growth. Leptin is known to regulate energy balance by regulating food intake. In order to investigate the molecular mechanism of sexual size dimorphism in yellow catfish (Pelteobagrus fulvidraco), the expression of leptin (lep) and its functional receptor (lepr) were detected during larval development. Both lep and lepr have lower expression in males than in females during 1-4 weeks post hatching. 17a-Methyltestosterone (MT) treatment resulted in decreased expression of lep and lepr in both male and female larval fish. Interestingly, the mRNA levels of lep and lepr in juvenile male were significantly decreased compared with juvenile female during short-term fasting periods. Lep was predicted to be a potential target of miR-200a and miR-200b that had an opposite expression pattern to lep in male and female larvas. The results of luciferase reporter assay suggested that lep is a target of miR-200a/-200b. Subsequently, male hormone and fasting treatment have opposite effects on the expression of miR-200a/-200b and lep between males and females. In summary, our results suggest that sexual size dimorphism in fish species is probably caused by the sexually dimorphic expression of leptin, which could be negatively regulated by miR-200a/-200b.

SELECTION OF CITATIONS
SEARCH DETAIL
...