Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38490542

ABSTRACT

The development of new drug therapies for Alzheimer's disease (AD) is an important research topic today, but the pathogenesis of AD has not been thoroughly studied, and there are still several shortcomings in existing drug therapies. Therefore, this study aims to explore the molecular mechanism of lactoferrin in the treatments of AD and ulcerative colitis (UC) which are susceptible to AD, starting from the principle of "one drug, two diseases, and the same treatment." This study used pathological staining and specific indicators staining to preliminarily evaluate the interventions of lactoferrin on UC injury and AD progression. And 16s RNA full-length sequencing was used to investigate the effect of lactoferrin on the abundance of intestinal microbiota in AD mice. Then, intestinal tissue and brain tissue metabolomics analysis were used to screen specific metabolic pathways and preliminarily verify the metabolic mechanism of lactoferrin in alleviating 2 diseases by regulating certain specific metabolites. Moreover, lactoferrin significantly changed the types and abundance of gut microbiota in AD mice complicated by UC. To conclude, this study proved the clinical phenomenon of AD susceptibility to UC, and verified the therapeutic effect of lactoferrin on 2 diseases. More importantly, we revealed the possible molecular mechanism of LF, not only does it enrich the cognitive level of lactoferrin in alleviating AD by regulating the gut microbiota through the brain gut axis from the perspective of the theory of "food nutrition promoting human health," but it also provides a practical basis for the subsequent research and development of lactoferrin and drug validation from the perspective of "drug food homology."

2.
Neural Regen Res ; 18(2): 416-421, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35900439

ABSTRACT

Radiation therapy is considered the most effective non-surgical treatment for brain tumors. However, there are no available treatments for radiation-induced brain injury. Bisdemethoxycurcumin (BDMC) is a demethoxy derivative of curcumin that has anti-proliferative, anti-inflammatory, and anti-oxidant properties. To determine whether BDMC has the potential to treat radiation-induced brain injury, in this study, we established a rat model of radiation-induced brain injury by administering a single 30-Gy vertical dose of irradiation to the whole brain, followed by intraperitoneal injection of 500 µL of a 100 mg/kg BDMC solution every day for 5 successive weeks. Our results showed that BDMC increased the body weight of rats with radiation-induced brain injury, improved learning and memory, attenuated brain edema, inhibited astrocyte activation, and reduced oxidative stress. These findings suggest that BDMC protects against radiation-induced brain injury.

3.
Micromachines (Basel) ; 13(9)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36144157

ABSTRACT

Argus II retinal prosthesis is the US Food and Drug Administration (FDA) approved medical device intended to restore sight to a patient's blind secondary to retinal degeneration (i.e., retinitis pigmentosa). However, Argus II and most reported retinal prostheses require invasive surgery to implant electrodes in the eye. Recent studies have shown that focused ultrasound can be developed into a non-invasive retinal prosthesis technology. Ultrasound energy focused on retinal neurons can trigger the activities of retinal neurons with high spatial-temporal resolution. This paper introduces a novel design and simulation of a ring array transducer that could be used as non-invasive ultrasonic retinal stimulation. The array transducer is designed in the shape of a racing ring with a hemisphere surface that mimics a contact lens to acoustically couple with the eye via the tear film and directs the ultrasound to avoid the high acoustic absorption from the crystalline lens. We will describe the design methods and simulation of the two-dimensional pattern stimulation. Finally, compared with other existing retinal prostheses, we show that the ultrasound ring array is practical and safe and could be potentially used as a non-invasive retinal prosthesis.

4.
Transl Neurosci ; 11(1): 319-327, 2020.
Article in English | MEDLINE | ID: mdl-33335771

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a common neurodegenerative disorder without any satisfactory therapeutic approaches. AD is mainly characterized by the deposition of ß-amyloid protein (Aß) and extensive neuronal cell death. Curcumin, with anti-oxidative stress (OS) and cell apoptosis properties, plays essential roles in AD. However, whether bisdemethoxycurcumin (BDMC), a derivative of curcumin, can exert a neuroprotective effect in AD remains to be elucidated. METHODS: In this study, SK-N-SH cells were used to establish an in vitro model to investigate the effects of BDMC on the Aß1-42-induced neurotoxicity. SK-N-SH cells were pretreated with BDMC and with or without compound C and EX527 for 30 min after co-incubation with rotenone for 24 h. Subsequently, western blotting, cell viability assay and SOD and GSH activity measurement were performed. RESULTS: BDMC increased the cell survival, anti-OS ability, AMPK phosphorylation levels and SIRT1 in SK-N-SH cells treated with Aß1-42. However, after treatment with compound C, an AMPK inhibitor, and EX527, an SIRT1inhibitor, the neuroprotective roles of BDMC on SK-N-SH cells treated with Aß1-42 were inhibited. CONCLUSION: These results suggest that BDMC exerts a neuroprotective role on SK-N-SH cells in vitro via AMPK/SIRT1 signaling, laying the foundation for the application of BDMC in the treatment of neurodegenerative diseases related to AMPK/SIRT1 signaling.

5.
Folia Histochem Cytobiol ; 58(2): 127-134, 2020.
Article in English | MEDLINE | ID: mdl-32557525

ABSTRACT

INTRODUCTION: Oxidative stress and cell apoptosis have both been suggested to be closely associated with the pathogenesis of Parkinson's disease (PD). Previously, bisdemethoxycurcumin (BDMC) has been shown to exhibit several desirable characteristics as a candidate neuroprotective agent, including antioxidant and anti-inflammatory activities in the nervous system. However, whether BDMC can exert cell-protective roles in an in vitro model of PD remains unknown. MATERIAL AND METHODS: SH-SY5Y cells were pretreated with BDMC, with or without AG490 and SI-201, for 30 min, followed by a co-incubation with rotenone for 24 h. Subsequently, a cell viability assay and western blotting was performed, and SOD and GSH activities were analyzed. RESULTS: The results revealed that the pretreatment with BDMC enhanced the cell survival, antioxidative stress capacity and the phosphorylation levels of JAK/STAT3 in SH-SY5Y cells treated with rotenone. However, following the incubation with AG490 and SI-201, inhibitors of the JAK/STAT3 signaling pathway, BDMC was unable to exert cell-protective roles in SH-SY5Y cells treated with rotenone. CONCLUSIONS: In conclusion, the results suggested that BDMC may exert a cell-protective role in SH-SY5Y cells in vitro via JAK2/STAT3 signaling, thus suggesting the possible application of BDMC for the treatment of neurodegenerative diseases related to JAK2/STAT3 signaling.


Subject(s)
Antioxidants/pharmacology , Diarylheptanoids/pharmacology , Neuroprotective Agents/pharmacology , Parkinson Disease/prevention & control , Rotenone/toxicity , Signal Transduction/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Humans , Janus Kinase 2/metabolism , Oxidative Stress/drug effects , STAT3 Transcription Factor/metabolism
6.
J Biomed Mater Res A ; 108(12): 2435-2446, 2020 12.
Article in English | MEDLINE | ID: mdl-32419359

ABSTRACT

The vitreous substitute for proliferative vitreoretinopathy (PVR) surgery remains an unmet clinical need in ophthalmology. In our study, we developed an in situ formed hydrogel by crosslinking polyvinyl alcohol (PVA) and chitosan as a potential vitreous substitute. 5-fluorouracil (5-FU) Poly (lactic-co-glycolic acid) (PLGA) microspheres were developed and loaded onto the PVA/chitosan hydrogels to treat PVR. In vitro, PVA/chitosan hydrogels at four concentrations were subjected to morphological, physical, rheological analyses, and cytotoxicity was evaluated together with the characterization of 5-FU PLGA microspheres. In vivo, pharmacologically induce PVR rabbits were performed a vitrectomy. In the PVA group, 3% PVA/chitosan hydrogel was injected into the vitreous cavity. In the PVA/MS group, 3% PVA/chitosan hydrogel and 5-FU PLGA microspheres were injected. In the Control group, phosphate-buffered saline was injected. Therapeutic efficacy was evaluated with postoperative examinations and histological analyses. This study demonstrated that the 3% PVA/chitosan hydrogel showed properties similar to those of the human vitreous and could be a novel in situ crosslinked vitreous substitute for PVR. Loading 5-FU PLGA microspheres onto this hydrogel may represent an effective strategy to improve the prognosis of PVR.


Subject(s)
Drug Delivery Systems , Fluorouracil , Hydrogels , Microspheres , Vitreoretinopathy, Proliferative , Animals , Cell Line , Fluorouracil/chemistry , Fluorouracil/pharmacology , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Rabbits , Vitreoretinopathy, Proliferative/drug therapy , Vitreoretinopathy, Proliferative/metabolism , Vitreoretinopathy, Proliferative/pathology
7.
Brain Behav ; 10(7): e01655, 2020 07.
Article in English | MEDLINE | ID: mdl-32441492

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) is a progressive neurodegenerative disease. It can lead to progressive cognitive impairment, memory loss, and behavioral alterations. So far, the exact cellular and molecular mechanisms underlying this disorder remain unclear. And there are no effective treatments to prevent, halt, or reverse AD. In recent years, Chinese traditional medicine has become a new force in the treatment of AD, and the typical representatives of natural herbal ingredients are curcumin and its derivatives. Bisdemethoxycurcumin (BDMC), which is a classical derivative of curcumin, was found to have neuroprotective effects against a cell model of Alzheimer's disease (AD) in our previous studies. This study investigated the intrinsic mechanism of BDMC against AD in animal models. METHODS: In this study, BDMC was injected into the lateral ventricles of normal C57BL/6 mice, APP/PS mice, and APP/PS mice treated with EX527 (the inhibitor of SIRT1). Y maze and Morris water maze were used to test the learning and memory ability of mice. Nissl staining was used to observe the morphological changes of neurons. Immunofluorescence staining was used to detect Aß deposition in mice. The activities of GSH and SOD were determined to observe the levels of oxidative stress in mice. And Western blot analyses were used to detect content of SIRT1 in mice. RESULTS: In the APP/PS mice, after BDMC intervention, their cognitive function improved, oxidative stress adjusted, the number of neurons increased, Aß deposition decreased, and the level of SIRT1 expression increased. However, when SIRT1 is inhibited, BDMC on the improvement in the learning and memory ability and the improvement on oxidative stress in APP/PS1 mice were reversed. CONCLUSION: Our findings demonstrated that in the AD mice, BDMC has antagonistic effect on AD. And an intermediate step in the antagonism effect is caused by SIRT1 upregulation, which leading to decreased oxidative stress. Based on these, we concluded that BDMC injection into the lateral ventricle can act against AD by upregulating SIRT1 to antioxidative stress.


Subject(s)
Alzheimer Disease/drug therapy , Diarylheptanoids/pharmacology , Disease Models, Animal , Oxidative Stress/drug effects , Sirtuin 1/metabolism , Alzheimer Disease/metabolism , Animals , Female , Male , Maze Learning/drug effects , Memory/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic
8.
Pain Res Manag ; 2019: 7890461, 2019.
Article in English | MEDLINE | ID: mdl-31531150

ABSTRACT

Several research studies have revealed that migraine has a solid link with gastrointestinal diseases especially irritable bowel syndrome (IBS). This study was carried out to investigate therapeutic potential of diet based on IgG elimination combined with probiotics on migraine plus irritable bowel syndrome. A total of 60 patients diagnosed with migraine plus IBS were recruited for the study. IgG antibodies against 266 food varieties were detected by ELISA. Then, the subjects were randomized into three groups for treatment of IgG elimination diet or probiotics or diet combined with probiotics. Migraine symptom, gut function score, medication use, and serum serotonin level were measured at baseline, 7 weeks, and 14 weeks. Improvement of migraine and gut symptom was achieved at a certain time point. Reduced use of over-the-counter- (OTC-) analgesics was seen in all groups. However, use of triptans did not show significant difference. An increased serum serotonin level was seen in subjects treated with elimination diet and elimination diet combined with probiotics. IgG elimination diet combined with probiotics may be beneficial to migraine plus IBS. It may provide new insight by understanding the intricate relationship between migraine and gastrointestinal diseases.


Subject(s)
Food Hypersensitivity/prevention & control , Irritable Bowel Syndrome/diet therapy , Migraine Disorders/diet therapy , Probiotics/therapeutic use , Adult , Double-Blind Method , Female , Humans , Immunoglobulin G/immunology , Irritable Bowel Syndrome/complications , Male , Middle Aged , Migraine Disorders/complications
9.
J Mater Chem B ; 6(17): 2597-2607, 2018 May 07.
Article in English | MEDLINE | ID: mdl-32254478

ABSTRACT

A multifunctional core-shell nanocomposite based on noble metal plasmons coated with upconversion material has emerged as a promising cancer theranostics nanoplatform that integrates properties such as multimodal imaging, photothermal effects, good biocompatibility, and efficient therapy. However, a reasonable combination of plasmons and upconversion materials, as well as increased penetration depth, has always challenged the anti-cancer efficiency. Here, a unique kind of fluorescent thermal-magnetic resonance core-shell upconversion nanostructure has been designed and fabricated to simultaneously achieve photothermal therapy (PTT) and multimodal imaging. Gold nanorods (GNRs) are used as the plasmon cores and NaGdF4 with rare-earth Yb3+/Er3+ ions co-doping are used as the upconversion luminescence (UCL) shells, merging into upconversion nanorods (UCNRs) of GNRs@NaGdF4:Yb3+,Er3+. An NaGdF4 shell synthesized by a hydrothermal method can substitute for the cetyltrimethylammonium bromide (CTAB) on the surface of GNRs, which offers the benefits of reducing toxicity and increasing biocompatibility. More significantly, the red and green emission of Yb3+/Er3+ couples convert near-infrared (NIR) into visible light, appropriately overlapping with absorbance of GNRs, which improves the photothermal conversion efficiency. Meanwhile, we designed small and low-aspect-ratio GNR cores for the absorption of UCNRs in vivo. Verification with evidence from in vivo and in vitro assays shows that these core-shell UCNRs exhibit a talented potential application in multimodal bioimaging and PTT.

SELECTION OF CITATIONS
SEARCH DETAIL
...