Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 65
1.
Plant Biotechnol J ; 2024 Jun 23.
Article En | MEDLINE | ID: mdl-38923790

Soil salinity has negative impacts on food security and sustainable agriculture. Ion homeostasis, osmotic adjustment and reactive oxygen species scavenging are the main approaches utilized by rice to resist salt stress. Breeding rice cultivars with high salt tolerance (ST) and yield is a significant challenge due to the lack of elite alleles conferring ST. Here, we report that the elite allele LEA12OR, which encodes a late embryogenesis abundant (LEA) protein from the wild rice Oryza rufipogon Griff., improves osmotic adjustment and increases yield under salt stress. Mechanistically, LEA12OR, as the early regulator of the LEA12OR-OsSAPK10-OsbZIP86-OsNCED3 functional module, maintains the kinase stability of OsSAPK10 under salt stress, thereby conferring ST by promoting abscisic acid biosynthesis and accumulation in rice. The superior allele LEA12OR provides a new avenue for improving ST and yield via the application of LEA12OR in current rice through molecular breeding and genome editing.

2.
Front Neurorobot ; 18: 1422960, 2024.
Article En | MEDLINE | ID: mdl-38911603

In the tobacco industry, impurity detection is an important prerequisite for ensuring the quality of tobacco. However, in the actual production process, the complex background environment and the variability of impurity shapes can affect the accuracy of impurity detection by tobacco robots, which leads to a decrease in product quality and an increase in health risks. To address this problem, we propose a new online detection method of tobacco impurities for tobacco robot. Firstly, a BCFormer attention mechanism module is designed to effectively mitigate the interference of irrelevant information in the image and improve the network's ability to identify regions of interest. Secondly, a Dual Feature Aggregation (DFA) module is designed and added to Neck to improve the accuracy of tobacco impurities detection by augmenting the fused feature maps with deep semantic and surface location data. Finally, to address the problem that the traditional loss function cannot accurately reflect the distance between two bounding boxes, this paper proposes an optimized loss function to more accurately assess the quality of the bounding boxes. To evaluate the effectiveness of the algorithm, this paper creates a dataset specifically designed to detect tobacco impurities. Experimental results show that the algorithm performs well in identifying tobacco impurities. Our algorithm improved the mAP value by about 3.01% compared to the traditional YOLOX method. The real-time processing efficiency of the model is as high as 41 frames per second, which makes it ideal for automated inspection of tobacco production lines and effectively solves the problem of tobacco impurity detection.

3.
Ecotoxicol Environ Saf ; 279: 116517, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38805830

With increasing urbanization and rapid industrialization, more and more environmental problems have arisen. Phthalates (PAEs) are the foremost and most widespread plasticizers and are readily emitted from these manufactured products into the environment. PAEs act as endocrine-disrupting chemicals (EDCs) and can have serious impacts on aquatic organisms as well as human health. In this study, the water quality criteria (WQC) of five PAEs (dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP)) for freshwater aquatic organisms were developed using a species sensitivity distribution (SSD) and a toxicity percentage ranking (TPR) approach. The results showed that long-term water quality criteria (LWQC) of PAEs using the SSD method could be 13.7, 11.1, 2.8, 7.8, and 0.53 µg/L, respectively. Criteria continuous concentrations (CCC) of PAEs were derived using the TPR method and determined to be 28.4, 13.1, 1.3, 2.5, and 1.6 µg/L, respectively. The five PAEs are commonly measured in China surface waters at concentrations between ng/L and µg/L. DBP, DEHP, and di-n-octyl phthalate (DnOP) were the most frequently detected PAEs, with occurrence rates ranging from 67% to 100%. The ecological risk assessment results of PAEs showed a decreasing order of risk at the national level, DEHP, DBP, DMP, DEP, DnOP. The results of this study will be of great benefit to China and other countries in revising water quality standards for the conservation of aquatic species.


Environmental Monitoring , Fresh Water , Phthalic Acids , Plasticizers , Water Pollutants, Chemical , Water Quality , Phthalic Acids/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Water Quality/standards , Fresh Water/chemistry , Environmental Monitoring/methods , Plasticizers/analysis , Plasticizers/toxicity , Endocrine Disruptors/analysis , Endocrine Disruptors/toxicity , Aquatic Organisms/drug effects , Esters , China , Animals , Dibutyl Phthalate/toxicity
4.
Front Psychol ; 15: 1321870, 2024.
Article En | MEDLINE | ID: mdl-38784623

Introduction: There is a consensus hidden in the criminal legislation of many countries that the criminal responsibility capacity of juvenile offenders is not significantly different from that of their peers. The purpose of this paper was to test this hypothesis. The research objects of this paper were 187 juvenile offenders in J Province, China, who are under detention measures, and 2,449 students from junior high school, senior high school and university in S Province as comparison objects. We subjected the gathered materials to independent-samples t-tests and one-way analysis of variance (ANOVA). Results: (1) The self-control ability (109.30, 123.59) and empathy ability (63.86, 72.45) of juvenile offenders were significantly different from those of ordinary minors, but the difference of dialectical thinking ability was not statistically significant; (2) Except for the influence of mother's education level and family income on dialectical thinking ability, the other variables had no statistical significance on the three kinds of ability. Therefore, it was suggested that the correction plan and means for juvenile offenders should focus on the improvement of self-control ability and empathy ability.

5.
J Fungi (Basel) ; 10(5)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38786671

Candida albicans (Ca), a prominent opportunistic fungal pathogen in humans, has garnered considerable attention due to its infectious properties. Herein, we have identified and characterized CaCDAP1 (Ca orf19.1034), a homolog of ScDAP1 found in Saccharomyces cerevisiae. CaCDAP1 encodes a 183-amino acid protein with a conserved cytochrome b5-like heme-binding domain. The deletion of CaDAP1 renders Ca cells susceptible to caspofungin and terbinafine. CaDAP1 deletion confers resistance to Congo Red and Calcofluor White, and sensitivity to sodium dodecyl sulfate. The deletion of CaDAP1 results in a 50% reduction in chitin content within the cell wall, the downregulation of phosphorylation levels in CaMkc1, and the upregulation of phosphorylation levels in CaCek1. Notably, CaDAP1 deletion results in the abnormal hyphal development of Ca cells and diminishes virulence in a mouse systemic infection model. Thus, CaDAP1 emerges as a critical regulator governing cellular responses to antifungal drugs, the synthesis of cell wall chitin, and virulence in Ca.

6.
J Fungi (Basel) ; 10(5)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38786679

Gray mold, caused by Botrytis cinerea, poses significant threats to various crops, while it can be remarkably inhibited by ε-poly-L-lysine (ε-PL). A previous study found that B. cinerea extracts could stimulate the ε-PL biosynthesis of Streptomyces albulus, while it is unclear whether the impact of the B. cinerea signal on ε-PL biosynthesis is direct or indirect. This study evaluated the role of elevated reactive oxygen species (ROS) in efficient ε-PL biosynthesis after B. cinerea induction, and its underlying mechanism was disclosed with a transcriptome analysis. The microbial call from B. cinerea could arouse ROS elevation in cells, which fall in a proper level that positively influenced the ε-PL biosynthesis. A systematic transcriptional analysis revealed that this proper dose of intracellular ROS could induce a global transcriptional promotion on key pathways in ε-PL biosynthesis, including the embden-meyerhof-parnas pathway, the pentose phosphate pathway, the tricarboxylic acid cycle, the diaminopimelic acid pathway, ε-PL accumulation, cell respiration, and energy synthesis, in which sigma factor HrdD and the transcriptional regulators of TcrA, TetR, FurA, and MerR might be involved. In addition, the intracellular ROS elevation also resulted in a global modification of secondary metabolite biosynthesis, highlighting the secondary signaling role of intracellular ROS in ε-PL production. This work disclosed the transcriptional mechanism of efficient ε-PL production that resulted from an intracellular ROS elevation after B. cinerea elicitors' induction, which was of great significance in industrial ε-PL production as well as the biocontrol of gray mold disease.

7.
Genes (Basel) ; 15(2)2024 01 29.
Article En | MEDLINE | ID: mdl-38397172

Artificial hybrid breeding can optimize parental traits to cultivate excellent hybrids with enhanced economic value. In this study, we investigated the growth performance and transcriptomes of Gymnocypris przewalskii (♀) and Gymnocypris eckloni (♂) and their F1 hybrid fishes. Hatched individuals of G. przewalskii (GP) and G. eckloni (GE) of the same size and their F1 hybrids (GH) were separately cultured for eight months in three cement tanks (n = 3). The growth indexes were measured, which showed that the growth rate of the groups was GE > GH > GP, while the survival rate was GH > GE > GP. The RNA-Seq data analysis of the muscles from the three Gymnocypris fish strains revealed that gene transcription has a significant impact on F1 hybrid fish and its parents. The differentially expressed genes (DEGs) in GH show less differences with GP, but more with GE. qRT-PCR was used to confirm the expression profiles of the chosen DEGs, and the results showed positive correlations with the RNA-seq data. KEGG enrichment results indicated that the DEGs were related to a variety of molecular functions, such as glycolysis/gluconeogenesis, arachidonic acid formation, citrate cycle, and the MAPK, PI3K-Akt, or mTOR signal pathways. Subsequent analysis indicated that there may be a significant correlation between the differential expression of IGF2 and a difference in the growth of GE and GP.


Cyprinidae , Phosphatidylinositol 3-Kinases , Animals , Phosphatidylinositol 3-Kinases/genetics , Phylogeny , Cyprinidae/genetics , Gene Expression Profiling , Transcriptome/genetics
8.
J Hazard Mater ; 467: 133642, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38330644

Due to their endocrine-disrupting effects and the risks posed in surface waters, in particular by chronic low-dose exposure to aquatic organisms, phthalate esters (PAEs) have received significant attention. However, most assessments of risks posed by PAEs were performed at a selection level, and thus limited by empirical data on toxic effects and potencies. A quantitative structure activity relationship (QSAR) and interspecies correlation estimation (ICE) model was constructed to estimate hazardous concentrations (HCs) of selected PAEs to aquatic organisms, then they were used to conduct a multiple-level environmental risk assessment for PAEs in surface waters of China. Values of hazardous concentration for 5% of species (HC5s), based on acute lethality, estimated by use of the QSAR-ICE model were within 1.25-fold of HC5 values derived from empirical data on toxic potency, indicating that the QSAR-ICE model predicts the toxicity of these three PAEs with sufficient accuracy. The five selected PAEs may be commonly measured in China surface waters at concentrations between ng/L and µg/L. Risk quotients according to median concentrations of the five PAEs ranged from 3.24 for di(2-ethylhexhyl) phthalate (DEHP) to 4.10 × 10-3 for dimethyl phthalate (DMP). DEHP and dibutyl phthalate (DBP) had risks to the most vulnerable aquatic biota, with the frequency of exceedances of the predicted no-effect concentration (PNECs) of 75.5% and 38.0%, respectively. DEHP and DBP were identified as having "high" or "moderate" risks. Results of the joint probability curves (JPC) method indicated DEHP posed "intermediate" risk to freshwater species with a maximum risk product of 5.98%. The multiple level system introduced in this study can be used to prioritize chemicals and other new pollutant in the aquatic ecological.


Diethylhexyl Phthalate , Phthalic Acids , Water Pollutants, Chemical , Diethylhexyl Phthalate/toxicity , Quantitative Structure-Activity Relationship , Rivers/chemistry , Esters/toxicity , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Phthalic Acids/toxicity , Dibutyl Phthalate/toxicity , Risk Assessment , China
9.
Mol Carcinog ; 63(3): 524-537, 2024 Mar.
Article En | MEDLINE | ID: mdl-38197482

Gemcitabine (GEM) resistance affects chemotherapy efficacy of pancreatic cancer (PC). Cancer-associated fibroblasts (CAFs) possess the ability of regulating chemoresistance. This study probed the mechanism of hypoxia-treated CAFs regulating cell stemness and GEM resistance in PC. Miapaca-2/SW1990 were co-cultured with PC-derived CAFs under normoxic/hypoxic conditions. Cell viability/self-renewal ability was determined by MTT/sphere formation assays, respectively. Protein levels of CD44, CD133, Oct4, and Sox2 were determined by western blot. GEM tumoricidal assay was performed. PC cell GEM resistance was evaluated by MTT assay. CAFs were cultured at normoxia/hypoxia. HIF-1α and miR-21 expression levels were assessed by RT-qPCR and western blot, with their binding sites and binding relationship predicted and verified. CAF-extracellular vesicles (EVs) were incubated with Miapaca-2 cells. The RAS/AKT/ERK pathway activation was detected by western blot. PC xenograft models were established and treated with hypoxic CAF-EVs and GEM. CAFs and PC cell co-culture increased cell stemness maintenance, GEM resistance, cell viability, stem cell sphere number, and protein levels of CD44, CD133, Oct4, and Sox2, and weakened GEM tumoricidal ability to PC cells, with the effects further enhanced by hypoxia. Hypoxia induced HIF-1α and miR-21 overexpression in CAFs. Hypoxia promoted CAFs to secrete high-level miR-21 EVs via the HIF-1α/miR-21 axis, and activated the miR-21/RAS/AKT/ERK pathway. CAF-EVs promoted GEM resistance in PC via the miR-21/RAS/ATK/ERK pathway in vivo. Hypoxia promoted CAFs to secrete high-level miR-21 EVs through the HIF-1α/miR-21 axis, and activated the miR-21/RAS/AKT/ERK pathway via EVs to trigger stemness maintenance and GEM resistance in PC.


Cancer-Associated Fibroblasts , MicroRNAs , Pancreatic Neoplasms , Humans , Gemcitabine , Cancer-Associated Fibroblasts/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , Hypoxia/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism
10.
Environ Sci Pollut Res Int ; 31(10): 15039-15049, 2024 Feb.
Article En | MEDLINE | ID: mdl-38285263

Three identical sets of constructed wetland-microbial fuel cells (CW-MFCs) fabricated with biomass carbon source addition were constructed and underwent the short- and long-term experiments. For this, the efficacy of biomass dosage and Pb(II) concentration towards Pb(II) removal and concurrent bioelectricity production of CW-MFCs were systematically explored. From the perspective of integrated capabilities and economic benefits, the solid biomass carbon sources equivalent to 500 mg/L COD was regarded as the optimal dosage, and the corresponding device was labeled as CW-MFC-2. For the short-term experiment, the closed-circuit CW-MFC-2 produced maximum output voltages and power densities in a range of 386-657 mV and 1.55 × 103-6.31 × 103 mW/m2 with the increasing Pb(II) level, respectively. Also, Pb(II) removal up to 94.4-99.6% was obtained in CW-MFC-2. With respect to long-term experiment, Pb(II) removal, the maximum output voltage, and power density of CW-MFC-2 ranged from 98.7 to 99.2%, 322 to 387 mV, and 3.28 × 102 to 2.26 × 103 mW/m2 upon 200 mg/L Pb(II) level, respectively. The migration results confirmed the potential of substrate and biomass for Pb(II) adsorption and fixation. For the cathode, Pb(II) was fixed and removed via binding to O. This study enlarges our knowledge of effective modulation of CW-MFCs for the treatment of high-level Pb(II)-containing wastewater and bioelectricity generation via adopting desirable biomass dosage.


Bioelectric Energy Sources , Water Purification , Electricity , Lead , Wetlands , Biomass , Electrodes , Carbon
11.
Plants (Basel) ; 12(21)2023 Oct 30.
Article En | MEDLINE | ID: mdl-37960079

Salt is harmful to crop production. Therefore, it is important to understand the mechanism of salt tolerance in rice. CIPK genes have various functions, including regulating salt tolerance and other types of stress and nitrogen use efficiency. In rice, OsCIPK24 is known to regulate salt tolerance, but other OsCIPKs could also function in salt tolerance. In this study, we identified another OsCIPK-OsCIPK9-that can regulate salt tolerance. Knockout of OsCIPK9 in rice could improve salt tolerance. Through expression analyses, OsCIPK9 was found to be mainly expressed in the roots and less expressed in mature leaves. Meanwhile, OsCIPK9 had the highest expression 6 h after salt treatment. In addition, we proved the interaction between OsCIPK9 and OsSOS3. The RNA-seq data showed that OsCIPK9 strongly responded to salt treatment, and the transporters related to salt tolerance may be downstream genes of OsCIPK9. Finally, haplotype analyses revealed that Hap6 and Hap8 mainly exist in indica, potentially providing a higher salt tolerance. Overall, a negative regulator of salt tolerance, OsCIPK9, which interacted with OsSOS3 similarly to OsCIPK24 and influenced salt-related transporters, was identified, and editing OsCIPK9 potentially could be helpful for breeding salt-tolerant rice.

12.
Front Immunol ; 14: 1271603, 2023.
Article En | MEDLINE | ID: mdl-38035113

Given the increasing incidence of pancreatic cancer and the low survival rate, the exploration of the complex tumor microenvironment and the development of novel treatment options is urgent. NK cells, known for their cytotoxic abilities and modulation of other immune cells, are vital in recognizing and killing cancer cells. However, hypoxic conditions in the tumor microenvironment have been found to impair NK cell functionality and contribute to tumor immune escape. Therefore, we aimed to uncover the mechanism through which hypoxia mediates the immune escape of pancreatic cancer cells, focusing on the influence of miR-1275/AXIN2 on NK cells. Using a combination of GEO dataset screening, Tumor Immune Estimation Resource 2.0 immunoscore screening, and the Cancer Genome Atlas data, we identified a correlation between miR-1275 and NK cells. The down-regulation of miR-1275 was associated with decreased NK cell activity and survival in patients with pancreatic cancer. Pathway analysis further linked miR-1275 expression with the hypoxic HIF1A pathway. In vitro experiments were conducted using the NK-92 cell, revealing that hypoxia significantly reduced miR-1275 expression and correspondingly decreased the cell-killing ability of NK cells. Upregulation of miR-1275 increased perforin, IFN-γ and TNF-α expression levels and enhanced NK cell cytotoxicity. Additionally, miR-1275 was found to bind to and inhibit AXIN2 expression, which when overexpressed, partially alleviated the promotive effect of upregulated miR-1275 on NK-92 cell killing ability. In conclusion, this research underscores the critical role of the miR-1275/AXIN2 axis in hypoxia-mediated immune escape in pancreatic cancer, thus opening new potential avenues for treatment strategies.


MicroRNAs , Pancreatic Neoplasms , Humans , Killer Cells, Natural , Hypoxia/genetics , Hypoxia/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Tumor Microenvironment/genetics , Axin Protein/metabolism
13.
Huan Jing Ke Xue ; 44(8): 4717-4727, 2023 Aug 08.
Article Zh | MEDLINE | ID: mdl-37694664

In recent years, China's air environment, water environment, and soil environmental quality have been improved, and a "clear water blue sky" has become a normal state. However, as persistent organic pollutants, endocrine-disrupting chemicals, antibiotics, microplastics, and other emerging contaminants are continuously detected in the environment, these emerging contaminants have gradually been attracting wide attention. Nonylphenol, as a typical endocrine disrupting chemical, has also attracted the attention of researchers. The environmental behaviors and exposure levels of nonylphenol in Chinese water bodies were summarized systematically, and the ecological risks caused by nonylphenol were evaluated based on the risk quotient method and joint probability curve method. The results showed that the toxic effects of nonylphenol on aquatic organisms mainly included acute toxicity, growth and development toxicity, and estrogenic effect and reproductive toxicity. Nonylphenol was commonly found in the water bodies of major drainage areas in China, and the average concentration of nonylphenol ranged from 60 to 1000 ng·L-1, with the highest concentration being as high as 4628 ng·L-1. The results of risk assessment based on the risk quotient method and joint probability curve method showed that nonylphenol had certain risks to aquatic life in the major basins of China. Finally, the commonly used nonylphenol treatment, disposal, and risk management and control technologies were summarized, and the international supervision methods of endocrine-disrupting chemicals were compared. Aiming at addressing the problems existing in China's environmental management, targeted policy suggestions were put forward. The research results can provide reference for the management and control of emerging contaminants in China.


Endocrine Disruptors , Plastics , Anti-Bacterial Agents , China , Endocrine Disruptors/toxicity , Water
14.
Plants (Basel) ; 12(18)2023 Sep 12.
Article En | MEDLINE | ID: mdl-37765407

Rice yield and grain quality are highly sensitive to salinity stress. Salt-tolerant/susceptible rice cultivars respond to salinity differently. To explore the variation in grain yield and quality to moderate/severe salinity stress, five rice cultivars differing in degrees of salt tolerance, including three salt-tolerant rice cultivars (Lianjian 5, Lianjian 6, and Lianjian 7) and two salt-susceptible rice cultivars (Wuyunjing 30 and Lianjing 7) were examined. Grain yield was significantly decreased under salinity stress, while the extent of yield loss was lesser in salt-tolerant rice cultivars due to the relatively higher grain filling ratio and grain weight. The milling quality continued to increase with increasing levels. There were genotypic differences in the responses of appearance quality to mild salinity. The appearance quality was first increased and then decreased with increasing levels of salinity stress in salt-tolerant rice but continued to decrease in salt-susceptible rice. Under severe salinity stress, the protein accumulation was increased and the starch content was decreased; the content of short branched-chain of amylopectin was decreased; the crystallinity and stability of the starch were increased, and the gelatinization temperature was increased. These changes resulted in the deterioration of cooking and eating quality of rice under severe salinity-stressed environments. However, salt-tolerant and salt-susceptible rice cultivars responded differently to moderate salinity stress in cooking and eating quality and in the physicochemical properties of the starch. For salt-tolerant rice cultivars, the chain length of amylopectin was decreased, the degrees of order of the starch structure were decreased, and pasting properties and thermal properties were increased significantly, whereas for salt-susceptible rice cultivars, cooking and eating quality was deteriorated under moderate salinity stress. In conclusion, the selection of salt-tolerant rice cultivars can effectively maintain the rice production at a relatively high level while simultaneously enhancing grain quality in moderate salinity-stressed environments. Our results demonstrate specific salinity responses among the rice genotypes and the planting of salt-tolerant rice under moderate soil salinity is a solution to ensure rice production in China.

15.
Toxics ; 11(7)2023 Jul 03.
Article En | MEDLINE | ID: mdl-37505545

In this study, the spatial distribution characteristics of nine alkylphenols (APs) in the Yongding River and Beiyun River were analyzed. The differences in the concentrations and spatial distribution patterns of nine APs were systematically evaluated using principal component analysis (PCA). The relationships between the concentration distribution patterns and the risks associated with nine APs were investigated under various categories of land use conditions in the region. The results demonstrated that the APs were widely present in both rivers, and the pollution risks associated with the APs were more severe in the Yongding River than in the Beiyun River. The results show that the contamination risks associated with 4-NP were the most serious in the two rivers, with detection percentages of 100% and 96.3%, respectively. In the Yongding River, the APs showed a tendency of low concentration levels in the upper reaches and high levels in the middle and lower regions. Meanwhile, the overall concentration levels of the APs in the Beiyun River were relatively high. However, despite the differences between the upper and middle regions of the Yongding River, the distribution pattern of the APs in the Beiyun River was basically stable. The concentration levels and risk quotient of the APs were negatively correlated with the vegetation cover land use type and positively correlated with the cropland and unused land use types within 500 m, 1 km, and 2 km. The purpose of this study was to provide theoretical data support and a basis for AP pollution risk evaluations in the Yongding River and Beiyun River.

16.
Immun Inflamm Dis ; 11(7): e851, 2023 07.
Article En | MEDLINE | ID: mdl-37506147

OBJECTIVE: Thyroid cancer (TC) is one of the fastest-growing malignant tumors. This study sought to explore the mechanism of immune escape mediated by receptor tyrosine kinase (KIT) in TC. METHODS: The expression microarray of TC was acquired through the GEO database, and the difference analysis and Kyoto encyclopedia of genes and genomes pathway enrichment analysis were carried out. KIT levels in TC cell lines (K1/SW579/BCPAP) and human normal thyroid cells were detected using reverse transcription quantitative polymerase chain reaction and western blot analysis. TC cells were transfected with overexpressed (oe)-KIT and CD8+ T cells were cocultured with SW579 cells. Subsequently, cell proliferation, migration, and invasion abilities, CD8+ T cell proliferation, cytokine levels (interferon-γ [IFN-γ]/tumor necrosis factor-α [TNF-α]) were determined using colony formation assay, Transwell assays, flow cytometry, and enzyme-linked immunosorbent assay. The phosphorylation of MAPK pathway-related protein (ERK) was measured by western blot analysis. After transfection with oe-KIT, cells were treated with anisomycin (an activator of the MAPK pathway), and the protein levels of p-ERK/ERK and programmed death-ligand 1 (PD-L1) were detected. RESULTS: Differentially expressed genes (N = 2472) were obtained from the GEO database. KIT was reduced in TC samples and lower in tumor cells than those in normal cells. Overexpression of KIT inhibited immune escape of TC cells. Specifically, the proliferation, migration, and invasion abilities of TC cells were lowered, the proliferation level of CD8+ T cells was elevated, and IFN-γ and TNF-α levels were increased. KIT inhibited the activation of the MAPK pathway in TC cells and downregulated PD-L1. CONCLUSION: KIT suppressed immune escape of TC by blocking the activation of the MAPK pathway and downregulating PD-L1.


B7-H1 Antigen , Thyroid Neoplasms , Humans , Cell Proliferation/genetics , Protein-Tyrosine Kinases , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Tumor Necrosis Factor-alpha
17.
Ecotoxicol Environ Saf ; 262: 115198, 2023 Jun 28.
Article En | MEDLINE | ID: mdl-37390728

Toxic effects of abamectin on non-target aquatic organisms have been well documented due to its extensive use in both agricultural and aquacultural areas. However, knowledge of the abamectin induced cytotoxicity in crustacean hepatopancreas is still incomplete. In this study, we investigated the cytotoxic effects of abamectin on hepatopancreas cells of Chinese mitten crab, Eriocheir sinensis by an in vitro assay. The results showed that abamectin inhibited cell viability with elevated reactive oxygen species (ROS) and malondialdehyde (MDA) levels in a dose-dependent manner. Increased olive tail moment (OTM) values and 8-hydroxy-2'-deoxyguanosine (8-OHdG) contents indicate the DNA damage under abamectin exposure. The up-regulation of the typical apoptosis-related protein BCL2-associated X protein (Bax) and the down-regulation of B cell leukemia/lymphoma 2 (Bcl-2) demonstrate apoptosis in hepatopancreas cells. Meanwhile, the activities of both caspase-3 and caspase-9 were increased, indicating caspase-mediated apoptosis. In addition, qRT-PCR results showed the up-regulation of antioxidant genes superoxide dismutase (SOD) and catalase (CAT). The mRNA expression of Cap 'n' Collar isoform-C (CncC) and c-Jun NH2-terminal kinases (JNK) was also significantly increased, implying the involvement of the Nrf2/MAPK pathway in the antioxidative response. The alteration of innate immune-associated genes Toll-like receptor (TLR) and myeloid differentiation primary response gene 88 (Myd88) also indicates the influence of abamectin on immune status. In summary, the present study reveals the cytotoxicity of abamectin on hepatopancreas cells of E. sinensis and this in vitro cell culture model could be used for further assessment of pesticide toxicity.

18.
Nat Commun ; 14(1): 3550, 2023 06 15.
Article En | MEDLINE | ID: mdl-37321989

Salinity stress progressively reduces plant growth and productivity, while plant has developed complex signaling pathways to confront salt stress. However, only a few genetic variants have been identified to mediate salt tolerance in the major crop rice, and the molecular mechanism remains poorly understood. Here, we identify ten candidate genes associated with salt-tolerance (ST) traits by performing a genome-wide association analysis in rice landraces. We characterize two ST-related genes, encoding transcriptional factor OsWRKY53 and Mitogen-activated protein Kinase Kinase OsMKK10.2, that mediate root Na+ flux and Na+ homeostasis. We further find that OsWRKY53 acts as a negative modulator regulating expression of OsMKK10.2 in promoting ion homeostasis. Furthermore, OsWRKY53 trans-represses OsHKT1;5 (high-affinity K+ transporter 1;5), encoding a sodium transport protein in roots. We show that the OsWRKY53-OsMKK10.2 and OsWRKY53-OsHKT1;5 module coordinate defenses against ionic stress. The results shed light on the regulatory mechanisms underlying plant salt tolerance.


Oryza , Salt Tolerance , Salt Tolerance/genetics , Oryza/metabolism , Genome-Wide Association Study , Salt Stress/genetics , Ion Transport , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
19.
Sci Total Environ ; 881: 163481, 2023 Jul 10.
Article En | MEDLINE | ID: mdl-37068676

The present study investigated the toxic effects of IMI on brain and gut of zebrafish (Danio rerio) by a combination of transcriptome and microbiome analysis. In addition, the involvement of light/dark period was also evaluated. An acute toxic test was conducted on adult zebrafish weighing 0.45 ± 0.02 g with 4 experimental groups (n = 15): 1) IMI group (Light: Dark = 12: 12 h), 2) prolonged light group (Light: Dark = 20: 4 h), 3) prolonged darkness group (Light: Dark = 4: 20 h) which received 20 mg/L of IMI, and 4) control group, which was not treated with IMI (Light: Dark = 12: 12 h). The results showed that prolonged darkness improved the survival rate of zebrafish upon IMI exposure for 96 h. In the sub-chronic test, zebrafish were divided into the same 4 groups and exposed to IMI at 1 mg/L for 14 d (n = 30). The results showed that IMI induced oxidative stress in both IMI and prolonged light groups by inhibition of antioxidant activities and accumulation of oxidative products. Transcriptome analysis revealed a compromise of antioxidation and tryptophan metabolism pathways under IMI exposure. Several genes encoding rate-limiting enzymes in serotonin and melatonin synthesis were all inhibited in both IMI and LL groups. Meanwhile, significant decrease (P < 0.5) of serotonin and melatonin levels was observed. However, there's remarkable improvement of biochemical and transcriptional status in prolonged darkness group. In addition, microbiome analysis showed great alteration of gut bacterial community structure and inhibition of tryptophan metabolism pathway. Similarly, the gut microbiota dysbiosis induced by IMI was alleviated in prolonged darkness. In summary, sub-chronic IMI exposure induced neurotoxicity and gut toxicity in zebrafish by oxidative stress and impaired the brain-gut-axis through tryptophan metabolism perturbation. Prolonged darkness could effectively attenuate the IMI toxicity probably through maintaining a normal tryptophan metabolism.


Brain-Gut Axis , Melatonin , Animals , Zebrafish/physiology , Serotonin/metabolism , Darkness , Melatonin/metabolism , Tryptophan
20.
J Mol Model ; 29(5): 142, 2023 Apr 15.
Article En | MEDLINE | ID: mdl-37061582

CONTEXT: In this study, the reactions of hydrated electron (e-(aq)) with alkyl and aryl halides were simulated with an ab initial molecular dynamics (AIMD) method to reveal the underlying mechanism. An original protocol was developed for preparing the proper initial wavefunction guess of AIMD, in which a single electron was curled in a tetrahedral cavity of four water molecules. Our results show that the stability of e-(aq) increases with the hydrogen bond grid integrity. The organic halides prefer to react with e-(aq) in neutral or alkaline environment, while they are more likely to react with hydrogen radical (the product of e-(aq) and proton) under acidic conditions. The reaction between fluorobenzene/fluoromethane and hydrogen radical is considered as the least favorable reaction due to the highest reaction barriers. The bond dissociation energy (BDE) suggested that the cleavage of the carbon-halogen bond of their anion radical might be a thermodynamically favorable reaction. AIMD results indicated that the LUMO or higher orbitals were the e-(aq) migration destination. The transplanted electron enhanced carbon-halogen bond vibration intensively, leading to bond cleavage. The solvation process of the departing halogen anions was observed in both fluorobenzene and fluoromethane AIMD simulation, indicating that it might have a significant effect on enthalpy. Side reactions and byproducts obtained during the AIMD simulation suggested the complexity of the e-(aq) reactions and further investigation was needed to fully understand the reaction mechanisms. This study provided theoretical insight into the pollutant environmental fate and constructed a methodological foundation for AIMD simulation of analogous free radical reactions. METHODS: The theoretical calculation was conducted on the combination of Gaussian16 and ORCA5.0.3 software packages. The initial geometries, as well as the wavefunction initial guesses, were obtained at PBE0/ma-def2-TZVP/IEFPCM-water level in Gaussian16 unless otherwise stated. AIMD simulations were performed at the same level in ORCA. Wavefunction analysis was carried out with Multiwfn. The details methods were described in the section "Computational details" section.

...