Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 368
1.
Eur Radiol ; 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38856782

OBJECTIVES: Aneurysm wall enhancement (AWE) on high-resolution contrast-enhanced vessel wall MRI (VWMRI) is an emerging biomarker for intracranial aneurysms (IAs) stability. Quantification methods of AWE in the literature, however, are variable. We aimed to determine the optimal post-contrast timing to quantify AWE in both saccular and fusiform IAs. MATERIALS AND METHODS: Consecutive patients with unruptured IAs were prospectively recruited. VWMRI was acquired on 1 pre-contrast and 4 consecutive post-contrast phases (each phase was 9 min). Signal intensity values of cerebrospinal fluid (CSF) and aneurysm wall on pre- and 4 post-contrast phases were measured to determine the aneurysm wall enhancement index (WEI). AWE was also qualitatively analyzed on post-contrast images using previous grading criteria. The dynamic changes of AWE grade and WEI were analyzed for both saccular and fusiform IAs. RESULTS: Thirty-four patients with 42 IAs (27 saccular IAs and 15 fusiform IAs) were included. The changes in AWE grade occurred in 8 (30%) saccular IAs and 6 (40%) in fusiform IAs during the 4 post-contrast phases. The WEI of fusiform IAs decreased 22.0% over time after contrast enhancement (p = 0.009), while the WEI of saccular IAs kept constant during the 4 post-contrast phases (p > 0.05). CONCLUSIONS: When performing quantitative analysis of AWE, acquiring post-contrast VWMRI immediately after contrast injection achieves the strongest AWE for fusiform IAs. While the AWE degree is stable for 36 min after contrast injection for saccular IAs. CLINICAL RELEVANCE STATEMENT: The standardization of imaging protocols and analysis methods for AWE will be helpful for imaging surveillance and further treatment decisions of patients with unruptured IAs. KEY POINTS: Imaging protocols and measurements of intracranial aneurysm wall enhancement are reported heterogeneously. Aneurysm wall enhancement for fusiform intracranial aneurysms (IAs) is strongest immediately post-contrast, and stable for 36 min for saccular IAs. Future multi-center studies should investigate aneurysm wall enhancement as an emerging marker of aneurysm growth and rupture.

2.
Mar Environ Res ; 198: 106544, 2024 Jun.
Article En | MEDLINE | ID: mdl-38795574

Carbon-fixing bacterial communities are essential drivers of carbon fixation in estuarine ecosystems that critically affect the global carbon cycle. This study compared the abundances of the Calvin cycle functional genes cbbL and cbbM and Reductive tricarboxylic acid cycle gene aclB, as well as compared carbon-fixing bacterial community features in the two estuaries, predicted potential ecological functions of carbon-fixation bacteria, and analyzed their symbiosis strategies in two estuaries having different geographical distributions. Gammaproteobacteria was the dominant carbon-fixing bacterial community in the two estuaries. However, a higher number of Alphaproteobacteria were noted in the Liaohe Estuary, and a higher number of Betaproteobacteria were found in the Yalujiang Estuary. The carbon-fixing functional gene levels exhibited the order of aclB > cbbL > cbbM, and significant effects of Cu, Pb, and petroleum were observed (p < 0.05). Nitrogen-associated nutrient levels are major environmental factors that affect carbon-fixing bacterial community distribution patterns. Spatial factors significantly affected cbbL carbon-fixing functional bacterial community structure more than environmental factors. With the increase in offshore distance, the microbial-led processes of methylotrophy and nitrogen fixation gradually weakened, but a gradual strengthening of methanotrophy and nitrification was observed. Symbiotic network analysis of the microorganisms mediating these ecological processes revealed that the carbon-fixing bacterial community in these two estuaries had a non-random symbiotic pattern, and microbial communities from the same module were strongly linked among the carbon, nitrogen, and sulfur cycle. These findings could advance the understanding of carbon fixation in estuarine ecosystems.


Bacteria , Carbon Cycle , Estuaries , Bacteria/genetics , Bacteria/classification , Carbon/metabolism , Microbiota , Ecosystem , China , Nitrogen Fixation
3.
Signal Transduct Target Ther ; 9(1): 107, 2024 May 03.
Article En | MEDLINE | ID: mdl-38697972

Cholangiocarcinoma (CCA) is a highly malignant biliary tract cancer with currently suboptimal diagnostic and prognostic approaches. We present a novel system to monitor CCA using exosomal circular RNA (circRNA) via serum and biliary liquid biopsies. A pilot cohort consisting of patients with CCA-induced biliary obstruction (CCA-BO, n = 5) and benign biliary obstruction (BBO, n = 5) was used to identify CCA-derived exosomal circRNAs through microarray analysis. This was followed by a discovery cohort (n = 20) to further reveal a CCA-specific circRNA complex (hsa-circ-0000367, hsa-circ-0021647, and hsa-circ-0000288) in both bile and serum exosomes. In vitro and in vivo studies revealed the three circRNAs as promoters of CCA invasiveness. Diagnostic and prognostic models were established and verified by two independent cohorts (training cohort, n = 184; validation cohort, n = 105). An interpreter-free diagnostic model disclosed the diagnostic power of biliary exosomal circRNA signature (Bile-DS, AUROC = 0.947, RR = 6.05) and serum exosomal circRNA signature (Serum-DS, AUROC = 0.861, RR = 4.04) compared with conventional CA19-9 (AUROC = 0.759, RR = 2.08). A prognostic model of CCA undergoing curative-intent surgery was established by calculating early recurrence score, verified with bile samples (Bile-ERS, C-index=0.783) and serum samples (Serum-ERS, C-index = 0.782). These models, combined with other prognostic factors revealed by COX-PH model, enabled the establishment of nomograms for recurrence monitoring of CCA. Our study demonstrates that the exosomal triple-circRNA panel identified in both bile and serum samples serves as a novel diagnostic and prognostic tool for the clinical management of CCA.


Cholangiocarcinoma , Exosomes , RNA, Circular , Humans , RNA, Circular/genetics , RNA, Circular/blood , Cholangiocarcinoma/genetics , Cholangiocarcinoma/diagnosis , Cholangiocarcinoma/blood , Cholangiocarcinoma/pathology , Exosomes/genetics , Male , Female , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Middle Aged , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/diagnosis , Bile Duct Neoplasms/blood , Bile Duct Neoplasms/pathology , Prognosis , Cholestasis/genetics , Cholestasis/diagnosis , Cholestasis/blood
4.
Mol Med Rep ; 29(5)2024 May.
Article En | MEDLINE | ID: mdl-38516783

Hepatocellular carcinoma (HCC) is a common malignancy with a poor prognosis, and its heterogeneity affects the response to clinical treatments. Glycolysis is highly associated with HCC therapy and prognosis. The present study aimed to identify a novel biomarker for HCC by exploring the heterogeneity of glycolysis in HCC. The intersection of both marker genes of glycolysis­related cell clusters from single­cell RNA sequencing analysis and mRNA data of liver HCC from The Cancer Genome Atlas were used to construct a prognostic model through Cox proportional hazard regression and the least absolute shrinkage and selection operator Cox regression. Data from the International Cancer Genome Consortium were used to validate the results of the analysis. Immune status analysis was then conducted. A significant gene in the prognostic model was identified as a potential biomarker and was verified through in vitro experiments. The results revealed that the glycolysis­related prognostic model divided patients with HCC into high­ and low­risk groups. A nomogram combining the model and clinical features exhibited accurate predictive ability, with an area under the curve of 0.763 at 3 years. The high­risk group exhibited a higher expression of checkpoint genes and lower tumor immune dysfunction and exclusion scores, suggesting that this group may be more likely to benefit from immunotherapy. The tumor tissues had a higher zinc finger protein (ZFP)41 mRNA and protein expression compared with the adjacent tissues. In vitro analyses revealed that ZFP41 played a crucial role in cell viability, proliferation, migration, invasion and glycolysis. On the whole, the present study demonstrates that the glycolysis­related prognostic gene, ZFP41, is a potential prognostic biomarker and therapeutic target, and may play a crucial role in glycolysis and malignancy in HCC.


Carcinoma, Hepatocellular , Kruppel-Like Transcription Factors , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Glycolysis/genetics , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Prognosis , RNA, Messenger , Single-Cell Gene Expression Analysis , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Biomarkers
5.
Insights Imaging ; 15(1): 75, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38499900

PURPOSE: The temporal evolution of ventricular trabecular complexity and its correlation with major adverse cardiovascular events (MACE) remain indeterminate in patients presenting with acute ST elevation myocardial infarction (STEMI). METHODS: This retrospective analysis enrolled patients undergoing primary percutaneous coronary intervention (pPCI) for acute STEMI, possessing cardiac magnetic resonance (CMR) data in the acute (within 7 days), subacute (1 month after pPCI), and chronic phases (6 months after pPCI) from January 2015 to January 2020 at the three participating sites. Fractal dimensions (FD) were measured for the global, infarct, and remote regions of left ventricular trabeculae during each phase. The potential association of FD with MACE was analyzed using multivariate Cox regression. RESULTS: Among the 200 analyzed patients (182 men; median age, 61 years; age range, 50-66 years), 37 (18.5%) encountered MACE during a median follow-up of 31.2 months. FD exhibited a gradual decrement (global FD at acute, subacute, and chronic phases: 1.253 ± 0.049, 1.239 ± 0.046, 1.230 ± 0.045, p < 0.0001), with a more pronounced decrease observed in patients subsequently experiencing MACE (p < 0.001). The global FD at the subacute phase correlated with MACE (hazard ratio 0.89 (0.82, 0.97), p = 0.01), and a global FD value below 1.26 was associated with a heightened risk. CONCLUSION: In patients post-STEMI, the global FD, serving as an indicator of left ventricular trabeculae complexity, independently demonstrated an association with subsequent major adverse cardiovascular events, beyond factors encompassing left ventricular ejection fraction, indexed left ventricular end-diastolic volume, infarct size, heart rate, NYHA class, and post-pPCI TIMI flow. CRITICAL RELEVANCE STATEMENT: In patients who have had an ST-segment elevation myocardial infarction, global fractal dimension, as a measure of left ventricular trabeculae complexity, provided independent association with subsequent major adverse cardiovascular event. KEY POINTS: • Global and regional FD decreased after STEMI, and more so in patients with subsequent MACE. • Lower global FD at the subacute phase and Δglobal FD from acute to subacute phase were associated with subsequent MACE besides clinical and CMR factors. • Global FD at the subacute phase independently correlated with MACE and global FD value below 1.26 was associated with higher risk.

6.
Oncogene ; 43(14): 1050-1062, 2024 Mar.
Article En | MEDLINE | ID: mdl-38374407

In a previous study, we discovered that the level of lnc-TSPAN12 was significantly elevated in hepatocellular carcinoma (HCC) and correlated with a low survival rate. However, the function and mechanism of lnc-TSPAN12 in modulating epithelial-mesenchymal transition (EMT) and metastasis in HCC remains poorly understood. This study demonstrates that lnc-TSPAN12 positively influences migration, invasion, and EMT of HCC cells in vitro and promotes hepatic metastasis in vivo. The modification of N6-methyladenosine, driven by METTL3, is essential for the stability of lnc-TSPAN12, which may partially contribute to the upregulation of lnc-TSPAN12. Mechanistically, lnc-TSPAN12 exhibits direct interactions with EIF3I and SENP1, acting as a scaffold to enhance the SENP1-EIF3I interaction. As a result, the SUMOylation of EIF3I is inhibited, preventing its ubiquitin-mediated degradation. Ultimately, this activates the Wnt/ß-catenin signaling pathway, stimulating EMT and metastasis in HCC. Our findings shed light on the regulatory mechanism of lnc-TSPAN12 in HCC metastasis and identify the lnc-TSPAN12-EIF3I/SENP1 axis as a novel therapeutic target for HCC.


Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Tetraspanins , Humans , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Epithelial-Mesenchymal Transition , Eukaryotic Initiation Factor-3/genetics , Eukaryotic Initiation Factor-3/metabolism , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Methyltransferases/genetics , Methyltransferases/metabolism , RNA, Long Noncoding/genetics , Wnt Signaling Pathway
7.
Antiviral Res ; 224: 105841, 2024 Apr.
Article En | MEDLINE | ID: mdl-38408645

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been ongoing for more than three years and urgently needs to be addressed. Traditional Chinese medicine (TCM) prescriptions have played an important role in the clinical treatment of patients with COVID-19 in China. However, it is difficult to uncover the potential molecular mechanisms of the active ingredients in these TCM prescriptions. In this paper, we developed a new approach by integrating the experimental assay, virtual screening, and the experimental verification, exploring the rapid discovery of active ingredients from TCM prescriptions. To achieve this goal, 4 TCM prescriptions in clinical use for different indications were selected to find the antiviral active ingredients in TCMs. The 3-chymotrypsin-like protease (3CLpro), an important target for fighting COVID-19, was utilized to determine the inhibitory activity of the TCM prescriptions and single herb. It was found that 10 single herbs had better inhibitory activity than other herbs by using a fluorescence resonance energy transfer (FRET) - based enzymatic assay of SARS-CoV-2 3CLpro. The ingredients contained in 10 herbs were thus virtually screened and the predicted active ingredients were experimentally validated. Thus, such a research strategy firstly removed many single herbs with no inhibitory activity against SARS-CoV-2 3CLpro at the very beginning by FRET-based assay, making our subsequent virtual screening more effective. Finally, 4 active components were found to have stronger inhibitory effects on SARS-CoV-2 3CLpro, and their inhibitory mechanism was subsequently investigated. Among of them, methyl rosmarinate as an allosteric inhibitor of SARS-CoV-2 3CLpro was confirmed and its ability to inhibit viral replication was demonstrated by the SARS-CoV-2 replicon system. To validate the binding mode via docking, the mutation experiment, circular dichroism (CD), enzymatic inhibition and surface plasmon resonance (SPR) assay were performed, demonstrating that methyl rosmarinate bound to the allosteric site of SARS-CoV-2 3CLpro. In conclusion, this paper provides the new ideas for the rapid discovery of active ingredients in TCM prescriptions based on a specific target, and methyl rosmarinate has the potential to be developed as an antiviral therapeutic candidate against SARS-CoV-2 infection.


COVID-19 , Humans , SARS-CoV-2 , Rosmarinic Acid , Peptide Hydrolases , Antiviral Agents/pharmacology , Protease Inhibitors/pharmacology , Molecular Docking Simulation
8.
Nat Commun ; 15(1): 1300, 2024 Feb 12.
Article En | MEDLINE | ID: mdl-38346942

Osteoclasts are over-activated as we age, which results in bone loss. Src deficiency in mice leads to severe osteopetrosis due to a functional defect in osteoclasts, indicating that Src function is essential in osteoclasts. G-protein-coupled receptors (GPCRs) are the targets for ∼35% of approved drugs but it is still unclear how GPCRs regulate Src kinase activity. Here, we reveal that GPR54 activation by its natural ligand Kisspeptin-10 (Kp-10) causes Dusp18 to dephosphorylate Src at Tyr 416. Mechanistically, Gpr54 recruits both active Src and the Dusp18 phosphatase at its proline/arginine-rich motif in its C terminus. We show that Kp-10 binding to Gpr54 leads to the up-regulation of Dusp18. Kiss1, Gpr54 and Dusp18 knockout mice all exhibit osteoclast hyperactivation and bone loss, and Kp-10 abrogated bone loss by suppressing osteoclast activity in vivo. Therefore, Kp-10/Gpr54 is a promising therapeutic target to abrogate bone resorption by Dusp18-mediated Src dephosphorylation.


Bone Resorption , Osteoclasts , Animals , Mice , Osteoclasts/metabolism , Kisspeptins/genetics , Kisspeptins/metabolism , Receptors, G-Protein-Coupled/metabolism , src-Family Kinases/genetics , src-Family Kinases/metabolism , Mice, Knockout , Bone Resorption/genetics , Receptors, Kisspeptin-1
9.
Int J Mol Sci ; 25(3)2024 Jan 27.
Article En | MEDLINE | ID: mdl-38338870

Amyloidosis involves the deposition of misfolded proteins. Even though it is caused by different pathogenic mechanisms, in aggregate, it shares similar features. Here, we tested and confirmed a hypothesis that an amyloid antibody can be engineered by a few mutations to target a different species. Amyloid light chain (AL) and ß-amyloid peptide (Aß) are two therapeutic targets that are implicated in amyloid light chain amyloidosis and Alzheimer's disease, respectively. Though crenezumab, an anti-Aß antibody, is currently unsuccessful, we chose it as a model to computationally design and prepare crenezumab variants, aiming to discover a novel antibody with high affinity to AL fibrils and to establish a technology platform for repurposing amyloid monoclonal antibodies. We successfully re-engineered crenezumab to bind both Aß42 oligomers and AL fibrils with high binding affinities. It is capable of reversing Aß42-oligomers-induced cytotoxicity, decreasing the formation of AL fibrils, and alleviating AL-fibrils-induced cytotoxicity in vitro. Our research demonstrated that an amyloid antibody could be engineered by a few mutations to bind new amyloid sequences, providing an efficient way to reposition a therapeutic antibody to target different amyloid diseases.


Alzheimer Disease , Amyloidosis , Antibodies, Monoclonal, Humanized , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/therapy , Amyloid/metabolism , Amyloid beta-Peptides/immunology , Amyloid beta-Peptides/metabolism , Amyloidogenic Proteins/therapeutic use , Amyloidosis/therapy , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Peptide Fragments/metabolism , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use
10.
J Magn Reson Imaging ; 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38363170

BACKGROUND: The prognostic value of left ventricular segmental strain (SS) in ST-elevation myocardial infarction (STEMI) remains unclear. HYPOTHESIS: To assess the prognostic value and application of SS. STUDY TYPE: Retrospective analysis of a prospective registry. POPULATION: Five hundred and forty-four patients after STEMI (500 in Cohort 1, 44 in Cohort 2). FIELD STRENGTH/SEQUENCE: 3 T, balanced steady-state free precession, gradient echo, and gradient echo contrast-enhanced images. ASSESSMENT: Participants underwent cardiac MR during the acute phase after STEMI. Infarct-related artery (IRA) strain was determined based on SS obtained from cine images. The primary endpoint was the composite of major adverse cardiovascular events (MACEs) after 8 years of follow-up. In Cohort 2, SS stability was assessed by MR twice within 8 days. Contrast and non-contrast risk models based on SS were established, leading to the development of an algorithm. STATISTICAL TEST: Student's t-test, Mann-Whitney U-test, Cox and logistic regression, Kaplan-Meier analysis, net reclassification index (NRI). P < 0.05 was considered significant. RESULTS: During a median follow-up of 5.2 years, 83 patients from Cohort 1 experienced a MACE. Among SS, IRA peak circumferential strain (IRA-CS) was an independent factor for MACEs (adjusted hazard ratio 1.099), providing incremental prognostic value (NRI 0.180, P = 0.10). Patients with worse IRA-CS (>-8.64%) demonstrated a heightened susceptibility to MACE. Additionally, IRA-CS was significantly associated with microvascular obstruction (MVO) (adjusted odds ratio 1.084) and infarct size (r = 0.395). IRA-CS showed comparable prognostic effectiveness to global peak circumferential strain (NRI 0.100, P = 0.39), also counterbalancing contrast and non-contrast risk models (NRI 0.205, P = 0.05). In Cohort 2, IRA-CS demonstrated stability between two time points (P = 0.10). Based on risk models incorporating IRA-CS, algorithm "HJKL" was preliminarily proposed for stratification. DATA CONCLUSIONS: IRA-CS is an important prognostic factor, and an algorithm based on it is proposed for stratification. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 2.

11.
AJNR Am J Neuroradiol ; 45(3): 262-270, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38388686

BACKGROUND AND PURPOSE: Intracranial plaque enhancement (IPE) identified by contrast-enhanced vessel wall MR imaging (VW-MR imaging) is an emerging marker of plaque instability related to stroke risk, but there was no standardized timing for postcontrast acquisition. We aim to explore the optimal postcontrast timing by using multiphase contrast-enhanced VW-MR imaging and to test its performance in differentiating culprit and nonculprit lesions. MATERIALS AND METHODS: Patients with acute ischemic stroke due to intracranial plaque were prospectively recruited to undergo VW-MR imaging with 1 precontrast phase and 4 consecutive postcontrast phases (9 minutes and 13 seconds for each phase). The signal intensity (SI) values of the CSF and intracranial plaque were measured on 1 precontrast and 4 postcontrast phases to determine the intracranial plaque enhancement index (PEI). The dynamic changes of the PEI were compared between culprit and nonculprit plaques on the postcontrast acquisitions. RESULTS: Thirty patients with acute stroke (aged 59 ± 10 years, 18 [60%] men) with 113 intracranial plaques were included. The average PEI of all intracranial plaques significantly increased (up to 14%) over the 4 phases. There was significantly increased PEI over the 4 phases for culprit plaques (an average increase of 23%), but this was not observed for nonculprit plaques. For differentiating culprit and nonculprit plaques, we observed that the performance of IPE in the second postcontrast phase (cutoff = 0.83, AUC = 0.829 [0.746-0.893]) exhibited superior accuracy when compared with PEI in the first postcontrast phase (cutoff = 0.48; AUC = 0.768 [0.680-0.843]) (P = .022). CONCLUSIONS: A 9-minute delay of postcontrast acquisition can maximize plaque enhancement and better differentiate between culprit and nonculprit plaques. In addition, culprit and nonculprit plaques have different enhancement temporal patterns, which should be evaluated in future studies.


Intracranial Arteriosclerosis , Ischemic Stroke , Plaque, Atherosclerotic , Stroke , Male , Humans , Female , Intracranial Arteriosclerosis/pathology , Magnetic Resonance Imaging/methods , Plaque, Atherosclerotic/pathology
12.
Br J Radiol ; 97(1153): 135-141, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38263829

OBJECTIVES: To differentiate high-grade from low-grade clear cell renal cell carcinoma (ccRCC) using diffusion-relaxation correlation spectroscopic imaging (DR-CSI) spectra in an equal separating analysis. METHODS: Eighty patients with 86 pathologically confirmed ccRCCs who underwent DR-CSI were enrolled. Two radiologists delineated the region of interest. The spectrum was derived based on DR-CSI and was further segmented into multiple equal subregions from 2*2 to 9*9. The agreement between the 2 radiologists was assessed by the intraclass correlation coefficient (ICC). Logistic regression was used to establish the regression model for differentiation, and 5-fold cross-validation was used to evaluate its accuracy. McNemar's test was used to compare the diagnostic performance between equipartition models and the traditional parameters, including the apparent diffusion coefficient (ADC) and T2 value. RESULTS: The inter-reader agreement decreased as the divisions in the equipartition model increased (overall ICC ranged from 0.859 to 0.920). The accuracy increased from the 2*2 to 9*9 equipartition model (0.68 for 2*2, 0.69 for 3*3 and 4*4, 0.70 for 5*5, 0.71 for 6*6, 0.78 for 7*7, and 0.75 for 8*8 and 9*9). The equipartition models with divisions >7*7 were significantly better than ADC and T2 (vs ADC: P = .002-.008; vs T2: P = .001-.004). CONCLUSIONS: The equipartition method has the potential to analyse the DR-CSI spectrum and discriminate between low-grade and high-grade ccRCC. ADVANCES IN KNOWLEDGE: The evaluation of DR-CSI relies on prior knowledge, and how to assess the spectrum derived from DR-CSI without prior knowledge has not been well studied.


Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Spectrum Analysis , Diagnostic Imaging , Cell Differentiation
13.
Eur Radiol ; 2024 Jan 08.
Article En | MEDLINE | ID: mdl-38189980

OBJECTIVES: The present study aimed to investigate the incremental prognostic value of the right ventricular fractal dimension (FD), a novel marker of myocardial trabecular complexity by cardiac magnetic resonance (CMR) in patients with arrhythmogenic cardiomyopathy (ACM). METHODS: Consecutive patients with ACM undergoing CMR were followed up for major cardiac events, including sudden cardiac death, aborted cardiac arrest, and appropriate implantable cardioverter defibrillator intervention. Prognosis prediction was compared by Cox regression analysis. We established a multivariable model supplemented with RV FD and evaluated its discrimination by Harrell's C-statistic. We compared the category-free, continuous net reclassification improvement (cNRI) and integrated discrimination index (IDI) before and after the addition of FD. RESULTS: A total of 105 patients were prospectively included from three centers and followed up for a median of 60 (48, 66) months; experienced 36 major cardiac events were recorded. Trabecular FD displayed a strong unadjusted association with major cardiac events (p < 0.05). In the multivariable Cox regression analysis, RV maximal apical FD maintained an independent association with major cardiac events (hazard ratio, 1.31 (1.11-1.55), p < 0.002). The Hosmer-Lemeshow goodness of fit test displayed good fit (X2 = 0.68, p = 0.99). Diagnostic performance was significantly improved after the addition of RV maximal apical FD to the multivariable baseline model, and the continuous net reclassification improvement increased 21% (p = 0.001), and the integrated discrimination index improved 16% (p = 0.045). CONCLUSIONS: In patients with ACM, CMR-assessed myocardial trabecular complexity was independently correlated with adverse cardiovascular events and provided incremental prognostic value. CLINICAL RELEVANCE STATEMENT: The application of FD values for assessing RV myocardial trabeculae may become an accessible and promising parameter in monitoring and early diagnosis of risk factors for adverse cardiovascular events in patients with ACM. KEY POINTS: • Ventricular trabecular morphology, a novel quantitative marker by CMR, has been explored for the first time to determine the severity of ACM. • Patients with higher maximal apical fractal dimension of RV displayed significantly higher cumulative incidence of major cardiac events. • RV maximal apical FD was independently associated with major cardiac events and provided incremental prognostic value in patients with ACM.

14.
Eur Radiol ; 2024 Jan 04.
Article En | MEDLINE | ID: mdl-38172441

OBJECTIVES: Significant atherosclerotic stenosis or occlusion in the distal internal carotid artery (ICA) may induce diffuse wall thickening (DWT) in the upstream arterial wall. This study aimed to assess the association of atherosclerotic steno-occlusive diseases in the distal ICA with DWT in the upstream ipsilateral ICA. METHODS: Individuals with atherosclerotic stenosis in the distal ICA, detected by carotid MR vessel wall imaging using 3D pre- and post-contrast T1 volume isotropic turbo spin-echo acquisition (T1-VISTA) sequence, were enrolled. The associations of vessel wall thickening, the longitudinal extent of DWT, enhancement of the upstream ipsilateral ICA, and stenosis degree in the distal ICA were examined. RESULTS: Totally 64 arteries in 55 patients with atherosclerotic steno-occlusive distal ICAs were included. Significant correlations were found between distal ICA stenosis and DWT in the petrous ICA (r = 0.422, p = 0.001), DWT severity (r = 0.474, p < 0.001), the longitudinal extent of DWT in the ICA (r = 0.671, p < 0.001), enhancement in the petrous ICA (r = 0.409, p = 0.001), and enhancement degree (r = 0.651, p < 0.001). In addition, high degree of enhancement was correlated with both increased wall thickness and increased prevalence of DWT in the petrous ICA (both p < 0.001). CONCLUSIONS: DWT of the petrous ICA is commonly detected in patients with atherosclerotic steno-occlusive disease in the distal ICA. The degree of stenosis in the distal ICA is associated with wall thickening and its longitudinal extent in the upstream segments. CLINICAL RELEVANCE STATEMENT: Diffuse wall thickening is a common secondary change in atherosclerotic steno-occlusive disease in the intracranial carotid. This phenomenon constitutes a confounding factor in the distinction between atherosclerosis and inflammatory vasculopathies, and could be reversed after alleviated atherosclerotic stenosis. KEY POINTS: • Diffuse wall thickening of the petrous internal carotid artery is commonly detected in patients with atherosclerotic steno-occlusive disease in the distal internal carotid artery. • The phenomenon of diffuse wall thickening could be reversed after stenosis alleviation. • Carotid artery atherosclerosis with diffuse wall thickening should warrant a differential diagnosis from other steno-occlusive diseases, including moyamoya diseases and Takayasu aortitis.

15.
Int J Biol Macromol ; 257(Pt 2): 128623, 2024 Feb.
Article En | MEDLINE | ID: mdl-38070810

The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a serious threat to human. Since there are still no effective treatment options against the new emerging variants of SARS-CoV-2, it is necessary to devote a continuous endeavor for more targeted drugs and the preparation for the next pandemic. Salvia miltiorrhiza and its active ingredients possess wide antiviral activities, including against SARS-CoV-2. Danshensu, as one of the most important active ingredients in Salvia miltiorrhiza, has been reported to inhibit the entry of SARS-CoV-2 into ACE2 (angiotensin-converting enzyme 2)-overexpressed HEK-293T cells and Vero-E6 cells. However, there is a paucity of information regarding its detailed target and mechanism against SARS-CoV-2. Here, we present Danshensu as a covalent inhibitor of 3-chymotrypsin-like protease (3CLpro) against SARS-CoV-2 by the time-dependent inhibition assay (TDI) and mass spectrometry analysis. Further molecular docking, site-directed mutagenesis, circular dichroism (CD) and fluorescence spectra revealed that Danshensu covalently binds to C145 of SARS-CoV-2 3CLpro, meanwhile forming the hydrogen bonds with S144, H163 and E166 in the S1 site. Structure-based optimization of Danshensu led to the discovery of the promising compounds with good inhibitory activity and microsomal stability in vitro. Due to Danshensu inhibiting lung inflammation in the mouse model, we found that Danshensu derivatives also showed better anti-inflammatory activity than Danshensu in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Thus, our study provides not only the clue of the efficacy of Salvia miltiorrhiza against SARS-CoV-2, but also a detailed mechanistic insight into the covalent mode of action of Danshensu for design of covalent inhibitors against SARS-CoV-2 3CLpro, highlighting its potential as a bifunctional molecule with antivirus and anti-inflammation.


COVID-19 , Lactates , SARS-CoV-2 , Animals , Mice , Humans , Molecular Docking Simulation , Viral Nonstructural Proteins/chemistry , Antiviral Agents/chemistry , Peptide Hydrolases/pharmacology , Protease Inhibitors/pharmacology
16.
J Med Virol ; 95(11): e29208, 2023 11.
Article En | MEDLINE | ID: mdl-37947293

The main proteases (Mpro ) are highly conserved cysteine-rich proteins that can be covalently modified by numerous natural and synthetic compounds. Herein, we constructed an integrative approach to efficiently discover covalent inhibitors of Mpro from complex herbal matrices. This work begins with biological screening of 60 clinically used antiviral herbal medicines, among which Lonicera japonica Flos (LJF) demonstrated the strongest anti-Mpro effect (IC50 = 37.82 µg/mL). Mass spectrometry (MS)-based chemical analysis and chemoproteomic profiling revealed that LJF extract contains at least 50 constituents, of which 22 exhibited the capability to covalently modify Mpro . We subsequently verified the anti-Mpro effects of these covalent binders. Gallic acid and quercetin were found to potently inhibit severe acute respiratory syndrome coronavirus 2 Mpro in dose- and time- dependent manners, with the IC50 values below 10 µM. The inactivation kinetics, binding affinity and binding mode of gallic acid and quercetin were further characterized by fluorescence resonance energy transfer, surface plasmon resonance, and covalent docking simulations. Overall, this study established a practical approach for efficiently discovering the covalent inhibitors of Mpro from herbal medicines by integrating target-based high-throughput screening and MS-based assays, which would greatly facilitate the discovery of key antiviral constituents from medicinal plants.


COVID-19 , Plants, Medicinal , Humans , SARS-CoV-2 , High-Throughput Screening Assays , Quercetin/pharmacology , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Plant Extracts/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Gallic Acid/pharmacology , Molecular Docking Simulation
17.
Front Bioeng Biotechnol ; 11: 1279473, 2023.
Article En | MEDLINE | ID: mdl-38026850

Single-nucleotide polymorphism (SNP) plays a key role in the carcinogenesis of the human genome, and understanding the intrinsic relationship between individual genetic variations and carcinogenesis lies heavily in the establishment of a precise and sensitive SNP detection platform. Given this, a powerful and reliable SNP detection platform is proposed by a flap endonuclease 1 (FEN 1)-driven DNA walker-like reaction coupling with a magnetic bead (MB)-based separation. A carboxyfluorescein (FAM)-labeled downstream probe (DP) was decorated on a streptavidin magnetic bead (SMB). The target DNA, as a walker strand, was captured by hybridization with DP and an upstream probe (UP) to form a three-base overlapping structure and execute the walking function on the surface of SMB. FEN 1 was employed to specifically recognize the three-base overlapping structure and cut the 5'flap at the SNP site to report the walking event and signal amplification. Considering the fact that the fluorescence was labeled on the cleavage and uncleavage sequences of DP and the target DNA-triggered walking event was undistinguishable from the mixtures, magnetic separation came in handy for cleavage probe (CP) isolation and discrimination of the amplified signal from the background signal. In comparison with the conventional DNA walker reaction, this strategy was coupling with SMB-based separation, thus promising a powerful and reliable method for SNP detection and signal amplification.

19.
Am J Chin Med ; 51(7): 1823-1843, 2023.
Article En | MEDLINE | ID: mdl-37650420

Traditional Chinese Medicine (TCM) prescriptions are organically composed of compatible herbs according to the TCM theory. The complex ingredients of TCM could act on multiple targets through various pathways simultaneously to exert pharmacological effects, making TCM an unrivaled gem in the medical world. However, due to a lack of comprehensive and standard study methods, the research of TCM products has been quite limited. A novel paradigm that could aid in the discovery of the material basis and fully clarify the mechanism of TCM prescriptions is urgently needed. In this study, a similarity analysis based on molecular fingerprints was adopted to explore the representative molecules of the Tiaoxin recipe, a Chinese patent formula approved by the National Medical Products Administration (NMPA) for the treatment of mild-to-moderate Alzheimer's disease (AD), and 38 out of 1047 chemicals were finally screened out. Next, we tried to define a new concept of a "functional molecule cluster" for chemicals with similar pharmacological effects to elucidate how the chemical mixture from TCMs produce their therapeutic effects. Four anti-AD functional molecule clusters from the Tiaoxin recipe were identified: an anti-inflammatory cluster, an anti-ROS cluster, an anti-AChE activity cluster, and an anti-A[Formula: see text] aggregation cluster. Furthermore, the chemicals from the anti-inflammatory cluster and anti-ROS cluster were proved to display their multi-target and multi-pathway roles partially or mainly through molecules of the TLR4-MYD88-NF-[Formula: see text]B and Keap1-Nrf2-ARE pathways. The functional molecule clusters may be vital to the explanation of the efficacy of the Tiaoxin recipe, which could give us a more profound understanding of TCM prescriptions. Our paradigm may open a novel path for TCM research.

20.
Eur Radiol ; 33(12): 8477-8487, 2023 Dec.
Article En | MEDLINE | ID: mdl-37389610

OBJECTIVE: The current study aimed to explore a deep convolutional neural network (DCNN) model that integrates multidimensional CMR data to accurately identify LV paradoxical pulsation after reperfusion by primary percutaneous coronary intervention with isolated anterior infarction. METHODS: A total of 401 participants (311 patients and 90 age-matched volunteers) were recruited for this prospective study. The two-dimensional UNet segmentation model of the LV and classification model for identifying paradoxical pulsation were established using the DCNN model. Features of 2- and 3-chamber images were extracted with 2-dimensional (2D) and 3D ResNets with masks generated by a segmentation model. Next, the accuracy of the segmentation model was evaluated using the Dice score and classification model by receiver operating characteristic (ROC) curve and confusion matrix. The areas under the ROC curve (AUCs) of the physicians in training and DCNN models were compared using the DeLong method. RESULTS: The DCNN model showed that the AUCs for the detection of paradoxical pulsation were 0.97, 0.91, and 0.83 in the training, internal, and external testing cohorts, respectively (p < 0.001). The 2.5-dimensional model established using the end-systolic and end-diastolic images combined with 2-chamber and 3-chamber images was more efficient than the 3D model. The discrimination performance of the DCNN model was better than that of physicians in training (p < 0.05). CONCLUSIONS: Compared to the model trained by 2-chamber or 3-chamber images alone or 3D multiview, our 2.5D multiview model can combine the information of 2-chamber and 3-chamber more efficiently and obtain the highest diagnostic sensitivity. CLINICAL RELEVANCE STATEMENT: A deep convolutional neural network model that integrates 2-chamber and 3-chamber CMR images can identify LV paradoxical pulsation which correlates with LV thrombosis, heart failure, ventricular tachycardia after reperfusion by primary percutaneous coronary intervention with isolated anterior infarction. KEY POINTS: • The epicardial segmentation model was established using the 2D UNet based on end-diastole 2- and 3-chamber cine images. • The DCNN model proposed in this study had better performance for discriminating LV paradoxical pulsation accurately and objectively using CMR cine images after anterior AMI compared to the diagnosis of physicians in training. • The 2.5-dimensional multiview model combined the information of 2- and 3-chamber efficiently and obtained the highest diagnostic sensitivity.


Deep Learning , Myocardial Infarction , Humans , Prospective Studies , Magnetic Resonance Imaging , Neural Networks, Computer , Myocardial Infarction/diagnostic imaging
...