Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.637
1.
Front Cell Infect Microbiol ; 14: 1386462, 2024.
Article En | MEDLINE | ID: mdl-38725448

Introduction: The Nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway has been extensively studied for its role in regulating antioxidant and antiviral responses. The Equid herpesvirus type 8 (EqHV-8) poses a significant threat to the equine industry, primarily manifesting as respiratory disease, abortions, and neurological disorders in horses and donkeys. Oxidative stress is considered a key factor associated with pathogenesis of EqHV-8 infection. Unfortunately, there is currently a dearth of therapeutic interventions available for the effective control of EqHV-8. Rutin has been well documented for its antioxidant and antiviral potential. In current study we focused on the evaluation of Rutin as a potential therapeutic agent against EqHV-8 infection. Methods: For this purpose, we encompassed both in-vitro and in-vivo investigations to assess the effectiveness of Rutin in combatting EqHV-8 infection. Results and Discussion: The results obtained from in vitro experiments demonstrated that Rutin exerted a pronounced inhibitory effect on EqHV-8 at multiple stages of the viral life cycle. Through meticulous experimentation, we elucidated that Rutin's antiviral action against EqHV-8 is intricately linked to the Nrf2/HO-1 signaling pathway-mediated antioxidant response. Activation of this pathway by Rutin was found to significantly impede EqHV-8 replication, thereby diminishing the viral load. This mechanistic insight not only enhances our understanding of the antiviral potential of Rutin but also highlights the significance of antioxidant stress responses in combating EqHV-8 infection. To complement our in vitro findings, we conducted in vivo studies employing a mouse model. These experiments revealed that Rutin administration resulted in a substantial reduction in EqHV-8 infection within the lungs of the mice, underscoring the compound's therapeutic promise in vivo. Conclusion: In summation, our finding showed that Rutin holds promise as a novel and effective therapeutic agent for the prevention and control of EqHV-8 infections.


Antiviral Agents , Heme Oxygenase-1 , Herpesviridae Infections , NF-E2-Related Factor 2 , Oxidative Stress , Rutin , Signal Transduction , Rutin/pharmacology , Rutin/therapeutic use , Animals , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Signal Transduction/drug effects , Heme Oxygenase-1/metabolism , Mice , Herpesviridae Infections/drug therapy , Antiviral Agents/pharmacology , Virus Replication/drug effects , Disease Models, Animal , Antioxidants/pharmacology , Cell Line , Viral Load/drug effects , Horses , Female , Membrane Proteins
2.
Int J Biol Sci ; 20(7): 2454-2475, 2024.
Article En | MEDLINE | ID: mdl-38725854

The emergence of Poly (ADP-ribose) polymerase inhibitors (PARPi) has marked the beginning of a precise targeted therapy era for ovarian cancer. However, an increasing number of patients are experiencing primary or acquired resistance to PARPi, severely limiting its clinical application. Deciphering the underlying mechanisms of PARPi resistance and discovering new therapeutic targets is an urgent and critical issue to address. In this study, we observed a close correlation between glycolysis, tumor angiogenesis, and PARPi resistance in ovarian cancer. Furthermore, we discovered that the natural compound Paris saponin VII (PS VII) partially reversed PARPi resistance in ovarian cancer and demonstrated synergistic therapeutic effects when combined with PARPi. Additionally, we found that PS VII potentially hindered glycolysis and angiogenesis in PARPi-resistant ovarian cancer cells by binding and stabilizing the expression of RORα, thus further inhibiting ECM1 and interfering with the VEGFR2/FAK/AKT/GSK3ß signaling pathway. Our research provides new targeted treatment for clinical ovarian cancer therapy and brings new hope to patients with PARPi-resistant ovarian cancer, effectively expanding the application of PARPi in clinical treatment.


Diosgenin/analogs & derivatives , Glycolysis , Neovascularization, Pathologic , Ovarian Neoplasms , Saponins , Signal Transduction , Vascular Endothelial Growth Factor Receptor-2 , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Saponins/pharmacology , Saponins/therapeutic use , Signal Transduction/drug effects , Glycolysis/drug effects , Cell Line, Tumor , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Drug Resistance, Neoplasm/drug effects , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Animals , Mice, Nude , Mice , Angiogenesis
3.
Article En | MEDLINE | ID: mdl-38775012

Biophysical and biochemical cues of biomaterials can regulate cell behaviors. Dental pulp stem cells (DPSCs) in pulp tissues can differentiate to odontoblast-like cells and secrete reparative dentin to form a barrier to protect the underlying pulp tissues and enable complete pulp healing. Promotion of the odontogenic differentiation of DPSCs is essential for dentin regeneration. The effects of the surface potentials of biomaterials on the adhesion and odontogenic differentiation of DPSCs remain unclear. Here, poly(vinylidene fluoride-trifluoro ethylene) (P(VDF-TrFE)) films with different surface potentials were prepared by the spin-coating technique and the contact poling method. The cytoskeletal organization of DPSCs grown on P(VDF-TrFE) films was studied by immunofluorescence staining. Using atomic force microscopy (AFM), the lateral detachment forces of DPSCs from P(VDF-TrFE) films were quantified. The effects of electrical stimulation generated from P(VDF-TrFE) films on odontogenic differentiation of DPSCs were evaluated in vitro and in vivo. The unpolarized, positively polarized, and negatively polarized films had surface potentials of -52.9, +902.4, and -502.2 mV, respectively. DPSCs on both negatively and positively polarized P(VDF-TrFE) films had larger cell areas and length-to-width ratios than those on the unpolarized films (P < 0.05). During the detachment of DPSCs from P(VDF-TrFE) films, the average magnitudes of the maximum detachment forces were 29.4, 72.1, and 53.9 nN for unpolarized, positively polarized, and negatively polarized groups, respectively (P < 0.05). The polarized films enhanced the mineralization activities and increased the expression levels of the odontogenic-related proteins of DPSCs compared to the unpolarized films (P < 0.05). The extracellular signal-regulated kinase (ERK) signaling pathway was involved in the odontogenic differentiation of DPSCs as induced by surface charge. In vivo, the polarized P(VDF-TrFE) films enhanced adhesion of DPSCs and promoted the odontogenic differentiation of DPSCs by electrical stimulation, demonstrating a potential application of electroactive biomaterials for reparative dentin formation in direct pulp capping.

4.
J Agric Food Chem ; 2024 May 22.
Article En | MEDLINE | ID: mdl-38776233

Lipid peroxidation (LP) leads to changes in the fluidity and permeability of cell membranes, affecting normal cellular function and potentially triggering apoptosis or necrosis. This process is closely correlated with the onset of many diseases. Evidence suggests that the phenolic hydroxyl groups in food-borne plant polyphenols (FPPs) make them effective antioxidants capable of preventing diseases triggered by cell membrane LP. Proper dietary intake of FPPs can attenuate cellular oxidative stress, especially damage to cell membrane phospholipids, by activating the Nrf2/GPx4 pathway. Nuclear factor E2-related factor 2 (Nrf2) is an oxidative stress antagonist. The signaling pathway regulated by Nrf2 is a defense transduction pathway of the organism against external stimuli such as reactive oxygen species and exogenous chemicals. Glutathione peroxidase 4 (GPx4), under the regulation of Nrf2, is the only enzyme that reduces cell membrane lipid peroxides with specificity, thus playing a pivotal role in regulating cellular ferroptosis and counteracting oxidative stress. This study explored the Nrf2/GPx4 pathway mechanism, antioxidant activity of FPPs, and mechanism of LP. It also highlighted the bioprotective properties of FPPs against LP and its associated mechanisms, including (i) activation of the Nrf2/GPx4 pathway, with GPx4 potentially serving as a central target protein, (ii) regulation of antioxidant enzyme activities, leading to a reduction in the production of ROS and other peroxides, and (iii) antioxidant effects on LP and downstream phospholipid structure. In conclusion, FPPs play a crucial role as natural antioxidants in preventing LP. However, further in-depth analysis of FPPs coregulation of multiple signaling pathways is required, and the combined effects of these mechanisms need further evaluation in experimental models. Human trials could provide valuable insights into new directions for research and application.

5.
Bioelectrochemistry ; 158: 108723, 2024 Aug.
Article En | MEDLINE | ID: mdl-38733720

Bidirectional electron transfer is about that exoelectrogens produce bioelectricity via extracellular electron transfer at anode and drive cytoplasmic biochemical reactions via extracellular electron uptake at cathode. The key factor to determine above bioelectrochemical performances is the electron transfer efficiency under biocompatible abiotic/biotic interface. Here, a graphene/polyaniline (GO/PANI) nanocomposite electrode specially interfacing exoelectrogens (Shewanella loihica) and augmenting bidirectional electron transfer was conducted by in-situ electrochemical modification on carbon paper (CP). Impressively, the GO/PANI@CP electrode tremendously improved the performance of exoelectrogens at anode for wastewater treatment and bioelectricity generation (about 54 folds increase of power density compared to blank CP electrode). The bacteria on electrode surface not only showed fast electron release but also exhibited high electricity density of extracellular electron uptake through the proposed direct electron transfer pathway. Thus, the cathode applications of microbial electrosynthesis and bio-denitrification were developed via GO/PANI@CP electrode, which assisted the close contact between microbial outer-membrane cytochromes and nanocomposite electrode for efficient nitrate removal (0.333 mM/h). Overall, nanocomposite modified electrode with biocompatible interfaces has great potential to enhance bioelectrochemical reactions with exoelectrogens.


Bioelectric Energy Sources , Electrodes , Graphite , Graphite/chemistry , Electron Transport , Bioelectric Energy Sources/microbiology , Aniline Compounds/chemistry , Aniline Compounds/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Shewanella/metabolism , Nanocomposites/chemistry , Electrochemical Techniques/methods
6.
Front Immunol ; 15: 1395047, 2024.
Article En | MEDLINE | ID: mdl-38694500

The emergence of resistance to prostate cancer (PCa) treatment, particularly to androgen deprivation therapy (ADT), has posed a significant challenge in the field of PCa management. Among the therapeutic options for PCa, radiotherapy, chemotherapy, and hormone therapy are commonly used modalities. However, these therapeutic approaches, while inducing apoptosis in tumor cells, may also trigger stress-induced premature senescence (SIPS). Cellular senescence, an entropy-driven transition from an ordered to a disordered state, ultimately leading to cell growth arrest, exhibits a dual role in PCa treatment. On one hand, senescent tumor cells may withdraw from the cell cycle, thereby reducing tumor growth rate and exerting a positive effect on treatment. On the other hand, senescent tumor cells may secrete a plethora of cytokines, growth factors and proteases that can affect neighboring tumor cells, thereby exerting a negative impact on treatment. This review explores how radiotherapy, chemotherapy, and hormone therapy trigger SIPS and the nuanced impact of senescent tumor cells on PCa treatment. Additionally, we aim to identify novel therapeutic strategies to overcome resistance in PCa treatment, thereby enhancing patient outcomes.


Cellular Senescence , Drug Resistance, Neoplasm , Prostatic Neoplasms , Humans , Cellular Senescence/drug effects , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Prostatic Neoplasms/metabolism , Animals
7.
Polymers (Basel) ; 16(10)2024 May 12.
Article En | MEDLINE | ID: mdl-38794572

Self-melting ice asphalt pavement materials inhibit pavement freezing and improve driving safety. This paper aims to study the long-term salt release characteristics of self-melting ice asphalt mixtures and the impact on pavement after complete salt release. Firstly, a method to accelerate the rapid release of salt based on the Los Angeles abrasion tester. Then, long-term salt release patterns were elucidated under the influence of deicing agent dosage, type of asphalt, and type of gradation. Finally, a quantitative analysis of the pavement performance after complete salt release is conducted. The results indicate that the release efficiency of the Los Angeles abrasion tester method has increased by 91 times compared to the magnetic stirrer immersion flushing method and by 114 times compared to the natural soaking method. The SBS-modified self-melting ice asphalt mixture possesses a longer duration of salt release, but the uniformity of salt release is inferior. Salt release duration is directly proportional to the dosage of deicing agents. SMA-13 self-melting ice asphalt mixture exhibits poorer uniformity in salt release. After complete salt release, high-temperature stability of self-melting ice asphalt mixtures decreased by 31.6%, low-temperature performance decreased by 15.4%, water stability decreased by 26.7%, and fatigue life decreased by 35.9%.

8.
Database (Oxford) ; 20242024 May 27.
Article En | MEDLINE | ID: mdl-38803273

Fish, being a crucial component of aquatic ecosystems, holds significant importance from both economic and ecological perspectives. However, the identification of fish at the species level remains challenging, and there is a lack of a taxonomically complete and comprehensive reference sequence database for fish. Therefore, we developed CoSFISH, an online fish database. Currently, the database contains 21 535 cytochrome oxidase I sequences and 1074 18S rRNA sequences of 21 589 species, belonging to 8 classes and 90 orders. We additionally incorporate online analysis tools to aid users in comparing, aligning and analyzing sequences, as well as designing primers. Users can upload their own data for analysis, in addition to using the data stored in the database directly. CoSFISH offers an extensive fish database and incorporates online analysis tools, making it a valuable resource for the study of fish diversity, phylogenetics and biological evolution. Database URL:  http://210.22.121.250:8888/CoSFISH/home/indexPage.


DNA Barcoding, Taxonomic , Electron Transport Complex IV , Fishes , RNA, Ribosomal, 18S , Animals , Fishes/genetics , Fishes/classification , RNA, Ribosomal, 18S/genetics , Electron Transport Complex IV/genetics , DNA Barcoding, Taxonomic/methods , Databases, Genetic , Phylogeny , Databases, Nucleic Acid
9.
Int Immunopharmacol ; 134: 112241, 2024 May 17.
Article En | MEDLINE | ID: mdl-38761782

Ulcerative colitis (UC) is a main form of inflammatory bowel disease (IBD), which is a chronic and immune-mediated inflammatory disease. Moringin (MOR) is an isothiocyanate isolated from Moringa oleifera Lam., and has been recognized as a promising potent drug for inflammatory diseases and antibacterial infections. The present study investigated the role of moringin in dextran sulfate sodium (DSS)-induced UC mice. Mouse colitis was induced by adding DSS to the drinking water for seven consecutive days. Our experimental results showed that MOR relieves DSS-induced UC in mice by increasing body weight and colonic length, and reducing the disease activity index and histological injury. Mechanistically, MOR improves intestinal barrier function by increasing the expression of tight junction proteins (TJPs) and enhancing the secretion of mucin in DSS-induced mice. MOR inhibits inflammatory response and intestinal damage by regulating Nrf2/NF-κB signaling pathway and modulating the PI3K/AKT/mTOR pathway. Furthermore, in Nrf2 knockout (Nrf2-/-) mice, the protective effects of MOR on DSS-induced UC were abolished. Meanwhile, treatment with MOR reduced inflammation and cell damage via regulating Nrf2/NF-κB pathway in a lipopolysaccharide (LPS)-induced inflammation model of Caco-2 cells. In contrast, ML385, an Nrf2 inhibitor, might eliminate the protection provided by MOR. Notably, treatment with MOR significantly up-regulated the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), suggesting that MOR may be a potential PPAR-γ activator. In conclusion, MOR exerts protective effect in UC by improving intestinal barrier function, regulating Nrf2/NF-κB and PI3K/AKT/mTOR signaling pathways, and another effect associated with the regulation of PPAR-γ expression.

10.
J Ethnopharmacol ; 330: 118232, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38670407

ETHNOPHARMACOLOGICAL RELEVANCE: Arbutin is a naturally occurring glucoside extracted from plants, known for its antioxidant and tyrosinase inhibiting properties. It is widely used in cosmetic and pharmaceutical industries. With in-depth study of arbutin, its application in disease treatment is expanding, presenting promising development prospects. However, reports on the metabolic stability, plasma protein binding rate, and pharmacokinetic properties of arbutin are scarce. AIM OF THE STUDY: The aim of this study is to enrich the data of metabolic stability and pharmacokinetics of arbutin through the early pre-clinical evaluation, thereby providing some experimental basis for advancing arbutin into clinical research. MATERIALS AND METHODS: We developed an efficient and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for determining arbutin in plasma. We investigated the metabolic and pharmacokinetic properties of arbutin through in vitro metabolism assay, cytochrome enzymes P450 (CYP450) inhibition studies, plasma protein binding rate analysis, Caco-2 cell permeability tests, and rat pharmacokinetics to understand its in vivo performance. RESULTS: In vitro studies show that arbutin is stable, albeit with some species differences. It exhibits low plasma protein binding (35.35 ± 11.03% âˆ¼ 40.25 ± 2.47%), low lipophilicity, low permeability, short half-life (0.42 ± 0.30 h) and high oral bioavailability (65 ± 11.6%). Arbutin is primarily found in the liver and kidneys and is eliminated in the urine. It does not significantly inhibit CYP450 up to 10 µM, suggesting a low potential for drug interactions. Futhermore, preliminary toxicological experiments indicate arbutin's safety, supporting its potential as a therapeutic agent. CONCLUSION: This study provides a comprehensive analysis the drug metabolism and pharmacokinetics (DMPK) of arbutin, enriching our understanding of its metabolism stability and pharmacokinetics properties, It establishes a foundation for further structural optimization, pharmacological studies, and the clinical development of arbutin.


Arbutin , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Arbutin/pharmacokinetics , Arbutin/pharmacology , Tandem Mass Spectrometry/methods , Animals , Humans , Caco-2 Cells , Male , Chromatography, Liquid/methods , Rats , Microsomes, Liver/metabolism , Microsomes, Liver/drug effects , Protein Binding , Cytochrome P-450 Enzyme System/metabolism , Biological Products/pharmacokinetics , Biological Products/pharmacology , Biological Products/chemistry , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme Inhibitors/pharmacokinetics , Liquid Chromatography-Mass Spectrometry
11.
Angew Chem Int Ed Engl ; 63(23): e202405140, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38584136

Little is known about the structures and catalytic mechanisms of sesterterpene synthases (StTSs), which greatly hinders the structure-based engineering of StTSs for structural diversity expansion of sesterterpenes. We here report on the crystal structures of the terpene cyclization (TC) domains of two fungal StTSs: sesterfisherol synthase (NfSS) and sesterbrasiliatriene synthase (PbSS). Both TC structures contain benzyltriethylammonium chloride (BTAC), pyrophosphate (PPi), and magnesium ions (Mg2+), clearly defining the catalytic active sites. A combination of theory and experiments including carbocationic intermediates modeling, site-directed mutagenesis, and isotope labeling provided detailed insights into the structural basis for their catalytic mechanisms. Structure-based engineering of NfSS and PbSS resulted in the formation of 20 sesterterpenes including 13 new compounds and four pairs of epimers with different configurations at C18. These results expand the structural diversity of sesterterpenes and provide important insights for future synthetic biology research.


Sesterterpenes , Sesterterpenes/chemistry , Sesterterpenes/metabolism , Cyclization , Terpenes/metabolism , Terpenes/chemistry , Alkyl and Aryl Transferases/metabolism , Alkyl and Aryl Transferases/chemistry , Alkyl and Aryl Transferases/genetics , Protein Engineering , Catalytic Domain , Models, Molecular , Crystallography, X-Ray
12.
Respir Res ; 25(1): 186, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678295

BACKGROUND: Influenza A viruses (IAV) are extremely common respiratory viruses for the acute exacerbation of chronic obstructive pulmonary disease (AECOPD), in which IAV infection may further evoke abnormal macrophage polarization, amplify cytokine storms. Melatonin exerts potential effects of anti-inflammation and anti-IAV infection, while its effects on IAV infection-induced AECOPD are poorly understood. METHODS: COPD mice models were established through cigarette smoke exposure for consecutive 24 weeks, evaluated by the detection of lung function. AECOPD mice models were established through the intratracheal atomization of influenza A/H3N2 stocks in COPD mice, and were injected intraperitoneally with melatonin (Mel). Then, The polarization of alveolar macrophages (AMs) was assayed by flow cytometry of bronchoalveolar lavage (BAL) cells. In vitro, the effects of melatonin on macrophage polarization were analyzed in IAV-infected Cigarette smoking extract (CSE)-stimulated Raw264.7 macrophages. Moreover, the roles of the melatonin receptors (MTs) in regulating macrophage polarization and apoptosis were determined using MTs antagonist luzindole. RESULTS: The present results demonstrated that IAV/H3N2 infection deteriorated lung function (reduced FEV20,50/FVC), exacerbated lung damages in COPD mice with higher dual polarization of AMs. Melatonin therapy improved airflow limitation and lung damages of AECOPD mice by decreasing IAV nucleoprotein (IAV-NP) protein levels and the M1 polarization of pulmonary macrophages. Furthermore, in CSE-stimulated Raw264.7 cells, IAV infection further promoted the dual polarization of macrophages accompanied with decreased MT1 expression. Melatonin decreased STAT1 phosphorylation, the levels of M1 markers and IAV-NP via MTs reflected by the addition of luzindole. Recombinant IL-1ß attenuated the inhibitory effects of melatonin on IAV infection and STAT1-driven M1 polarization, while its converting enzyme inhibitor VX765 potentiated the inhibitory effects of melatonin on them. Moreover, melatonin inhibited IAV infection-induced apoptosis by suppressing IL-1ß/STAT1 signaling via MTs. CONCLUSIONS: These findings suggested that melatonin inhibited IAV infection, improved lung function and lung damages of AECOPD via suppressing IL-1ß/STAT1-driven macrophage M1 polarization and apoptosis in a MTs-dependent manner. Melatonin may be considered as a potential therapeutic agent for influenza virus infection-induced AECOPD.


Apoptosis , Influenza A Virus, H3N2 Subtype , Melatonin , Pulmonary Disease, Chronic Obstructive , Animals , Melatonin/pharmacology , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/virology , Pulmonary Disease, Chronic Obstructive/physiopathology , Mice , Apoptosis/drug effects , RAW 264.7 Cells , Influenza A Virus, H3N2 Subtype/drug effects , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/immunology , Mice, Inbred C57BL , Male , Macrophages/drug effects , Macrophages/metabolism , Disease Progression , Cell Polarity/drug effects , Disease Models, Animal , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/virology
13.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 398-405, 2024 Apr 25.
Article Zh | MEDLINE | ID: mdl-38686423

The electroencephalogram (EEG) signal is the key signal carrier of the brain-computer interface (BCI) system. The EEG data collected by the whole-brain electrode arrangement is conducive to obtaining higher information representation. Personalized electrode layout, while ensuring the accuracy of EEG signal decoding, can also shorten the calibration time of BCI and has become an important research direction. This paper reviews the EEG signal channel selection methods in recent years, conducts a comparative analysis of the combined effects of different channel selection methods and different classification algorithms, obtains the commonly used channel combinations in motor imagery, P300 and other paradigms in BCI, and explains the application scenarios of the channel selection method in different paradigms are discussed, in order to provide stronger support for a more accurate and portable BCI system.


Algorithms , Brain-Computer Interfaces , Electroencephalography , Signal Processing, Computer-Assisted , Humans , Brain/physiology , Electrodes , Event-Related Potentials, P300/physiology , Imagination/physiology
14.
Biomed Pharmacother ; 175: 116653, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38688172

Huangqi Guizhi Wuwu Decoction (HQGZWWD) has shown promising potential in treating various cardiovascular diseases. This study aimed to elucidate the molecular basis and therapeutic role of HQGZWWD in the treatment of doxorubicin (DOX)-induced myocardial injury. The HPLC fingerprint of HQGZWWD was used to analyze the active components. A DOX-induced myocardial damage rat model was developed, and the therapeutic effects of HQGZWWD were evaluated using echocardiography, myocardial enzyme levels, and hematoxylin and eosin staining. Network pharmacology was used to screen treatment targets, and western blotting and immunohistochemistry were performed to assess cellular pyroptosis levels. Oxidative stress levels were measured using assay kits, and mitochondrial damage was examined using transmission electron microscopy. An in vitro model of DOX-induced cell damage was established, and treatment was administered using serum containing HQGZWWD and N-acetylcysteine (NAC). Oxidative stress levels were detected using assay kits and DCFH-DA, whereas cellular pyroptosis levels were assessed through WB, immunofluorescence, and ELISA assays. HQGZWWD ameliorated DOX-induced myocardial injury. Network pharmacology identified IL-1ß and IL-18 as crucial targets. HQGZWWD downregulated the protein levels of the inflammatory factors IL-1ß and IL-18, inhibited the expression of GSDMD-NT, and simultaneously suppressed the synthesis of Caspase-1, ASC, NLRP3, and Caspase-11. Additionally, HQGZWWD inhibited oxidative stress, and the use of NAC as an oxidative stress inhibitor resulted in significant inhibition of the GSDMD-NT protein in H9C2 cells. These findings highlight the myocardial protective effects of HQGZWWD by inhibiting oxidative stress and suppressing both canonical and non-canonical pyroptotic pathways.

15.
Cell Death Dis ; 15(4): 300, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684648

The treatment of hepatocellular carcinoma (HCC) is particularly challenging due to the inherent tumoral heterogeneity and easy resistance towards chemotherapy and immunotherapy. Arsenic trioxide (ATO) has emerged as a cytotoxic agent effective for treating solid tumors, including advanced HCC. However, its effectiveness in HCC treatment remains limited, and the underlying mechanisms are still uncertain. Therefore, this study aimed to characterize the effects and mechanisms of ATO in HCC. By evaluating the susceptibilities of human and murine HCC cell lines to ATO treatment, we discovered that HCC cells exhibited a range of sensitivity to ATO treatment, highlighting their inherent heterogeneity. A gene signature comprising 265 genes was identified to distinguish ATO-sensitive from ATO-insensitive cells. According to this signature, HCC patients have also been classified and exhibited differential features of ATO response. Our results showed that ATO treatment induced reactive oxygen species (ROS) accumulation and the activation of multiple cell death modalities, including necroptosis and ferroptosis, in ATO-sensitive HCC cells. Meanwhile, elevated tumoral immunogenicity was also observed in ATO-sensitive HCC cells. Similar effects were not observed in ATO-insensitive cells. We reported that ATO treatment induced mitochondrial injury and mtDNA release into the cytoplasm in ATO-sensitive HCC tumors. This subsequently activated the cGAS-STING-IFN axis, facilitating CD8+ T cell infiltration and activation. However, we found that the IFN pathway also induced tumoral PD-L1 expression, potentially antagonizing ATO-mediated immune attack. Additional anti-PD1 therapy promoted the anti-tumor response of ATO in ATO-sensitive HCC tumors. In summary, our data indicate that heterogeneous ATO responses exist in HCC tumors, and ATO treatment significantly induces immunogenic cell death (ICD) and activates the tumor-derived mtDNA-STING-IFN axis. These findings may offer a new perspective on the clinical treatment of HCC and warrant further study.


Arsenic Trioxide , Carcinoma, Hepatocellular , Immunogenic Cell Death , Liver Neoplasms , Membrane Proteins , Nucleotidyltransferases , Arsenic Trioxide/pharmacology , Arsenic Trioxide/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Humans , Animals , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice , Immunogenic Cell Death/drug effects , Cell Line, Tumor , Interferons/metabolism , Signal Transduction/drug effects , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL
16.
Bioengineering (Basel) ; 11(4)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38671769

The rapid serial visual presentation-based brain-computer interface (RSVP-BCI) system achieves the recognition of target images by extracting event-related potential (ERP) features from electroencephalogram (EEG) signals and then building target classification models. Currently, how to reduce the training and calibration time for classification models across different subjects is a crucial issue in the practical application of RSVP. To address this issue, a zero-calibration (ZC) method termed Attention-ProNet, which involves meta-learning with a prototype network integrating multiple attention mechanisms, was proposed in this study. In particular, multiscale attention mechanisms were used for efficient EEG feature extraction. Furthermore, a hybrid attention mechanism was introduced to enhance model generalization, and attempts were made to incorporate suitable data augmentation and channel selection methods to develop an innovative and high-performance ZC RSVP-BCI decoding model algorithm. The experimental results demonstrated that our method achieved a balance accuracy (BA) of 86.33% in the decoding task for new subjects. Moreover, appropriate channel selection and data augmentation methods further enhanced the performance of the network by affording an additional 2.3% increase in BA. The model generated by the meta-learning prototype network Attention-ProNet, which incorporates multiple attention mechanisms, allows for the efficient and accurate decoding of new subjects without the need for recalibration or retraining.

17.
J Agric Food Chem ; 72(17): 10106-10116, 2024 May 01.
Article En | MEDLINE | ID: mdl-38629120

The authentication of ingredients in formulas is crucial yet challenging, particularly for constituents with comparable compositions but vastly divergent efficacy. Rehmanniae Radix and its derivatives are extensively utilized in food supplements, which contain analogous compositions but very distinct effects. Rehmanniae Radix, also a difficult-to-detect herbal ingredient, was chosen as a case to explore a novel HPTLC-QDa MS technique for the identification of herbal ingredients in commercial products. Through systematic condition optimization, including thin layer and mass spectrometry, a stable and reproducible HPTLC-QDa MS method was established, which can simultaneously detect oligosaccharides and iridoids. Rehmannia Radix and its processed products were then analyzed to screen five markers that could distinguish between raw and prepared Rehmannia Radix. An HPTLC-QDa-SIM method was further established for formula detection by using the five markers and validated using homemade prescriptions and negative controls. Finally, this method was applied to detect raw and prepared Rehmannia Radix in 12 commercial functional products and supplements.


Drugs, Chinese Herbal , Rehmannia , Rehmannia/chemistry , Chromatography, Thin Layer/methods , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid/methods , Plant Roots/chemistry , Dietary Supplements/analysis , Mass Spectrometry/methods , Oligosaccharides/analysis , Oligosaccharides/chemistry , Iridoids/analysis , Iridoids/chemistry
18.
Soft Matter ; 20(19): 3923-3930, 2024 May 15.
Article En | MEDLINE | ID: mdl-38661471

An impact polypropylene copolymer (IPC), composed of polypropylene (PP) and ethylene-propylene copolymer (EPC), was synthesized through two-stage in-reactor polymerization. A systematic investigation of the crystalline structure, thermal behavior, morphology, and tensile properties of the IPC extruded cast film was conducted. Specifically, the morphology of EPC was obtained by confocal Raman imaging by depicting the spatial distribution of the Raman band located at 1064 cm-1. The EPC phase exhibits fibrous morphology with the long axis aligning along the machine direction (MD). A three-dimensional (3D) heterogeneous structure of the IPC cast film obtained by confocal Raman imaging confirms that the fibrous EPC phase is dispersed in a 3D framework of the PP matrix. The mesomorphic phase in the as-prepared cast film transforms to a stable α-form crystal after annealing at 130 °C, which improves the yield strength but decreases the elongation of the cast film. The WAXD and SAXS results indicate that there is no obvious orientation of the crystallites. Thus, the anisotropy of tensile properties in the MD and transverse directions is closely related to the anisotropic phase morphology at the micrometer scale. The results reveal that the mechanical performances of IPC films are determined by the crystalline structure of the PP matrix and the morphology.

19.
Toxicol Appl Pharmacol ; 486: 116946, 2024 May.
Article En | MEDLINE | ID: mdl-38679241

The pathogenesis of attention-deficit/hyperactivity disorder (ADHD) has not been fully elucidated. Gestational hypertension could double the probability of ADHD in the offspring, while the initial bacterial communication between the mother and offspring has been associated with psychiatric disorders. Thus, we hypothesize that antihypertensive treatment during pregnancy may abate the impairments in neurodevelopment of the offspring. To test this hypothesis, we chose Captopril and Labetalol, to apply to pregnant spontaneously hypertensive rat (SHR) dams and examined the outcomes in the male offspring. Our data demonstrated that maternal treatment with Captopril and Labetalol had long-lasting changes in gut microbiota and behavioral alterations, including decreased hyperactivity and increased curiosity, spatial learning and memory in the male offspring. Increased diversity and composition were identified, and some ADHD related bacteria were found to have the same change in the gut microbiota of both the dam and offspring after the treatments. LC-MS/MS and immunohistochemistry assays suggested elevated expression of brain derived neurotrophic factor (BDNF) and dopamine in the prefrontal cortex and striatum of offspring exposed to Captopril/ Labetalol, which may account for the improvement of the offspring's psychiatric functions. Therefore, our results support the beneficial long-term effects of the intervention of gestational hypertension in the prevention of ADHD.


Antihypertensive Agents , Attention Deficit Disorder with Hyperactivity , Behavior, Animal , Captopril , Gastrointestinal Microbiome , Prenatal Exposure Delayed Effects , Rats, Inbred SHR , Animals , Gastrointestinal Microbiome/drug effects , Pregnancy , Attention Deficit Disorder with Hyperactivity/drug therapy , Attention Deficit Disorder with Hyperactivity/chemically induced , Female , Antihypertensive Agents/pharmacology , Captopril/pharmacology , Male , Rats , Behavior, Animal/drug effects , Labetalol/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Hypertension, Pregnancy-Induced/chemically induced , Dopamine/metabolism
20.
Food Funct ; 15(9): 5088-5102, 2024 May 07.
Article En | MEDLINE | ID: mdl-38666497

Diets rich in taurine can increase the production of taurine-conjugated bile acids, which are known to exert antihypertensive effects. Despite their benefits to the heart, kidney and arteries, their role in the central nervous system during the antihypertensive process remains unclear. Since hypothalamic paraventricular nucleus (PVN) plays a key role in blood pressure regulation, we aimed to investigate the function of bile acids in the PVN. The concentration of bile acids in the PVN of spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto rats (WKY) fed with normal chow was measured using LC-MS/MS, which identified taurocholic acid (TCA) as the most down-regulated bile acid. To fully understand the mechanism of TCA's functions in the PVN, bi-lateral PVN micro-infusion of TCA was carried out. TCA treatment in the PVN led to a significant reduction in the blood pressure of SHRs, with decreased plasma levels of norepinephrine and improved morphology of cardiomyocytes. It also decreased the number of c-fos+ neurons, reduced the inflammatory response, and suppressed oxidative stress in the PVN of the SHRs. Most importantly, the TGR5 receptors in neurons and microglia were activated. PVN infusion of SBI-115, a TGR5 specific antagonist, was able to counteract with TCA in the blood pressure regulation of SHRs. In conclusion, TCA supplementation in the PVN of SHRs can activate TGR5 in neurons and microglia, reduce the inflammatory response and oxidative stress, suppress activated neurons, and attenuate hypertension.


Hypertension , Paraventricular Hypothalamic Nucleus , Rats, Inbred SHR , Rats, Inbred WKY , Receptors, G-Protein-Coupled , Taurocholic Acid , Animals , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Rats , Hypertension/drug therapy , Hypertension/metabolism , Male , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Blood Pressure/drug effects , Antihypertensive Agents/pharmacology , Neurons/drug effects , Neurons/metabolism
...