Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
Complement Ther Med ; : 103074, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39128532

ABSTRACT

BACKGROUND: The number of systematic reviews and meta-analyses (SRs/MAs) on acupuncture therapy for CRI is increasing; however, the credibility of the evidence remains unclear with controversial results, necessitating a comprehensive evaluation. OBJECTIVE: We aimed to critically assess the evidence in SRs/MAs regarding the effectiveness of acupuncture therapy for CRI from various aspects and conduct an exploratory analysis to identify potential issues. METHOD: Two reviewers conducted comprehensive searches in eight databases. SRs/MAs of randomized controlled trials are included. After screening according to inclusion and exclusion criteria, two reviewers extracted data from eligible SRs/MAs and conducted a detailed assessment of methodological quality, risk of bias, and quality of evidence using AMSTAR-2, ROBIS, and GRADE tools. Meanwhile, we calculated the Corrected Covered Area (CCA) leveraging the GROOVE tool. After manually excluding duplicate studies, we assess the risk of bias of primary studies extracted from SRs/MAs and conducted exploratory meta-analysis. RESULT: The comprehensive analysis included 10 SRs/MAs. The AMSRAT-2 results indicate significant methodological flaws in SRs/MAs, with the main issues focusing on the lack of provision of exclusion checklist for the studies. Furthermore, over half of the SRs/MAs have a high risk of bias due to incomplete retrieval and failure to follow the protocol. Most SRs/MAs demonstrated considerable completeness in reporting quality. Notably, the overall level of evidence is low. High overlap indicates redundant SRs/MAs. Exploratory analysis suggests that acupuncture therapy may be effective for CRI; however, with a high risk of bias, caution is needed in interpreting the results. Sensitivity analysis results are stable, and the funnel plot indicates no publication bias. Most SRs/MAs acknowledge the safety of acupuncture. CONCLUSION: Currently, the credibility of acupuncture therapy for treating CRI is low and improvements are needed in methodology, risk of bias, and quality of reporting. Acupuncture therapy shows potential but lacks sufficient support; high-level evidence is warranted to elucidate the effectiveness of acupuncture in treating CRI.

2.
Colloids Surf B Biointerfaces ; 242: 114087, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39003846

ABSTRACT

This study introduces a novel approach of repetitive modeling to simulate the pathological process of recurrent gout attacks in humans. This methodology addresses the instability issues present in rat models of gout, providing a more accurate representation of the damage recurrent gout episodes inflict on human skeletal systems. A soluble nanoneedle system encapsulating colchicine and iguratimod ethosomal formulations was developed. This system aims to modulate inflammatory cytokines and inhibit osteoclast activity, thereby treating inflammatory pain and bone damage associated with recurrent gout. Additionally, a comprehensive evaluation of the microneedles' appearance, morphology, mechanical properties, and penetration capability confirmed their effectiveness in penetrating the stratum corneum. Dissolution tests and skin irritation assessments demonstrated that these microneedles dissolve rapidly without irritating the skin. In vitro permeation studies indicated that transdermal drug delivery via these microneedles is more efficient and incurs lower drug loss compared to traditional topical applications. In vivo pharmacodynamic assessments conducted in animal models revealed significant analgesic and anti-inflammatory effects when both types of microneedles were used together. Further analyses, including X-ray imaging, hematoxylin and eosin (H&E) staining, Safranin-O/fast green staining, tartrate-resistant acid phosphatase staining, and quantification of osteoclasts, confirmed the bone-protective effects of the microneedle combination. In conclusion, the findings of this research underscore the potential of this novel therapeutic approach for clinical application in the treatment of recurrent gout.

3.
Ann Intern Med ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38976882

ABSTRACT

BACKGROUND: Methadone maintenance treatment (MMT) is effective for managing opioid use disorder, but adverse effects mean that optimal therapy occurs with the lowest dose that controls opioid craving. OBJECTIVE: To assess the efficacy of acupuncture versus sham acupuncture on methadone dose reduction. DESIGN: Multicenter, 2-group, randomized, sham-controlled trial. (Chinese Clinical Trial Registry: ChiCTR2200058123). SETTING: 6 MMT clinics in China. PARTICIPANTS: Adults aged 65 years or younger with opioid use disorder who attended clinic daily and had been using MMT for at least 6 weeks. INTERVENTION: Acupuncture or sham acupuncture 3 times a week for 8 weeks. MEASUREMENTS: The 2 primary outcomes were the proportion of participants who achieved a reduction in methadone dose of 20% or more compared with baseline and opioid craving, which was measured by the change from baseline on a 100-mm visual analogue scale (VAS). RESULTS: Of 118 eligible participants, 60 were randomly assigned to acupuncture and 58 were randomly assigned to sham acupuncture (2 did not receive acupuncture). At week 8, more patients reduced their methadone dose 20% or more with acupuncture than with sham acupuncture (37 [62%] vs. 16 [29%]; risk difference, 32% [97.5% CI, 13% to 52%]; P < 0.001). In addition, acupuncture was more effective in decreasing opioid craving than sham acupuncture with a mean difference of -11.7 mm VAS (CI, -18.7 to -4.8 mm; P < 0.001). No serious adverse events occurred. There were no notable differences between study groups when participants were asked which type of acupuncture they received. LIMITATION: Fixed acupuncture protocol limited personalization and only 12 weeks of follow-up after stopping acupuncture. CONCLUSION: Eight weeks of acupuncture were superior to sham acupuncture in reducing methadone dose and decreasing opioid craving. PRIMARY FUNDING SOURCE: National Natural Science Foundation of China.

4.
Zhen Ci Yan Jiu ; 49(7): 667-677, 2024 Jul 25.
Article in English, Chinese | MEDLINE | ID: mdl-39020484

ABSTRACT

OBJECTIVES: To observe the effect of electroacupuncture (EA) of "Zusanli" (ST36) and "Sanyinjiao" (SP6) on cancer pain and concomitant negative emotion in cancer pain model mice, and to explore its molecular mechanisms in the basolateral amygdala (BLA) by using transcriptomics techniques. METHODS: C57BL/6 mice were randomized into sham operation, model and EA groups, with 10 mice in each group. The cancer pain model was established by injecting PBS suspension containing Lewis lung cancer cells into the femur. The mice in the EA group received EA stimulation(1 mA, 2 Hz) on ST36 and SP6 from the 10th day after modeling, 20 min per day for 12 successive days. The bone damage of the distal femur was observed with X-ray and H.E. staining, respectively. The mechanical pain threshold (MPT) was detected by using von Frey. The depression-like behavior was detected by using sucrose-preference test (sucrose preference index in 12 h), and the immobility (feeling of despair) duration of forced swimming within 4 min. The BLA tissue was extracted for RNA sequencing (RNA library construction, and screening differential gene profiling by transcriptomic sequencing) and bioinformatics analysis. The real-time PCR was used to validate the mRNA expression of differentially expressed genes:tumor necrosis factor superfamily 8 (Tnfsf8), bone marrow stromal cell antigen 1 (Bst1), prodynorphin (Pdyn) and voltage-gated sodium channelß4 (Scn4b). RESULTS: H.E. staining and X-ray showed significant bone damage in the distal femur in cancer pain mice. In contrast to the sham operation group, the MPT on the 1st , 4th, 7th , 10th, 14th and 21st day after modeling and sucrose preference index were significantly decreased (P<0.001, P<0.000 1), and the immobility time of the forced swimming was considerably increased in the model group (P<0.001). In contrast to the model group, the MPT values on the 14th and 21st day and sucrose preference index were obviously increased (P<0.000 1, P<0.05), and the immobility time was strikingly decreased in the EA group (P<0.01). RNA sequencing showed that a total of 404 differentially expressed genes (205 up-regulated, 199 down-regulated) were screened in the model group compared with the sham operation group, and a total of 329 differentially expressed genes (206 up-regulated and 123 down-regulated) were screened in the EA group compared with the model group. Venn diagram analysis of the differentially expressed genes showed that 45 up-regulated and 28 down-regulated genes in the model group were completely reversed by EA. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the screened differentially expressed genes revealed that the above differential genes were mainly enriched in the ligand receptor activity, cytokine receptor binding, and cytokine activity related to neuro-inflammation, as well as in neuropeptide signaling pathways related to neuronal excitability, and calcium ion mediated signal transduction. The analysis of KEGG pathway showed that the differentially expressed genes were mainly enriched in the inflammation-related pathways, such as interleukin-17 pathway. Validation analysis of the differentially expressed genes showed that the expression levels of Tnfsf8 and Bst1 were significantly up-regulated in the model group compared with the sham operation group (P<0.01, P<0.05), and down-regulated by EA (P<0.01, P<0.05), while the expression levels of Pdyn and Scn4b were down-regulated in the model group in comparison with the sham operation group (P<0.01), and up-regulated by EA (P<0.05, P<0.01), which was consistent with the changing trend of the gene sequencing results. CONCLUSIONS: Acupuncture of ST36 and SP6 can significantly relieve cancer pain and concomitant negative emotion in cancer pain mice, which may be related to its functions in alleviating neuro-inflammation and relieving the abnormal activities of specific neurons in the BLA.


Subject(s)
Cancer Pain , Depression , Electroacupuncture , Mice, Inbred C57BL , Animals , Mice , Depression/therapy , Depression/metabolism , Depression/genetics , Depression/etiology , Humans , Cancer Pain/therapy , Cancer Pain/metabolism , Cancer Pain/genetics , Male , Basolateral Nuclear Complex/metabolism , Transcriptome , Female , Acupuncture Points , Enkephalins/metabolism , Enkephalins/genetics
5.
Exp Neurol ; 379: 114878, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38944330

ABSTRACT

Pharyngeal electrical stimulation (PES), a novel noninvasive peripheral nerve stimulation technique, can effectively improve neurogenic dysphagia and increase the safety and effectiveness of swallowing in the clinic. However, the lack of animal models for dysphagia has limited the mechanistic research on PES, which affects its wide application. Therefore, determining optimal parameters for PES in rats is needed to enable mechanistic studies. Modified PES (mPES), which has different waves and pulse widths from PES, was used; in previous studies mPES was found to have a neurological mechanism like that of PES. A poststroke dysphagia (PSD) model was established, and rats with dysphagia were grouped into three different intensities (0.1 mA, 0.5 mA, and 1 mA) for the selection of optimal intensity and three different frequencies (1 Hz, 2 Hz, and 5 Hz) for the selection of optimal frequency based on a stimulation duration of 10 min in the clinic. A Videofluroscopic Swallow Screen (VFSS) was used to assess swallowing function in rats before and after mPES treatment. The results showed that the 1 mA group had better swallowing function (p < 0.05) than the model group. Compared with the model group, the 1 Hz and 5 Hz groups had the same improvement in swallowing function (p < 0.05). However, the increase in excitatory signals in the sensorimotor cortex was more pronounced in the 5 Hz group than in the other frequency stimulation groups (p < 0.05). Combining the clinical findings with the above results, we concluded that the optimal stimulation parameter for mPES in rats is "frequency: 5 Hz, current intensity: 1 mA for 10 min/day", which provides a basis for future basic experimental studies of mPES in animals.


Subject(s)
Deglutition Disorders , Electric Stimulation Therapy , Pharynx , Rats, Sprague-Dawley , Stroke , Animals , Rats , Deglutition Disorders/etiology , Deglutition Disorders/therapy , Stroke/complications , Stroke/therapy , Male , Electric Stimulation Therapy/methods , Pharynx/physiopathology , Disease Models, Animal , Deglutition/physiology
6.
Zhen Ci Yan Jiu ; 49(5): 480-486, 2024 May 25.
Article in English, Chinese | MEDLINE | ID: mdl-38764119

ABSTRACT

OBJECTIVES: To observe the activation state and neuronal types of somatosensory cortex and the primary motor cortex induced by electroacupuncture (EA) stimulation of "Sibai" (ST2) and "Quanliao" (SI18) acupoints in mice. METHODS: Male C57BL/6J mice were randomly divided into blank control and EA groups, with 6 mice in each group. Rats of the EA group received EA stimulation (2 Hz, 0.6 mA) at ST2 and SI18 for 30 minutes. Samples were collected after EA intervention, and immunofluorescence staining was performed to quantify the expression of the c-Fos gene (proportion of c-Fos positive cells) in the somatosensory cortex and primary motor cortex. The co-labelled cells of calcium/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) and gamma-aminobutyric acid (GABA) in the somatosensory cortex and primary motor cortex were observed and counted by using microscope after immunofluorescence staining. Another 10 mice were used to detect the calcium activity of excitatory neurons in the somatosensory cortex and primary motor cortex by fiber photometry. RESULTS: In comparison with the blank control group, the number of c-Fos positive cells, and the proportion of c-Fos and CaMKⅡ co-labelled cells in both the somatosensory cortex and primary motor cortex were significantly increased after EA stimulation (P<0.05). No significant changes were found in the proportion of c-Fos and GABA co-labeled cells in both the somatosensory cortex and primary motor cortex after EA. Results of fiber optic calcium imaging technology showed that the spontaneous calcium activity of excitatory neurons in both somatosensory cortex and primary motor cortex were obviously increased during EA compared with that before EA (P<0.01), and strikingly reduced after cessation of EA compared with that during EA (P<0.05). CONCLUSIONS: Under physiological conditions, EA of ST2 and SI18 can effectively activate excitatory neurons in the somatosensory cortex and primary motor cortex.


Subject(s)
Acupuncture Points , Electroacupuncture , Mice, Inbred C57BL , Neurons , Animals , Male , Mice , Neurons/metabolism , Sensorimotor Cortex/metabolism , Humans , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Motor Cortex/metabolism , Somatosensory Cortex/metabolism
7.
iScience ; 27(5): 109695, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38680657

ABSTRACT

Electroacupuncture (EA) stimulation has been shown to be beneficial in stroke rehabilitation; however, little is known about the neurological mechanism by which this peripheral stimulation approach treats for stroke. This study showed that both pyramidal and parvalbumin (PV) neuronal activity increased in the contralesional primary motor cortex forelimb motor area (M1FL) after ischemic stroke induced by focal unilateral occlusion in the M1FL. EA stimulation reduced pyramidal neuronal activity and increased PV neuronal activity. These results were obtained by a combination of fiber photometry recordings, in vivo and in vitro electrophysiological recordings, and immunofluorescence. Moreover, EA was found to regulate the expression/function of N-methyl-D-aspartate receptors (NMDARs) altered by stroke pathology. In summary, our findings suggest that EA could restore disturbed neuronal activity through the regulation of the activity of pyramidal and PV neurons. Furthermore, NMDARs we shown to play an important role in EA-mediated improvements in sensorimotor ability during stroke rehabilitation.

8.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38367614

ABSTRACT

The human body is represented in a topographic pattern in the primary somatosensory cortex (S1), and genital representation is displaced below the toe representation. However, the relationship between the representation of the genitals and toe in S1 remains unclear. In this study, tactile stimulation was applied to the big toe in healthy subjects to observe changes in tactile acuity in the unstimulated genital area, abdomen, and metacarpal dorsal. Then tactile stimulation was applied to the right abdomen and metacarpal dorsal to observe changes in tactile acuity in bilateral genitals. The results revealed that tactile stimulation of the big toe led to a reduction in the 2-point discrimination threshold (2PDT) not only in the stimulated big toe but also in the bilateral unstimulated genitals, whereas the bilateral abdomen and metacarpal dorsal threshold remained unchanged. On the other hand, tactile stimulation of the abdomen and metacarpal dorsal did not elicit 2-point discrimination threshold changes in the bilateral genitals. Cortical and subcortical mechanisms have been proposed to account for the findings. One explanation involves the intracortical interaction between 2 adjacent representations. Another possible explanation is that the information content of a specific body part is broadly distributed across the S1. Moreover, exploring the links between human behaviors and changes in the cerebral cortex is of significant importance.


Subject(s)
Somatosensory Cortex , Touch Perception , Humans , Somatosensory Cortex/physiology , Touch Perception/physiology , Touch/physiology , Cerebral Cortex , Toes
9.
Article in English | MEDLINE | ID: mdl-38401063

ABSTRACT

Objective: The effectiveness of manual acupuncture for treating bronchial asthma is still debatable and broad, and the effects of different acupuncture points, treatment durations, or illness trajectories have never been rigorously assessed. The objective of this revised systematic review and subgroup meta-analysis of randomized controlled trials (RCTs) is to ascertain the clinical efficacy of manual acupuncture on bronchial asthma and whether these effects varied depending on the acupuncture points, length of treatment, or course of the disease. Materials and methods: PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria were followed for creating a systematic review and meta-analysis. From the beginning through March 25, 2022, six electronic databases were checked. For the treatment of asthma, all RCTs contrasting acupuncture therapy along with conventional treatment against conventional treatment alone were chosen. The information was examined using Review Manager version 5.3 and Comprehensive Meta-Analysis version 3. Clinical efficacy (including the effective rate and the recurrence rate) was the primary outcome, and pulmonary function (including FEV1%, PEF) and The secondary results were T-lymphocyte immunity (containing CD3+, CD4+, and CD8+). Based on the acupuncture points, length of therapy, and nature of the condition, subgroup analyses were carried out. Results: There were a total of 21 RCTs that enrolled 2510 individuals. According to the meta-findings, analysis's manual acupuncture in addition to conventional treatment significantly increased the effective rate when compared to conventional treatment alone [OR = 5.14 95% CI 3.58-7.38, P < .00001], lung functions [FEV1% (MD = 6.18, 95% CI 2.40-9.96, P = .001) and PEF (MD = 0.45 95% CI 0.18-0.73, P = .001)], immune functions [CD3+ T lymphocytes (MD = 7.55 95% CI 6.55-8.56, P < .00001), CD4+ T-lymphocytes (MD = 5.11 95% CI 4.09-6.13, P < .00001), T-lymphocyte CD8+ (MD = -0.37.11 95% CI -3.62--2.51, P < .00001)] and noteworthy reduction in the recurrence rate (OR = 0.19 95% CI 0.10-0.38, P < .00001). Results from the subgroup analysis were consistent. Conclusion: Manual acupuncture combined with Western Medicine is more effective than conventional treatment alone for bronchial asthma. Combination therapy can significantly improve clinical efficacy, lung function, and immune function while reducing the relapse rate. But to further support the results of this investigation, high-quality RCTs with long-term outcomes are still required, taking into account the inherent limitations of the included studies. Registration number: PROSPERO (no. CRD42022357805) (https://www.crd.york.ac.uk/prospero/).

10.
Zhen Ci Yan Jiu ; 49(1): 88-93, 2024 Jan 25.
Article in English, Chinese | MEDLINE | ID: mdl-38239143

ABSTRACT

The endocannabinoid system, an important biological network for maintaining and balancing various functions of the human body, is involved in many physiological functions such as pain, emotion, learning and memory, etc. Among which the endocannabinoid receptors ï¼»including type I (CB1) and type II (CB2) receptorsï¼½ play an important role in the regulation of pain and have become an important target in the mechanism research of acupuncture analgesia. CB1 is mainly distributed in the central nervous system, including the spinal cord, cerebral cortex, amygdala, insular cortex, and basal ganglia, etc. CB2 is mainly distributed in peripheral immune tissues, such as spleen, bone, skin, etc. In the central and peripheral nervous systems, acupuncture can activate CB1 and CB2 receptors respectively, which is involved in the transmission of central nociceptive signals and related transmitters as well as the peri-pheral pro-nociceptive inflammatory response, thereby alleviating the nociceptive hypersensitivity in animal models. In this paper, we systematically summarize the roles of the above mechanisms in different types of animal models (inflammatory pain, neuropathological pain, visceral pain, etc.), so as to provide new ideas for the study of the underlying mechanisms of acupuncture analgesia.


Subject(s)
Acupuncture Analgesia , Endocannabinoids , Animals , Humans , Pain , Central Nervous System , Spinal Cord
11.
CNS Neurosci Ther ; 30(3): e14457, 2024 03.
Article in English | MEDLINE | ID: mdl-37718934

ABSTRACT

AIMS: Electroacupuncture (EA) at the Lianquan (CV23) could alleviate swallowing dysfunction. However, current knowledge of its neural modulation focused on the brain, with little evidence from the periphery. Transient receptor potential channel vanilloid subfamily 1 (TRPV1) is an ion channel predominantly expressed in sensory neurons, and acupuncture can trigger calcium ion (Ca2+ ) wave propagation through active TRPV1 to deliver signals. The present study aimed to investigate whether TRPV1 mediated the signal of EA to the primary sensory cortex (S1) during regulation of swallowing function. METHODS: Blood perfusion was evaluated by laser speckle contrast imaging (LSCI), and neuronal activity was evaluated by fiber calcium recording and c-Fos staining. The expression of TRPV1 was detected by RNA-seq analysis, immunofluorescence, and ELISA. In addition, the swallowing function was assessed by in vivo EMG recording and water consumption test. RESULTS: EA treatment potentiated blood perfusion and neuronal activity in the S1, and this potentiation was absent after injecting lidocaine near CV23. TRPV1 near CV23 was upregulated by EA-CV23. The blood perfusion at CV23 was decreased in the TRPV1 hypofunction mice, while the blood perfusion and the neuronal activity of the S1 showed no obvious change. These findings were also present in post-stroke dysphagia (PSD) mice. CONCLUSION: The TRPV1 at CV23 after EA treatment might play a key role in mediating local blood perfusion but was not involved in transferring EA signals to the central nervous system (CNS). These findings collectively suggested that TRPV1 may be one of the important regulators involved in the mechanism of EA treatment for improving swallowing function in PSD.


Subject(s)
Acupuncture Therapy , Electroacupuncture , Stroke , Mice , Animals , Electroacupuncture/methods , Deglutition/physiology , Calcium/metabolism , Central Nervous System/metabolism , TRPV Cation Channels/metabolism , Acupuncture Points
12.
CNS Neurosci Ther ; 30(3): e14442, 2024 03.
Article in English | MEDLINE | ID: mdl-37665118

ABSTRACT

BACKGROUND: Post-stroke dysphagia (PSD), a common and serious disease, affects the quality of life of many patients and their families. Electroacupuncture (EA) has been commonly used effectively in the treatment of PSD, but the therapeutic mechanism is still under exploration at present. We aim to investigate the effect of the nucleus tractus solitarus (NTS) on the treatment of PSD by EA at Lianquan (CV23) through the primary motor cortex (M1). METHODS: C57 male mice were used to construct a PSD mouse model using photothrombotic technique, and the swallowing function was evaluated by electromyography (EMG) recording. C-Fos-positive neurons and types of neurons in the NTS were detected by immunofluorescence. Optogenetics and chemical genetics were used to regulate the NTS, and the firing rate of neurons was recorded via multichannel recording. RESULTS: The results showed that most of the activated neurons in the NTS were excitatory neurons, and multichannel recording indicated that the activity levels of both pyramidal neurons and interneurons in the NTS were regulated by M1. This process was involved in the EA treatment. Furthermore, while chemogenetic inhibition of the NTS reduced the EMG signal associated with the swallowing response induced by activation of M1 in PSD mice, EA rescued this signal. CONCLUSION: Overall, the NTS was shown to participate in the regulation of PSD by EA at CV23 through M1.


Subject(s)
Deglutition Disorders , Electroacupuncture , Motor Cortex , Humans , Rats , Male , Mice , Animals , Solitary Nucleus , Electroacupuncture/methods , Rats, Sprague-Dawley , Deglutition Disorders/etiology , Deglutition Disorders/therapy , Quality of Life
13.
Zhen Ci Yan Jiu ; 48(12): 1227-1235, 2023 Dec 25.
Article in English, Chinese | MEDLINE | ID: mdl-38146245

ABSTRACT

OBJECTIVES: To investigate the effects on the motor function, cortex blood flow perfusion, microglial cells, and the contents of serum inflammatory factors, i.e. interleukin-1ß (IL-1ß), transforming growth factor-ß (TGF-ß), and interleukin-10 (IL-10) after electroacupuncture (EA) preconditioning at "Baihui" (GV20) and "Dazhui" (GV14) in the mice with ischemic stroke, so as to explore the mechanism of EA preconditioning for improving motor function after ischemic stroke. METHODS: C57BL/6 mice were randomly divided into sham-operation group, model group, and EA preconditioning group (EA group), with 15 mice in each group. A photothrombotic method was used to induce the model of unilateral ischemic stroke and motor impairment. The mice in the EA group received EA preconditioning, 20 min each time, once daily for 7 consecutive days before modeling. The motor function of mice was evaluated by the grid-walking test and cylinder test before and after modeling. Laser speckle blood flow video monitoring system was employed to assess the cerebral blood flow perfusion in the primary motor cortex of mice. The contents of IL-1ß, TGF-ß, and IL-10 in the serum were measured by ELISA, and the expressions of microglial cell and M2 subtype cell marker in the primary motor cortex were detected using immunofluorescence staining. RESULTS: After modeling, compared with the sham-operation group, the grid error rate and the dragging rate of the affected limb were increased (P<0.01);the utilization rate of the affected limb and percentage of the blood perfusion in the affected cortex to healthy side were decreased (P<0.01);the contents of serum IL-1ß, TGF-ß, and IL-10 were increased (P<0.01, P<0.05);and the microglia in the primary motor cortex on the affected side showed ameboid, the fluorescence intensity of ionized calcium-binding adapter molecule 1 (IBA1) and CD206 was increased (P<0.01) in the model group. In the EA group, when compared with the model group, the grid error rate and the dragging rate of affected limb were decreased (P<0.01);the utilization rate of affected limb and the percentage of blood perfusion were increased (P<0.05);the content of serum IL-1ß was decreased (P<0.01), while the contents of TGF-ß and IL-10 were increased (P<0.01);and the microglia in the primary motor cortex on the affected side got more round and were distributed more densely, the fluorescence intensity of IBA1 and CD206 was increased (P<0.01). CONCLUSIONS: Electroacupuncture preconditioning at "GV20" and "GV14" can up-regulate the expression of microglial cells, especially the M2 subtype cell marker, and increase the contents of the anti-inflammatory factors and decrease that of the pro-inflammatory factors in the serum, thereby alleviate the inflammatory reaction.


Subject(s)
Electroacupuncture , Ischemic Stroke , Mice , Animals , Microglia , Interleukin-10/genetics , Electroacupuncture/methods , Mice, Inbred C57BL , Transforming Growth Factor beta
14.
Mol Neurobiol ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37957422

ABSTRACT

As one of the commonly used therapies for pain-related diseases in clinical practice, electroacupuncture (EA) has been proven to be effective. In chronic pain, neurons in the anterior cingulate cortex (ACC) have been reported to be hyperactive, while the mechanism by which cannabinoid type 1 receptors (CB1Rs) in the ACC are involved in EA-mediated analgesic mechanisms remains to be elucidated. In this study, we investigated the potential central mechanism of EA analgesia. A combination of techniques was used to detect the expression and function of CB1R, including quantitative real-time PCR (q-PCR), western blot (WB), immunofluorescence (IF), enzyme-linked immunosorbent assay (ELISA), and in vivo multichannel optical fibre recording, and neuronal activity was examined by in vivo two-photon imaging and in vivo electrophysiological recording. We found that the hyperactivity of pyramidal neurons in the ACC during chronic inflammatory pain is associated with impairment of the endocannabinoid system. EA at the Zusanli acupoint (ST36) can reduce the hyperactivity of pyramidal neurons and exert analgesic effects by increasing the endocannabinoid ligands anandamide (AEA), 2-arachidonoylglycerol (2-AG) and CB1R. More importantly, CB1R in the ACC is one of the necessary conditions for the EA-mediated analgesia effect, which may be related to the negative regulation of the N-methyl-D-aspartate receptor (NMDAR) by the activation of CB1R downregulating NR1 subunits of NMDAR (NR1) via histidine triad nucleotide-binding protein 1 (HINT1). Our study suggested that the endocannabinoid system in the ACC plays an important role in acupuncture analgesia and provides evidence for a central mechanism of EA-mediated analgesia.

15.
Zhongguo Zhen Jiu ; 43(11): 1239-1245, 2023 Sep 01.
Article in English, Chinese | MEDLINE | ID: mdl-37986247

ABSTRACT

OBJECTIVES: To compare the effects of electroacupuncture (EA) with different time intervals on corticospinal excitability of the primary motor cortex (M1) and the upper limb motor function in healthy subjects and observe the after-effect rule of acupuncture. METHODS: Self-comparison before and after intervention design was adopted. Fifteen healthy subjects were included and all of them received three stages of trial observation, namely EA0 group (received one session of EA), EA6h group (received two sessions of EA within 1 day, with an interval of 6 h) and EA48h group (received two sessions of EA within 3 days, with an interval of 48 h). The washout period among stages was 1 week. In each group, the needles were inserted perpendicularly at Hegu (LI 4) on the left side, 23 mm in depth and at a non-acupoint, 0.5 cm nearby to the left side of Hegu (LI 4), separately. Han's acupoint nerve stimulator (HANS-200A) was attached to these two needles, with continuous wave and the frequency of 2 Hz. The stimulation intensity was exerted higher than the exercise threshold (local muscle twitching was visible, and pain was tolerable by healthy subjects, 1-2 mA ). The needles were retained for 30 min. Using the single pulse mode of transcranial magnetic stimulation (TMS) technique, before the first session of EA (T0) and at the moment (T1), in 2 h (T2) and 24 h (T3) after the end of the last session of EA, on the left first dorsal interosseous muscle, the amplitude, latency (LAT), resting motor threshold (rMT) of motor evoked potentials (MEPs) and the completion time of grooved pegboard test (GPT) were detected. Besides, in the EA6h group, TMS was adopted to detect the excitability of M1 (amplitude, LAT and rMT of MEPs) before the last session of EA (T0*). RESULTS: The amplitude of MEPs at T1 and T2 in the EA0 group, at T0* in the EA6h group and at T1, T2 and T3 in the EA48h group was higher when compared with the value at T0 in each group separately (P<0.001). At T1, the amplitude of MEPs in the EA0 group and the EA48h group was higher than that in the EA6h group (P<0.001, P<0.01); at T2, it was higher in the EA0 group when compared with that in the EA6h group (P<0.01); at T3, the amplitude in the EA0 group and the EA6h group was lower than that of the EA48h group (P<0.001). The LAT at T1 was shorter than that at T0 in the three groups (P<0.05), and the changes were not obvious at the rest time points compared with that at T0 (P > 0.05). The GPT completion time of healthy subjects in the EA0 group and the EA48h group at T1, T2 and T3 was reduced in comparison with that at T0 (P<0.001). The completion time at T3 was shorter than that at T0 in the EA6h group (P<0.05); at T2, it was reduced in the EA48h group when compared with that of the EA6h group (P<0.05). There were no significant differences in rMT among the three groups and within each group (P>0.05). CONCLUSIONS: Under physiological conditions, EA has obvious after-effect on corticospinal excitability and upper limb motor function. The short-term interval protocol (6 h) blocks the after-effect of EA to a certain extent, while the long-term interval protocol (48 h) prolongs the after-effect of EA.


Subject(s)
Electroacupuncture , Motor Cortex , Humans , Motor Cortex/physiology , Transcranial Magnetic Stimulation/methods , Upper Extremity , Exercise , Muscle, Skeletal/physiology
16.
eNeuro ; 10(12)2023 Dec.
Article in English | MEDLINE | ID: mdl-37977825

ABSTRACT

Acupuncture at Lianquan (CV23) acupoint has been shown to improve swallowing function in poststroke dysphagia (PSD). This improvement is supposed to be associated with the regulation of neuronal activity in the contralateral primary motor cortex (M1), while the underlying mechanism still needs to be elucidated. Perineuronal nets (PNNs) are well-known to be involved in the regulation of neuronal activity. Thus, we here aimed to detect the role of PNNs in the contralateral M1 hemisphere in the electroacupuncture (EA)-mediated effect in male mice. The results were obtained from a combination of methods, including in vitro slice electrophysiological recording, in vivo electrophysiological recording, and immunofluorescent staining in male mice. These results showed a decrease of the excitatory postsynaptic currents (sEPSCs) and no alteration of the inhibitory postsynaptic currents (sIPSCs) in the GABAergic neurons and the tonic inhibition in the excitatory neurons in the contralateral M1 after stroke induction, and EA recovered the impaired sEPSCs in the GABAergic neurons. We further found that the effect of EA-induced increase of c-Fos expression, enhancement of spike firing, potentiation of sEPSCs in the excitatory neurons, and improvement of swallowing function were all blocked by the removal of PNNs in the contralateral M1. In conclusion, the PNNs in the contralateral M1 was suggested to be participated in stroke pathogenesis and might be associated with the EA-mediated swallowing function rehabilitation of PSD in male mice. Our study provides insight into how PNNs might be involved in the mechanism of EA treatment for stroke rehabilitation.


Subject(s)
Deglutition Disorders , Electroacupuncture , Stroke , Mice , Animals , Male , Electroacupuncture/adverse effects , Electroacupuncture/methods , Deglutition Disorders/complications , Deglutition Disorders/therapy , Neurons/metabolism , Extracellular Matrix/metabolism , Stroke/complications , Stroke/metabolism
17.
Front Aging Neurosci ; 15: 1157443, 2023.
Article in English | MEDLINE | ID: mdl-37829141

ABSTRACT

Objective: This study aims to investigate the research status and hotspots of surgical treatment for tremor in Parkinson's disease (PD) from 2002 to 2022, utilizing bibliometric and visual analysis. Additionally, it aims to offer insights into future research trends in this field. Methods: This study collected publications on the surgical treatment of tremor in PD from 2002 to 2022 using the Web of Science (WOS) database. CiteSpace, VOSviewer, and Scimago Graphica were employed to quantify the number of publications and analyze the bibliographic information networks, including the contributions of countries/cities, authors, keywords, and co-cited references. Results: A total of 2,815 publications were included in the study, revealing that 541 scientific institutions experienced an increase in publications from 2002 to 2022. Michael Okun emerged as the most productive author, and the United States emerged as the leading hub for research. The study identified 772 keywords. Noteworthy citation bursts and long-term activity were observed in pallidotomy, bilateral stimulation, and focused ultrasound thalamotomy. The top 10 highly co-cited references comprised eight deep brain stimulation (DBS) studies (including two follow-up studies and six randomized controlled trials), one randomized controlled trial on focused ultrasound, and one consensus on tremor. Conclusion: This study uses an in-depth and systematic bibliometric and visualization analysis to visualize the evolution of research and identify emerging hotspots. The identified hotspots are as follows: Firstly, DBS has received significant attention and widespread recognition as a surgical treatment for tremor in PD. Secondly, there are various key aspects to consider in DBS, such as operative indications, operative targets, and surgical protocols. Lastly, magnetic resonance-guided focused ultrasound (MRgFUS) has emerged as a promising treatment option in the surgical management of tremor in Parkinson's disease. This research also provides insights into the phenomenon of these hotspots, offering valuable prompts and reminders for further research.

18.
Front Neurosci ; 17: 1176551, 2023.
Article in English | MEDLINE | ID: mdl-37424992

ABSTRACT

Introduction: Automatic sleep staging is a classification process with severe class imbalance and suffers from instability of scoring stage N1. Decreased accuracy in classifying stage N1 significantly impacts the staging of individuals with sleep disorders. We aim to achieve automatic sleep staging with expert-level performance in both N1 stage and overall scoring. Methods: A neural network model combines an attention-based convolutional neural network and a classifier with two branches is developed. A transitive training strategy is employed to balance universal feature learning and contextual referencing. Parameter optimization and benchmark comparisons are conducted using a large-scale dataset, followed by evaluation on seven datasets in five cohorts. Results: The proposed model achieves an accuracy of 88.16%, Cohen's kappa of 0.836, and MF1 score of 0.818 on the SHHS1 test set, also with comparable performance to human scorers in scoring stage N1. Incorporating multiple cohort data improves its performance. Notably, the model maintains high performance when applied to unseen datasets and patients with neurological or psychiatric disorders. Discussion: The proposed algorithm demonstrates strong performance and generalizablility, and its direct transferability is noteworthy among similar studies on automated sleep staging. It is publicly available, which is conducive to expanding access to sleep-related analysis, especially those associated with neurological or psychiatric disorders.

19.
Front Chem ; 11: 1200490, 2023.
Article in English | MEDLINE | ID: mdl-37284581

ABSTRACT

Glycogen synthase kinase-3 (GSK3ß), a serine/threonine protein kinase, has been discovered as a novel target for anticancer drugs. Although GSK3ß is involved in multiple pathways linked to the etiology of various cancers, no specific GSK3ß inhibitor has been authorized for cancer therapy. Most of its inhibitors have toxicity effects therefore, there is a need to develop safe and more potent inhibitors. In this study, a library of 4,222 anti-cancer compounds underwent rigorous computational screening to identify potential candidates for targeting the binding pocket of GSK3ß. The screening process involved various stages, including docking-based virtual screening, physicochemical and ADMET analysis, and molecular dynamics simulations. Ultimately, two hit compounds, BMS-754807 and GSK429286A, were identified as having high binding affinities to GSK3ß. BMS-754807 and GSK429286A exhibited binding affinities of -11.9, and -9.8 kcal/mol, respectively, which were greater than that of the positive control (-7.6 kcal/mol). Further, molecular dynamics simulations for 100 ns were employed to optimize the interaction between the compounds and GSK3ß, and the simulations demonstrated that the interaction was stable and consistent throughout the study. These hits were also anticipated to have good drug-like properties. Finally, this study suggests that BMS-754807 and GSK429286A may undergo experimental validation to evaluate their potential as cancer treatments in clinical settings.

SELECTION OF CITATIONS
SEARCH DETAIL