Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cogn Neurodyn ; 16(2): 379-389, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35401871

ABSTRACT

The Common Spatial Pattern (CSP) algorithm is the most widely used method for decoding Electroencephalography (EEG) signals from motor imagery (MI) paradigm. However, due to the inter-subject variability, the CSP algorithm heavily relies on the selection of filter bands and extensive analytical processing time required to build an effective model, which has been a challenge in current research. In this paper, we propose a narrow filter bank CSP (NFBCSP) algorithm, which automatically determines the optimal narrow band for two-class motor imagery by band search tree, and a high-performance classification model dedicated to each subject can be obtained in a short time for online processing or further offline analysis. The optimal narrow band is combined with the CSP algorithm to extract the dynamic features in the EEG signals. For the multi-class motor imagery task, it is first transformed into multiple One-Versus-Rest (OVR) tasks and determines the corresponding optimal narrow bands. After extracting the features of each optimal narrow band separately, the Deep Convolutional Neural Network (DCNN) is used for the fusion of band features and classification of multi-class motor imagery. Finally, we verified our method using two different motor imagery datasets, the BCI-VR dataset with two classes of motor imagery and the BCI Competition IV dataset 2a with four classes of motor imagery. The experimental results show that the proposed method achieves an average classification accuracy of 86.43% for the two-class motor imagery task, and 76.87% for the four-class motor imagery task, which outperforms other recent methods. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-021-09721-x.

2.
J Neurosci Methods ; 363: 109346, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34474046

ABSTRACT

BACKGROUND: Rapid serial visual presentation (RSVP) based brain-computer interface (BCI) is widely used to categorize the target and non-target images. The available information limits the prediction accuracy of single-trial using single-subject electroencephalography (EEG) signals. New Method. Hyperscanning is a new manner to record two or more subjects' signals simultaneously. So we designed a multi-level information fusion model for target image detection based on dual-subject RSVP, namely HyperscanNet. The two modules of this model fuse the data and features of the two subjects at the data and feature layers. A chunked long and short-term memory artificial neural network (LSTM) was used in the time dimension to extract features at different periods separately, completing fine-grained underlying feature extraction. While the feature layer is fused, some plain operations are used to complete the fusion of the data layer to ensure that important information is not missed. RESULTS: Experimental results show that the F1-score (the harmonic mean of precision and recall) of this method with best group of channels and segment length is 82.76%. Comparison with existing methods. This method improves the F1-score by at least 5% compared to single-subject target detection. CONCLUSIONS: Target detection can be accomplished by the two subjects' collaboration to achieve a higher and more stable F1-score than a single subject.


Subject(s)
Brain-Computer Interfaces , Brain , Electroencephalography , Humans , Memory, Short-Term , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...