Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Life Sci ; 347: 122682, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38702025

ABSTRACT

Thyroid cancer is one of the most common primary endocrine malignancies worldwide, and papillary thyroid carcinoma (PTC) is the predominant histological type observed therein. Although PTC has been studied extensively, our understanding of the altered metabolism and metabolic profile of PTC tumors is limited. We identified that the content of metabolite homogentisic acid (HGA) in PTC tissues was lower than that in adjacent non-cancerous tissues. We evaluated the potential of HGA as a novel molecular marker in the diagnosis of PTC tumors, as well as its ability to indicate the degree of malignancy. Studies have further shown that HGA contributes to reactive oxygen species (ROS) associated oxidative stress, leading to toxicity and inhibition of proliferation. In addition, HGA caused an increase in p21 expression levels in PTC cells and induced G1 arrest. Moreover, we found that the low HGA content in PTC tumors was due to the low expression levels of tyrosine aminotransferase (TAT) and p-hydroxyphenylpyruvate hydroxylase (HPD), which catalyze the conversion of tyrosine to HGA. The low expression levels of TAT and HPD are strongly associated with a higher probability of PTC tumor invasion and metastasis. Our study demonstrates that HGA could be used to diagnose PTC and provides mechanisms linking altered HGA levels to the biological behavior of PTC tumors.


Subject(s)
Cell Cycle Checkpoints , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p21 , Homogentisic Acid , Reactive Oxygen Species , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Reactive Oxygen Species/metabolism , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/metabolism , Homogentisic Acid/metabolism , Female , Male , Middle Aged , Cell Line, Tumor , Oxidative Stress , Carcinoma, Papillary/pathology , Carcinoma, Papillary/metabolism , Adult
2.
Adv Sci (Weinh) ; 11(16): e2308531, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38380551

ABSTRACT

Gallbladder cancer (GBC) is an extremely lethal malignancy with aggressive behaviors, including liver or distant metastasis; however, the underlying mechanisms driving the metastasis of GBC remain poorly understood. In this study, it is found that DNA methyltransferase DNMT3A is highly expressed in GBC tumor tissues compared to matched adjacent normal tissues. Clinicopathological analysis shows that DNMT3A is positively correlated with liver metastasis and poor overall survival outcomes in patients with GBC. Functional analysis confirms that DNMT3A promotes the metastasis of GBC cells in a manner dependent on its DNA methyltransferase activity. Mechanistically, DNMT3A interacts with and is recruited by YAP/TAZ to recognize and access the CpG island within the CDH1 promoter and generates hypermethylation of the CDH1 promoter, which leads to transcriptional silencing of CDH1 and accelerated epithelial-to-mesenchymal transition. Using tissue microarrays, the association between the expression of DNMT3A, YAP/TAZ, and CDH1 is confirmed, which affects the metastatic ability of GBC. These results reveal a novel mechanism through which DNMT3A recruitment by YAP/TAZ guides DNA methylation to drive GBC metastasis and provide insights into the treatment of GBC metastasis by targeting the functional connection between DNMT3A and YAP/TAZ.


Subject(s)
DNA Methyltransferase 3A , Gallbladder Neoplasms , Animals , Female , Humans , Male , Mice , Middle Aged , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Antigens, CD , Cadherins , Cell Line, Tumor , Disease Models, Animal , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/genetics , DNA Methyltransferase 3A/metabolism , DNA Methyltransferase 3A/genetics , Epithelial-Mesenchymal Transition/genetics , Gallbladder Neoplasms/genetics , Gallbladder Neoplasms/metabolism , Gallbladder Neoplasms/pathology , Gene Expression Regulation, Neoplastic/genetics , Neoplasm Metastasis/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics
3.
J Nucl Med ; 64(12): 1899-1905, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37918866

ABSTRACT

68Ga-labeled fibroblast activation protein inhibitor (68Ga-FAPI) PET/CT has demonstrated promising clinical results, with a higher SUVmax and tumor-to-background ratio (TBR) in breast cancer (BC) patients than 18F-FDG PET/CT. Here, we aimed to evaluate the suitability of 68Ga-FAPI PET/CT for the early and late prediction of the pathologic response to neoadjuvant chemotherapy (NAC) in BC. Methods: Twenty-two consecutive patients with newly diagnosed BC and an indication for NAC were prospectively included. All patients underwent standard chemotherapy and 68Ga-FAPI PET/CT at baseline, after 2 cycles of NAC (PET2), and 1 wk before surgery (PET3). SUVmax was measured in the primary tumor region and positive regional lymph nodes. The expression of fibroblast activation protein in the primary lesion was analyzed by immunohistochemistry. Results: Seven patients (31.8%) achieved a pathologic complete response (pCR), and 15 (68.2%) had residual tumors. Thirteen patients (59.1%) showed concentric withdrawal of the primary tumor, and 9 (40.9%) showed diffuse withdrawal. Between PET2 and PET3, the ΔSUVmax of the primary tumor (R 2 = 0.822; P = 0.001) and metastatic lymph nodes (R 2 = 0.645; P = 0.002) were significantly correlated. The absolute values of SUVmax and TBR at PET2 and PET3 were lower in patients with pCR than in those without pCR (P < 0.05). Moreover, a larger ΔSUVmax at any time point was strongly associated with pCR (P < 0.05). Similar downward trends in SUVmax, TBR, and ΔSUVmax were observed in the pattern of primary tumor reduction. For predicting pCR, the optimal cutoff values for ΔSUVmax after 2 chemotherapy cycles, ΔSUVmax before surgery, TBR after 2 chemotherapy cycles, and TBR before surgery of the primary tumor were 3.4 (area under the curve [AUC], 0.890), 1.1 (AUC, 0.978), -63.8% (AUC, 0.879), -90.8% (AUC, 0.978), 7.6 (AUC, 0.848), and 1.4 (AUC, 0.971), respectively. Immunohistochemistry showed that the SUVmax and TBR of 68Ga-FAPI PET/CT were positively correlated with fibroblast activation protein expression (P < 0.001 for both). Conclusion: Assessment of early changes in 68Ga-FAPI uptake during NAC by 68Ga-FAPI PET/CT can predict pCR and primary tumor concentric withdrawal in BC patients. 68Ga-FAPI PET/CT has great potential for the early and late prediction of the pathologic response to NAC in BC.


Subject(s)
Breast Neoplasms , Quinolines , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Positron Emission Tomography Computed Tomography , Prospective Studies , Gallium Radioisotopes/therapeutic use , Neoadjuvant Therapy/methods , Fluorodeoxyglucose F18/therapeutic use , Radiopharmaceuticals/therapeutic use , Fibroblasts/pathology , Quinolines/therapeutic use
4.
Cell Death Dis ; 14(10): 653, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37803002

ABSTRACT

Tamoxifen-based endocrine therapy remains a major adjuvant therapy for estrogen receptor (ER)-positive breast cancer (BC). However, many patients develop tamoxifen resistance, which results in recurrence and poor prognosis. Herein, we show that fatty acid oxidation (FAO) was activated in tamoxifen-resistant (TamR) ER-positive BC cells by performing bioinformatic and functional studies. We also reveal that CPT1A, the rate-limiting enzyme of FAO, was significantly overexpressed and that its enzymatic activity was enhanced in TamR cells. Mechanistically, the transcription factor c-Jun was activated by JNK kinase-mediated phosphorylation. Activated c-Jun bound to the TRE motif in the CPT1A promoter to drive CPT1A transcription and recruited CBP/P300 to chromatin, catalysing histone H3K27 acetylation to increase chromatin accessibility, which ensured more effective transcription of CPT1A and an increase in the FAO rate, eliminating the cytotoxic effects of tamoxifen in ER-positive BC cells. Pharmacologically, inhibiting CPT1A enzymatic activity with the CPT1 inhibitor etomoxir or blocking c-Jun phosphorylation with a JNK inhibitor restored the tamoxifen sensitivity of TamR cells. Clinically, high levels of phosphorylated c-Jun and CPT1A were observed in ER-positive BC tissues in patients with recurrence after tamoxifen therapy and were associated with poor survival. These results indicate that the assessment and targeting of the JNK/c-Jun-CPT1A-FAO axis will provide promising insights for clinical management, increased tamoxifen responses and improved outcomes for ER-positive BC patients.


Subject(s)
Breast Neoplasms , Tamoxifen , Humans , Female , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Receptors, Estrogen/metabolism , Fatty Acids/metabolism , Chromatin , Drug Resistance, Neoplasm , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Gene Expression Regulation, Neoplastic
5.
J Biosci ; 482023.
Article in English | MEDLINE | ID: mdl-37539552

ABSTRACT

N6-methyladenosine modification and lncRNAs are closely related to the prognosis and immunotherapy response of breast cancer patients. LncRNAs related to m6 A-associated genes were predicted based on coexpression analysis of the TCGA database. We established a novel 7-m6 A-associated lncRNA signature for predicting patient prognosis and validated it. The model was significantly correlated with survival time and survival status and was an independent predictor of overall survival (OS). Except for the M1 disease group, the model had good predictive value for OS in different subgroups. We constructed a prognostic model based on 7 m6 A-associated lncRNAs in breast cancer. This model could serve as an independent prognostic factor with tremendous predictive ability for breast cancer patients.


Subject(s)
Breast Neoplasms , RNA, Long Noncoding , Humans , Female , RNA, Long Noncoding/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Databases, Factual
6.
J Hepatobiliary Pancreat Sci ; 30(7): 904-913, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36528866

ABSTRACT

OBJECTIVE: This study aimed to distinguish between cholesterol and neoplastic gallbladder polyps using dynamic contrast-enhanced CT. METHODS: The dataset retrospectively comprised 222 cases, including 106 cases of cholesterol polyps and 116 cases of neoplastic polyps (59 adenoma and 57 adenocarcinoma). The perception and Hounsfield units of the polyps and gallbladder bile were assessed by contrast-enhanced CT, and the polyp-to-bile ratio (PBR) was calculated. Receiver operating characteristic (ROC) curves and area under the curve analyses were used to assess the diagnostic value of the diameter and PBR for neoplastic polyps. RESULTS: The diameter of cholesterol polyps was significantly smaller than that of neoplastic polyps. The proportion of perceived cholesterol polyps in the plain and arterial phases of CT were significantly lower than those of neoplastic polyps (p < .001). On the contrary, the CT values of gallbladder bile of cholesterol polyps were always significantly higher than those of neoplastic polyps (p < .001). The median PBR values of cholesterol polyps were significantly lower than those of neoplastic polyps (p ≤ .001). ROC analysis showed that diameter and a plain phase PRB had better diagnostic value for neoplastic polyps. Polyp diameter ≥ 11.95 mm and the plain phase PBR ≥1.48 were the optimal cut-off values for diagnosis of neoplastic polyps. Combining a diameter ≥ 12 mm and a PBR in the plain phase ≥1.48 further improved neoplastic polyp diagnostic specificity and positive likelihood ratio (10.453). CONCLUSIONS: Polyp-to-bile ratio in contrast-enhanced CT scanning is a new and convenient index for identifying cholesterol and neoplastic gallbladder polyps.


Subject(s)
Gallbladder Diseases , Gallbladder Neoplasms , Polyps , Humans , Gallbladder Neoplasms/pathology , Gallbladder/diagnostic imaging , Gallbladder/pathology , Bile , Retrospective Studies , Diagnosis, Differential , Gallbladder Diseases/diagnostic imaging , Polyps/diagnostic imaging , Polyps/pathology , Tomography, X-Ray Computed , Cholesterol
7.
Exp Cell Res ; 421(1): 113362, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36152730

ABSTRACT

Triple-negative breast cancer (TNBC) accounts for about 15% of diagnosed breast cancer patients, which has a poor survival outcome owing to a lack of effective therapies. This study aimed to explore the in vitro and in vivo efficiency of histone deacetylase (HDAC) inhibitor panobinostat (PANO) in combination with mTOR inhibitor rapamycin (RAPA) against TNBC. TNBC cells were treated with PANO, RAPA alone or the combination of drugs, then cell growth and apoptosis were evaluated by CCK-8, colony formation and flow cytometry. Cell migration and invasion were detected by wound healing assay and transwell assay, respectively. ROS production was detected by DCFH-DA staining. Western blotting was performed to detect protein levels. In vivo tumor growth was assessed in nude mice. The expression of cleaved caspase-3 and Ki-67 in tumor tissues was detected by immunofluorescence staining. H&E staining was conducted to observe the pathological changes in heart, liver, and kidney tissues. The combination of PANO and RAPA exerted a stronger role in repressing growth, migration, invasion, and inducing apoptosis of TNBC cells compared with monotherapy. Furthermore, this combination presented a more effective anti-cancer efficacy than a single treatment in the xenograft model without apparent toxic side effects. Importantly, mechanistic studies indicated that PANO and RAPA combination led to ROS overproduction, which subsequently activated endoplasmic reticulum stress. Conclusion: PANO in combination with RAPA exhibits enhanced efficacy against TNBC, which may be considered a promising therapeutic candidate.


Subject(s)
Histone Deacetylase Inhibitors , Triple Negative Breast Neoplasms , Mice , Animals , Humans , Panobinostat/pharmacology , Panobinostat/therapeutic use , Histone Deacetylase Inhibitors/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Caspase 3 , Sirolimus/pharmacology , Mice, Nude , Reactive Oxygen Species , Sincalide , Ki-67 Antigen , Cell Line, Tumor , Xenograft Model Antitumor Assays , TOR Serine-Threonine Kinases , Histone Deacetylases
9.
Bioengineered ; 13(4): 10691-10706, 2022 04.
Article in English | MEDLINE | ID: mdl-35443866

ABSTRACT

Gallbladder carcinoma (GBC) is highly aggressive with poor prognosis. Accumulating reports show that miRNAs play critical roles in tumor progression. Previous studies have identified several miRNAs that promoted or inhibited GBC cell proliferation and/or metastasis. Here, we used the Gene Expression Omnibus (GEO) dataset to identify dysregulated miRNAs in GBC, followed by validating the upregulation of the miR-4733-5p and downregulation of kruppel-like factor 7 (KLF7) in GBC biopsies by quantitative real-time PCR (RT-qPCR), in situ hybridization (ISH) staining, and immunohistochemistry (IHC) assays. GBC cell proliferation and invasion capacities mediated by miR-4733-5p were evaluated by a series of function assays in vitro, including CCK-8, colony formation assay, wound healing assay and transwell assay. Xenograft tumor model found that miR-4733-5p promoted GBC tumor growth in vivo. This study clarified that miR-4733-5p was upregulated in GBC and promoted GBC cell proliferation via directly binding to 3' untranslated region (UTR) of KLF, which was downregulated and prohibited the proliferation and migration of GBC cells.


Subject(s)
Gallbladder Neoplasms , MicroRNAs , 3' Untranslated Regions/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gallbladder Neoplasms/genetics , Gallbladder Neoplasms/metabolism , Gallbladder Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Humans , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
10.
Cell Death Discov ; 8(1): 46, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35110542

ABSTRACT

The morbidity of papillary thyroid cancer (PTC) is on the rise, but its pathogenesis is still poorly understood. NR4A1 is a transcription factor primarily involving a wide range of pathophysiological responses, but its relationship with PTC malignancy remains unclear. This study demonstrates that high NR4A1 expression is strongly associated with poor survival outcomes in PTC patients. The depletion of NR4A1 significantly inhibited the proliferation of PTC cells by negating the LEF1-mediated oncogenic alteration. Mechanistically, NR4A1 directly binds to the promoter region of LEF1 and leads to crosstalk with histone acetylation and DNA demethylation to transcriptionally upregulate LEF1 expression, subsequently promoting downstream growth-related genes expressions in PTC. In the light of our findings, NR4A1 may be an emerging driving factor in PTC pathogenesis and progression.

11.
Front Oncol ; 12: 972969, 2022.
Article in English | MEDLINE | ID: mdl-36698419

ABSTRACT

Background: The clinical outcome of triple-negative breast cancer (TNBC) is poor. Finding more targets for the treatment of TNBC is an urgent need. SENPs are SUMO-specific proteins that play an important role in SUMO modification. Among several tumor types, SENPs have been identified as relevant biomarkers for progression and prognosis. The role of SENPs in TNBC is not yet clear. Methods: The expression and prognosis of SENPs in TNBC were analyzed by TCGA and GEO data. SENP3 coexpression regulatory networks were determined by weighted gene coexpression network analysis (WGCNA). Least absolute shrinkage and selection operator (LASSO) and Cox univariate analyses were used to develop a risk signature based on genes associated with SENP3. A time-dependent receiver operating characteristic (ROC) analysis was employed to evaluate a risk signature's predictive accuracy and sensitivity. Moreover, a nomogram was constructed to facilitate clinical application. Results: The prognostic and expression effects of SENP family genes were validated using the TCGA and GEO databases. SENP3 was found to be the only gene in the SENP family that was highly expressed and associated with an unfavorable prognosis in TNBC patients. Cell functional experiments showed that knockdown of SENP3 leads to growth, invasion, and migration inhibition of TNBC cells in vitro. By using WGCNA, 273 SENP3-related genes were identified. Finally, 11 SENP3-related genes were obtained from Cox univariate analysis and LASSO regression. Based on this, a prognostic risk prediction model was established. The risk signature of SENP3-related genes was verified as an independent prognostic marker for TNBC patients. Conclusion: Among SENP family genes, we found that SENP3 was overexpressed in TNBC and associated with a worse prognosis. SENP3 knockdown can inhibit tumor proliferation, invasion, and migration. In TNBC patients, a risk signature based on the expression of 11 SENP3-related genes may improve prognosis prediction. The established risk markers may be promising prognostic biomarkers that can guide the individualized treatment of TNBC patients.

12.
J Exp Clin Cancer Res ; 40(1): 373, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34823564

ABSTRACT

BACKGROUND: Gallbladder cancer (GBC) is known for its high malignancy and multidrug resistance. Previously, we uncovered that impaired integrity and stability of the elongator complex leads to GBC chemotherapy resistance, but whether its restoration can be an efficient therapeutic strategy for GBC remains unknown. METHODS: RT-qPCR, MS-qPCR and ChIP-qPCR were used to evaluate the direct association between ELP5 transcription and DNA methylation in tumour and non-tumour tissues of GBC. EMSA, chromatin accessibility assays, and luciferase assays were utilized to analysis the DNA methylation in interfering PAX5-DNA interactions. The functional experiments in vitro and in vivo were performed to investigate the effects of DNA demethylating agent decitabine (DAC) on the transcription activation of elongator complex and the enhanced sensitivity of gemcitabine in GBC cells. Tissue microarray contains GBC tumour tissues was used to evaluate the association between the expression of ELP5, DNMT3A and PAX5. RESULTS: We demonstrated that transcriptional repression of ELP5 in GBC was highly correlated with hypermethylation of the promoter. Mechanistically, epigenetic analysis revealed that DNA methyltransferase DNMT3A-catalysed hypermethylation blocked transcription factor PAX5 activation of ELP5 by disrupting PAX5-DNA interaction, resulting in repressed ELP5 transcription. Pharmacologically, the DNA demethylating agent DAC eliminated the hypermethylated CpG dinucleotides in the ELP5 promoter and then facilitated PAX5 binding and reactivated ELP5 transcription, leading to the enhanced function of the elongator complex. To target this mechanism, we employed a sequential combination therapy of DAC and gemcitabine to sensitize GBC cells to gemcitabine-therapy through epigenetic activation of the elongator complex. CONCLUSIONS: Our findings suggest that ELP5 expression in GBC is controlled by DNA methylation-sensitive induction of PAX5. The sequential combination therapy of DAC and gemcitabine could be an efficient therapeutic strategy to overcome chemotherapy resistance in GBC.


Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Deoxycytidine/analogs & derivatives , Epigenomics/methods , Gallbladder Neoplasms/drug therapy , Animals , Antimetabolites, Antineoplastic/pharmacology , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Gallbladder Neoplasms/genetics , Humans , Male , Mice , Mice, Nude , Gemcitabine
13.
Cell Death Discov ; 7(1): 226, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34462424

ABSTRACT

Papillary thyroid cancer (PTC) is the main histological type of thyroid cancer and accounts for almost all increased cases worldwide. Patients with PTC exhibit a favorable prognosis, but the fact that PTC is often accompanied by a high prevalence of lymph node metastasis (LNM) means that the overall recurrence-free survival rate in PTC patients is relatively low. Herein, we identified that ID3 expression is subdued in PTC tissues and closely associated with LNM and a poor disease-free survival outcome in PTC patients. The main contributor to this gene repression is the hypermethylation of the CpG island at the promoter of ID3. Besides, we uncovered that a loss of ID3 promotes invasion and migration of PTC cells, while an ectopic overexpression of ID3 inhibits invasion and migration. Mechanistically, ID3 exhibits tumor suppressor functions in PTC cells by interacting with E47 to form heterodimers that prevent E47 binding to CDH1 promoter and maintaining CDH1 transcription and epithelial phenotype in PTC cells. Taken together, our study demonstrates that ID3 plays a tumor suppressor role in PTC and impedes metastasis by inhibiting E47-mediated epithelial to mesenchymal transition.

14.
Mol Ther Oncolytics ; 20: 59-70, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33575471

ABSTRACT

Gallbladder cancer (GBC) is the most common malignancy of the biliary tract, with extremely dismal prognosis. Limited therapeutic options are available for GBC patients. We used whole-exome sequencing of human GBC to identify the ErbB and epigenetic pathways as two vulnerabilities in GBC. We screened two focused small-molecule libraries that target these two pathways using GBC cell lines and identified the mTOR inhibitor INK-128 and the histone deacetylase (HDAC) inhibitor JNJ-26481585 as compounds that inhibited proliferation at low concentrations. Both significantly suppressed tumor growth and metastases in mouse models. Both synergized with the standard of care chemotherapeutic agent gemcitabine in cell lines and in mouse models. Furthermore, the activation of the mTOR pathway, measured by immunostaining for phosphorylated mTOR and downstream effector S6K1, is correlated with poor prognosis in GBC. Phosphorylated mTOR or p-S6K1 in clinical samples is an independent indicator for overall survival in GBC patients. Taken together, our findings suggest that mTOR inhibitors and HDAC inhibitors can serve as potential therapeutics for GBC, and the phosphorylation of mTOR and S6K1 may serve as biomarkers for GBC.

15.
Oncogene ; 39(26): 4983-5000, 2020 06.
Article in English | MEDLINE | ID: mdl-32514152

ABSTRACT

Bile acids (BAs), well-defined signaling molecules with diverse metabolic functions, play important roles in cellular processes associated with many cancers. As one of the most common BAs, deoxycholic acid (DCA) is originally synthesized in the liver, stored in the gallbladder, and processed in the gut. DCA plays crucial roles in various tumors; however, functions and molecular mechanisms of DCA in gallbladder cancer (GBC) still remain poorly characterized. Here, we analyzed human GBC samples and found that DCA was significantly downregulated in GBC, and reduced levels of DCA was associated with poor clinical outcome in patients with GBC. DCA treatment impeded tumor progression by halting cell proliferation. DCA decreased miR-92b-3p expression in an m6A-dependent posttranscriptional modification manner by facilitating dissociation of METTL3 from METTL3-METTL14-WTAP complex, which increased the protein level of the phosphatase and tensin homolog, a newly identified target of miR-92b-3p, and subsequently inactivated the PI3K/AKT signaling pathway. Our findings revealed that DCA might function as a tumor suppressive factor in GBC at least by interfering with miR-92b-3p maturation, and suggested that DCA treatment could provide a new therapeutic strategy for GBC.


Subject(s)
Adenosine/analogs & derivatives , Cell Proliferation/drug effects , Deoxycholic Acid/pharmacology , Gallbladder Neoplasms/genetics , Gene Expression Regulation, Neoplastic/drug effects , MicroRNAs/genetics , Adenosine/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Deoxycholic Acid/metabolism , Disease Progression , Gallbladder Neoplasms/metabolism , Gallbladder Neoplasms/therapy , HEK293 Cells , Humans , Male , Mice, Inbred BALB C , Mice, Nude , RNA Interference , Xenograft Model Antitumor Assays/methods
16.
J Cell Mol Med ; 24(2): 1599-1613, 2020 01.
Article in English | MEDLINE | ID: mdl-31782270

ABSTRACT

Gallbladder cancer (GBC) is the leading malignancy of biliary system showing refractory chemoresistance to current first-line drugs. Growing epidemiological evidences have established that the incidence of GBC exhibits significant gender predominance with females two-threefold higher than males, suggesting oestrogen/oestrogen receptors (ERs) signalling might be a critical driver of tumorigenesis in gallbladder. This study aims to evaluate the antitumour activity of tamoxifen (TAM), a major agent of hormonal therapy for breast cancer, in preclinical GBC model. Quantitative real-time PCR was used to investigate mRNA levels. Protein expression was measured by immunohistochemistry and Western blot. Glycolytic levels were measured by glucose consumption and lactic acid measurement. The antitumour activity of TAM alone or with cisplatin was examined with CCK8 assay, colony formation, flow cytometry and in vivo models. The results revealed that ERɑ expression was higher in GBC tissues and predicted poor clinical outcomes. TAM was showed effective against a variety of GBC cell lines. Mechanical investigations revealed that TAM enabled potent reactive oxygen species (ROS) production by reduced nuclear factor Nrf2 expression and its target genes, leading to the activation of AMPK, which subsequently induced impaired glycolysis and survival advantages. Notably, TAM was demonstrated to sensitize GBC cells to cisplatin (CDDP) both in vitro and in vivo. In agreement with these findings, elimination of oestrogens by ovariectomy in nude mice prevented CDDP resistance. In summary, these results provide basis for TAM treatment for GBC and shed novel light on the potential application of endocrine therapy for patients with GBC.


Subject(s)
Gallbladder Neoplasms/metabolism , Gallbladder Neoplasms/pathology , Glucose/metabolism , Tamoxifen/pharmacology , Adenylate Kinase/metabolism , Aged , Apoptosis/drug effects , Carcinogenesis/drug effects , Carcinogenesis/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cisplatin/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Estrogen Receptor alpha/metabolism , Female , Gallbladder Neoplasms/enzymology , Glycolysis/drug effects , Humans , Male , Middle Aged , Models, Biological , Molecular Targeted Therapy , Multivariate Analysis , NF-E2-Related Factor 2/metabolism , Ovariectomy , Prognosis , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Tumor Burden , Xenograft Model Antitumor Assays
17.
Nat Commun ; 10(1): 5492, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31792210

ABSTRACT

Gemcitabine is the first-line treatment for locally advanced and metastatic gallbladder cancer (GBC), but poor gemcitabine response is universal. Here, we utilize a genome-wide CRISPR screen to identify that loss of ELP5 reduces the gemcitabine-induced apoptosis in GBC cells in a P53-dependent manner through the Elongator complex and other uridine 34 (U34) tRNA-modifying enzymes. Mechanistically, loss of ELP5 impairs the integrity and stability of the Elongator complex to abrogate wobble U34 tRNA modification, and directly impedes the wobble U34 modification-dependent translation of hnRNPQ mRNA, a validated P53 internal ribosomal entry site (IRES) trans-acting factor. Downregulated hnRNPQ is unable to drive P53 IRES-dependent translation, but rescuing a U34 modification-independent hnRNPQ mutant could restore P53 translation and gemcitabine sensitivity in ELP5-depleted GBC cells. GBC patients with lower ELP5, hnRNPQ, or P53 expression have poor survival outcomes after gemcitabine chemotherapy. These results indicate that the Elongator/hnRNPQ/P53 axis controls gemcitabine sensitivity in GBC cells.


Subject(s)
Antimetabolites, Antineoplastic/administration & dosage , Carrier Proteins/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Deoxycytidine/analogs & derivatives , Gallbladder Neoplasms/drug therapy , Gallbladder Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Apoptosis/drug effects , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/genetics , Cohort Studies , Deoxycytidine/administration & dosage , Female , Gallbladder Neoplasms/metabolism , Genome-Wide Association Study , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Humans , Internal Ribosome Entry Sites , Male , Middle Aged , RNA Processing, Post-Transcriptional , RNA, Transfer/genetics , RNA, Transfer/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Gemcitabine
18.
Mol Cancer ; 18(1): 166, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31752867

ABSTRACT

BACKGROUND: CircRNAs are found to affect initiation and progression of several cancer types. However, whether circRNAs are implicated in gallbladder cancer (GBC) progression remains obscure. METHODS: We perform RNA sequencing in 10 pairs of GBC and para-cancer tissues. CCK8 and clone formation assays are used to evaluate proliferation ability of GBC cells. qPCR and Western blot are used to determine expression of RNAs and proteins, respectively. CircRNA-protein interaction is confirmed by RNA pulldown, RNA immunoprecipitation, and fluorescence in situ hybridization. RESULTS: We find that circRNA expression pattern is tremendously changed during GBC development. Among dozens of significantly changed circRNAs, a circRNA generated from the oncogene ERBB2, named as circERBB2, is one of the most significant changes. CircERBB2 promotes GBC proliferation, in vitro and in vivo. Other than being a miRNA sponge, circERBB2 accumulates in the nucleoli and regulates ribosomal DNA transcription, which is one of the rate-limiting steps of ribosome synthesis and cellular proliferation. CircERBB2 regulates nucleolar localization of PA2G4, thereby forming a circERBB2-PA2G4-TIFIA regulatory axis to modulate ribosomal DNA transcription and GBC proliferation. Increased expression of circERBB2 is associated with worse prognosis of GBC patients. CONCLUSIONS: Our findings demonstrate that circERBB2 serves as an important regulator of cancer cell proliferation and shows the potential to be a new therapeutic target of GBC.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , DNA, Ribosomal , Gallbladder Neoplasms/genetics , Gallbladder Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , RNA, Circular , RNA-Binding Proteins/metabolism , Receptor, ErbB-2/genetics , Alternative Splicing , Biomarkers, Tumor , Cell Line, Tumor , Disease Progression , Gallbladder Neoplasms/pathology , Gene Expression Profiling , Humans , Models, Biological , Prognosis , ROC Curve
19.
EBioMedicine ; 48: 143-160, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31590928

ABSTRACT

BACKGROUND: Oxidative stress and their effectors play critical roles in carcinogenesis and chemoresistance. However, the role of oxidative stress-related genes variants in biliary tract cancer (BTC) chemoresistance remains unknown. In this work, we aim to investigate oxidative stress-dependent molecular mechanisms underlying chemoresistance, and find potential biomarkers to predict chemotherapy response for BTC. METHODS: Sixty-six SNPs in 21 oxidative stress-related genes were genotyped and analyzed in 367 BTC patients. Immunoblot, immunohistochemical, immunofluorescent, quantitative PCR, chromatin immunoprecipitation analysis and study of animal xenograft models were performed to discover oxidative stress-related susceptibility genes underlying chemoresistance mechanism of BTC. FINDINGS: We found that 3 functional polymorphisms (CAT_rs769217, GPX4_rs4807542, and GSR_rs3779647), which were shown to affect their respective gene expression levels, modified the effect of chemotherapy on overall survival (OS). We then demonstrated that knockdown of GPX4, CAT, or GSR induced chemoresistance through elevation of ROS level and activation of Nrf2-ABCG2 pathway in BTC cell lines. Moreover, the association between Nrf2 expression and BTC prognosis is only found in patients who received chemotherapy. Knockdown of Nrf2 enhanced chemosensitivity or even eliminated postoperative recurrence in BTC xenograft mouse models. Importantly, upon chemotherapy treatment patients harboring high oxidative stress-related score received higher survival benefit from adjuvant chemotherapy compared with patients with low oxidative stress-related score. INTERPRETATION: The result of our study suggests, for the first time, that the oxidative stress-related score calculated by combining variations in CAT, GPX4, and GSR or Nrf2 expression could be used for predicting the chemosensitivity of BTC patients. FUND: This work was supported by the National Science Foundation of China, Foundation of Shanghai Shen Kang Hospital Development Center, and Shanghai Outstanding Academic Leaders Plan.


Subject(s)
Biliary Tract Neoplasms/genetics , Biliary Tract Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Genetic Variation , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Signal Transduction , Adolescent , Adult , Aged , Aged, 80 and over , Biliary Tract Neoplasms/pathology , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Prognosis , ROC Curve , Reactive Oxygen Species , Young Adult
20.
J Exp Clin Cancer Res ; 38(1): 247, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-31182136

ABSTRACT

BACKGROUND: Gallbladder cancer (GBC) is an extremely malignant tumor with a high mortality rate. Little is known about its invasion and metastasis mechanism so far. METHODS: To identify the driver genes in GBC metastasis, we performed a mRNA microarray of metastatic GBC and paired non-tumor samples, and found PLEK2 was markedly upregulated in GBC tissues. Next, the expression of PLEK2 in GBC were examined in a larger cohort of patients by qRT-PCR, western blot and IHC staining. The clinicopathologic correlation of PLEK2 was determined by statistical analyses. The biological involvement of PLEK2 in GBC metastasis and the underlying mechanisms were investigated. RESULTS: In this study, we found that PLEK2 had higher expression in GBC tumor tissues compared to non-cancerous adjacent tissues and cholecystolithiasis tissues. The clinicopathologic analyses showed PLEK2 expression was positively correlated with tumor TNM stage, distant metastasis and PLEK2 was an independent predictor of overall survival (OS) in GBC patients. The cellular function assays showed PLEK2 promoted GBC cells migration, invasion and liver metastasis in mouse model via the regulation of epithelial-mesenchymal transition (EMT) process. Our mass spectrum and co-immunoprecipitation (co-IP) assays demonstrated that PLEK2 could interact with the kinase domain of EGFR and suppress EGFR ubiquitination mediated by c-CBL, leading to constitutive activation of EGFR signaling. Furthermore, RNA-sequencing and qRT-PCR results demonstrated chemokine (C-C motif) ligand 2 (CCL2), a target gene downstream of PLEK2/EGFR signaling, mediated the motility-promoting function of PLEK2. CONCLUSIONS: On the basis of these collective data, we propose that PLEK2 promotes the invasion and metastasis of GBC by EGFR/CCL2 pathway and PLEK2 can serve as a potential therapeutic target for GBC treatment.


Subject(s)
Chemokine CCL2/metabolism , Gallbladder Neoplasms/metabolism , Gallbladder Neoplasms/pathology , Membrane Proteins/metabolism , Signal Transduction , Aged , Aged, 80 and over , Animals , Biomarkers , Cell Line, Tumor , Cell Movement , Cell Proliferation , ErbB Receptors/metabolism , Gallbladder Neoplasms/mortality , Humans , Immunohistochemistry , Male , Mice , Middle Aged , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasm Staging , Prognosis , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...