Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 221
Filter
1.
ACS Nano ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136274

ABSTRACT

The development of Li metal batteries requires a detailed understanding of complex nucleation and growth processes during electrodeposition. In situ techniques offer a framework to study these phenomena by visualizing structural dynamics that can inform the design of uniform plating morphologies. Herein, we combine scanning electrochemical cell microscopy (SECCM) with in situ interference reflection microscopy (IRM) for a comprehensive investigation of Li nucleation and growth on lithiophilic thin-film gold electrodes. This multimicroscopy approach enables nanoscale spatiotemporal monitoring of Li plating and stripping, along with high-throughput capabilities for screening experimental conditions. We reveal the accumulation of inactive Li nanoparticles in specific electrode regions, yet these regions remain functional in subsequent plating cycles, suggesting that growth does not preferentially occur from particle tips. Optical-electrochemical correlations enabled nanoscale mapping of Coulombic Efficiency (CE), showing that regions prone to inactive Li accumulation require more cycles to achieve higher CE. We demonstrate that electrochemical nucleation time (tnuc) is a lagging indicator of nucleation and introduce an optical method to determine tnuc at earlier stages with nanoscale resolution. Plating at higher current densities yielded smaller Li nanoparticles and increased areal density, and was not affected by heterogeneous topographical features, being potentially beneficial to achieve a more uniform plating at longer time scales. These results enhance the understanding of Li plating on lithiophilic surfaces and offer promising strategies for uniform nucleation and growth. Our multimicroscopy approach has broad applicability to study nanoscale metal plating and stripping phenomena, with relevance in the battery and electroplating fields.

2.
Ann Biol Clin (Paris) ; 82(2): 174-186, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38832689

ABSTRACT

Dyslipidemia plays a key role in metabolic syndrome (MS), intricately linked to type 2 diabetes mellitus (T2DM). This study aimed to investigate the differences in low-density lipoprotein cholesterol (LDL-C) subfraction levels between T2DM and T2DM with MS, and identify the risk factors associated with the disease. A total of 246 individuals diagnosed with T2DM, including 144 T2DM patients with MS, and 147 healthy subjects were recruited. All participants underwent a comprehensive clinical evaluation. Lipoprotein subfraction analysis was performed using the Lipoprint LDL system. Multivariate logistic regression analysis revealed that several lipid markers, including triglyceride (TG), LDL-C, large buoyant LDL-C (lbLDL-C), small dense LDL-C (sdLDL-C), LDLC2-5, and sdLDL-C/lbLDL-C ratio, were identified as independent risk factors for T2DM. Additionally, TG, sdLDL-C, LDLC-4, LDLC-5, and sdLDL-C/lbLDL-C ratio were found to be independent risk factors for T2DM with MS. Furthermore, the results of the receiver operating characteristic (ROC) curves demonstrated that sdLDL-C, LDLC-4, LDLC-3, and sdLDL-C/lbLDL-C ratio exhibited excellent predictive performance for the risk of T2DM (AUC > 0.9). The sdLDL-C/lbLDL-C ratio emerges as a shared independent risk factor for T2DM and MS complications. Furthermore, sdLDL-C/lbLDL-C ratio, along with LDL-4 and LDL-3, exhibits noteworthy predictive capabilities for T2DM.


Subject(s)
Biomarkers , Cholesterol, LDL , Diabetes Mellitus, Type 2 , Metabolic Syndrome , Humans , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/complications , Metabolic Syndrome/blood , Metabolic Syndrome/diagnosis , Metabolic Syndrome/epidemiology , Female , Male , Middle Aged , Risk Factors , Cholesterol, LDL/blood , Adult , Biomarkers/blood , Case-Control Studies , Aged
3.
Chin Med ; 19(1): 77, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831435

ABSTRACT

Repair of acute kidney injury (AKI) is a typical example of renal regeneration. AKI is characterized by tubular cell death, peritubular capillary (PTC) thinning, and immune system activation. After renal tubule injury, resident renal progenitor cells, or renal tubule dedifferentiation, give rise to renal progenitor cells and repair the damaged renal tubule through proliferation and differentiation. Mesenchymal stem cells (MSCs) also play an important role in renal tubular repair. AKI leads to sparse PTC, affecting the supply of nutrients and oxygen and indirectly aggravating AKI. Therefore, repairing PTC is important for the prognosis of AKI. The activation of the immune system is conducive for the body to clear the necrotic cells and debris generated by AKI; however, if the immune activation is too strong or lengthy, it will cause damage to renal tubule cells or inhibit their repair. Macrophages have been shown to play an important role in the repair of kidney injury. Traditional Chinese medicine (TCM) has unique advantages in the treatment of AKI and a series of studies have been conducted on the topic in recent years. Herein, the role of TCM in promoting the repair of renal injury and its molecular mechanism is discussed from three perspectives: repair of renal tubular epithelial cells, repair of PTC, and regulation of macrophages to provide a reference for the treatment and mechanistic research of AKI.

4.
Microbiol Spectr ; 12(8): e0429223, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38916349

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an RNA virus that undergoes rapid mutation. Based on viral whole genome sequencing analysis in Hebei Province, China, we identified several essential single nucleotide variants (SNVs) on primer-probe regions accumulating within some Omicron variants' genomes. In this study, we focused on three SNVs, C28290T, T28297C, and C28311T emerging on 2019-nCoV-N1 (CDC-N1) primer-probe regions, recommended by CDC in 2020, and two SNVs, C26270T, A26275G emerging on E (Charité-E) primer-probe regions recommended by Charité, Germany. Our findings revealed that the presence of one or two SNVs in the primer or probe region affected the sensitivity of reverse transcription-quantitative polymerase chain reaction and droplet digital PCR to varying extents. This discovery underscores the importance of continuously monitoring the whole genome sequences of SARS-CoV-2 variants, especially the primer-probe targeting regions, and correspondingly updating commercial test kits or recommended primer-probe sequence sets. IMPORTANCE: The emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has resulted in a growing number of mutations in its genome, presenting new challenges for the diagnosis of SARS-CoV-2 using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and droplet digital PCR (RT-ddPCR) methods. There is an urgent need to develop refined methods for modifying primers and probes to improve the detection of these emerging variants. In this study, our focus was on the SNVs that have emerged in the CDC-N1 and Charité-E primer-probe regions. Our research has confirmed that the presence of these SNVs in the primer or probe region can significantly affect the results of coronavirus disease 2019 tests. we have developed and validated a modified detection method that can provide higher sensitivity and specificity. This study emphasizes the importance of refining the primer-probe sets to ensure the diagnostic accuracy of RT-qPCR and RT-ddPCR detection.


Subject(s)
COVID-19 , Genome, Viral , Mutation , SARS-CoV-2 , Sensitivity and Specificity , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Humans , COVID-19/diagnosis , COVID-19/virology , Genome, Viral/genetics , DNA Primers/genetics , RNA, Viral/genetics , China , Real-Time Polymerase Chain Reaction/methods , Whole Genome Sequencing/methods , Polymorphism, Single Nucleotide , Reverse Transcriptase Polymerase Chain Reaction/methods , COVID-19 Nucleic Acid Testing/methods
5.
Cell Death Dis ; 15(5): 318, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710703

ABSTRACT

Glioblastoma stem cells (GSCs) play a key role in glioblastoma (GBM) resistance to temozolomide (TMZ) chemotherapy. With the increase in research on the tumour microenvironment, exosomes secreted by GSCs have become a new focus in GBM research. However, the molecular mechanism by which GSCs affect drug resistance in GBM cells via exosomes remains unclear. Using bioinformatics analysis, we identified the specific expression of ABCB4 in GSCs. Subsequently, we established GSC cell lines and used ultracentrifugation to extract secreted exosomes. We conducted in vitro and in vivo investigations to validate the promoting effect of ABCB4 and ABCB4-containing exosomes on TMZ resistance. Finally, to identify the transcription factors regulating the transcription of ABCB4, we performed luciferase assays and chromatin immunoprecipitation-quantitative PCR. Our results indicated that ABCB4 is highly expressed in GSCs. Moreover, high expression of ABCB4 promoted the resistance of GSCs to TMZ. Our study found that GSCs can also transmit their highly expressed ABCB4 to differentiated glioma cells (DGCs) through exosomes, leading to high expression of ABCB4 in these cells and promoting their resistance to TMZ. Mechanistic studies have shown that the overexpression of ABCB4 in GSCs is mediated by the transcription factor ATF3. In conclusion, our results indicate that GSCs can confer resistance to TMZ in GBM by transmitting ABCB4, which is transcribed by ATF3, through exosomes. This mechanism may lead to drug resistance and recurrence of GBM. These findings contribute to a deeper understanding of the mechanisms underlying drug resistance in GBM and provide novel insights into its treatment.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , Activating Transcription Factor 3 , Brain Neoplasms , Drug Resistance, Neoplasm , Exosomes , Glioblastoma , Neoplastic Stem Cells , Temozolomide , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/genetics , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Exosomes/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , Activating Transcription Factor 3/metabolism , Activating Transcription Factor 3/genetics , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Animals , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Mice , Gene Expression Regulation, Neoplastic/drug effects , Mice, Nude
6.
BMC Cardiovasc Disord ; 24(1): 259, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762515

ABSTRACT

OBJECTIVE: To construct a nutrition support program for middle-aged and elderly patients with acute decompensated heart failure (ADHF) during hospitalization. METHODS: Based on the JBI Evidence-Based Health Care Model as the theoretical framework, the best evidence was extracted through literature analysis and a preliminary nutrition support plan for middle-aged and elderly ADHF patients during hospitalization was formed. Two rounds of expert opinion consultation were conducted using the Delphi method. The indicators were modified, supplemented and reduced according to the expert's scoring and feedback, and the expert scoring was calculated. RESULTS: The response rates of the experts in the two rounds of consultation were 86.7% and 100%, respectively, and the coefficient of variation (CV) for each round was between 0.00% and 29.67% (all < 0.25). In the first round of expert consultation, 4 items were modified, 3 items were deleted, and 3 items were added. In the second round of the expert consultation, one item was deleted and one item was modified. Through two rounds of expert consultation, expert consensus was reached and a nutrition support plan for ADHF patients was finally formed, including 4 first-level indicators, 7 s-level indicators, and 24 third-level indicators. CONCLUSION: The nutrition support program constructed in this study for middle-aged and elderly ADHF patients during hospitalization is authoritative, scientific and practical, and provides a theoretical basis for clinical development of nutrition support program for middle-aged and elderly ADHF patients during hospitalization.


Subject(s)
Consensus , Delphi Technique , Heart Failure , Nutritional Status , Nutritional Support , Humans , Heart Failure/therapy , Heart Failure/diagnosis , Heart Failure/physiopathology , Aged , Middle Aged , Female , Male , Hospitalization , Age Factors , Acute Disease , Treatment Outcome , Program Development , Nutrition Assessment , Inpatients
7.
Environ Sci Pollut Res Int ; 31(25): 37717-37731, 2024 May.
Article in English | MEDLINE | ID: mdl-38789708

ABSTRACT

The changes of medical solid waste (MSW) output in recent years have had a significant impact on the spread of the virus. There is a high-risk transmission of MSW in various stages such as storage, transportation, and treatment during the COVID-19. To cope with the risks brought by the epidemic, normalized prevention consumes a large amount of protective clothing, medical masks, goggles, packaging bags, and other related medical supplies. There is a significant uncertainty in the amount of MSW output that poses a risk of COVID-19 infection in the event of an emergency, which increases the difficulty of collecting and handling epidemic prevention MSW. The analysis of MSW data from 2000 to 2022 found a stable growth trend before 2019. However, the MSW data was a sudden increase trend from 2020 to 2022, and the COVID-19 in China was characterized by an initial stage, an outbreak stage, and a stable growth stage. The range of MSW output during the epidemic was (1.19-1.75) × 106 t a-1. The amount of MSW was approximately 1.19 × 106 t a-1 during the normalized epidemic period, and its treatment cost was as high as 3.57 × 109 yuan (RMB)·a-1. The distribution of MSW output was uneven due to factors such as climate conditions, population data, and local economy. This study has important reference value for epidemic medical material reserves and MSW treatment.


Subject(s)
COVID-19 , Medical Waste , SARS-CoV-2 , COVID-19/epidemiology , China/epidemiology , Humans , Solid Waste
8.
Front Neurol ; 15: 1367973, 2024.
Article in English | MEDLINE | ID: mdl-38685946

ABSTRACT

Background: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. Olfactory dysfunction (OD) is an important nonmotor feature of PD. Dl-3-n-Butylphthalide (NBP) is a synthetic compound isolated from Apium graveolens seeds. The present study was conducted to investigate the effect of NBP on olfaction in rotenone-induced Parkinson's rats to explore the mechanism and pathway of OD in PD. Methods: The PD model was established using rotenone-induced SD rats, divided into blank control, model, and treatment groups. A sham group was also established, with 10 rats in each group. The treatment group was given NBP (1 mg/kg, 10 mg/kg, and 100 mg/kg, dissolved in soybean oil) intragastrically for 28 days. Meanwhile, the control group rats were given intra-gastrically soybean oil. After behavioral testing, all rats were executed, and brain tissue was obtained. Proteomics and Proteomic quantification techniques (prm) quantification were used to detect proteomic changes in rat brain tissues. Results: Compared with the control group, the model group showed significant differences in behavioral tests, and this difference was reduced after treatment. Proteomics results showed that after treatment with high-dose NBP, there were 42 differentially expressed proteins compared with the model group. Additionally, the olfactory marker (P08523) showed a significant upregulation difference. We then selected 22 target proteins for PRM quantification and quantified 17 of them. Among them, the olfactory marker protein was at least twofold upregulated in the RTH group compared to the model group.

9.
Inflammopharmacology ; 32(3): 1659-1704, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38520574

ABSTRACT

Curcumol (Cur), a guaiane-type sesquiterpenoid hemiketal, is an important and representative bioactive component extracted from the essential oil of the rhizomes of Curcumae rhizoma which is also known as "Ezhu" in traditional Chinese medicine. Recently, Cur has received considerable attention from the research community due to its favorable pharmacological activities, including anti-cancer, hepatoprotective, anti-inflammatory, anti-viral, anti-convulsant, and other activities, and has also exerted therapeutic effect on various cancers, liver diseases, inflammatory diseases, and infectious diseases. Pharmacokinetic studies have shown that Cur is rapidly distributed in almost all organs of rats after intragastric administration with high concentrations in the small intestine and colon. Several studies focusing on structure-activity relationship (SAR) of Cur have shown that some Cur derivatives, chemically modified at C-8 or C-14, exhibited more potent anti-cancer activity and lower toxicity than Cur itself. This review aims to comprehensively summarize the latest advances in the pharmacological and pharmacokinetic properties of Cur in the last decade with a focus on its anti-cancer and hepatoprotective potentials, as well as the research progress in drug delivery system and potential applications of Cur to date, to provide researchers with the latest information, to highlighted the limitations of relevant research at the current stage and the aspects that should be addressed in future research. Our results indicate that Cur and its derivatives could serve as potential novel agents for the treatment of a variety of diseases, particularly cancer and liver diseases.


Subject(s)
Drug Delivery Systems , Sesquiterpenes , Animals , Sesquiterpenes/pharmacology , Sesquiterpenes/pharmacokinetics , Sesquiterpenes/administration & dosage , Humans , Structure-Activity Relationship , Drug Delivery Systems/methods , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage
10.
Emerg Microbes Infect ; 13(1): 2324502, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38465692

ABSTRACT

In this study, we reported the first long-term monitoring of SARS-CoV-2 in wastewater in Mainland China from November 2021 to October 2023. The city of Shijiazhuang was employed for this case study. We developed a triple reverse transcription droplet digital PCR (RT-ddPCR) method using triple primer-probes for simultaneous detection of the N1 gene, E gene, and Pepper mild mottle virus (PMMoV) to achieve accurate quantification of SARS-CoV-2 RNA in wastewater. Both the RT-ddPCR method and the commercial multiplex reverse transcription quantitative polymerase chain reaction (RT-qPCR) method were implemented for the detection of SARS-CoV-2 in wastewater in Shijiazhuang City over a 24-month period. Results showed that SARS-CoV-2 was detected for the first time in the wastewater of Shijiazhuang City on 10 November 2022. The peak of COVID-19 cases occurred in the middle of December 2022, when the concentration of SARS-CoV-2 in the wastewater was highest. The trend of virus concentration increases and decreases forming a "long-tailed" shape in the COVID-19  outbreak and recession cycle. The results indicated that both multiplex RT-ddPCR and RT-qPCR are effective in detecting SARS-CoV-2 in wastewater, but RT-ddPCR is capable of detecting low concentrations of SARS-CoV-2 in wastewater which is more efficient. The SARS-CoV-2 abundance in wastewater is correlated to clinical data, outlining the public health utility of this work.HighlightsFirst long-term monitoring of SARS-CoV-2 in wastewater in Mainland ChinaCOVID-19 outbreak was tracked in Shijiazhuang City from outbreak to containmentWastewater was monitored simultaneously using RT-ddPCR and RT-qPCR methodsTriple primer-probe RT-ddPCR detects N1 and E genes of SARS-CoV-2 and PMMoV.


Subject(s)
COVID-19 , SARS-CoV-2 , Tobamovirus , Humans , SARS-CoV-2/genetics , Wastewater , COVID-19/diagnosis , COVID-19/epidemiology , RNA, Viral/genetics , China/epidemiology , Multiplex Polymerase Chain Reaction , COVID-19 Testing
11.
Acad Radiol ; 31(7): 2827-2837, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38228455

ABSTRACT

RATIONALE AND OBJECTIVES: To investigate the effectiveness of combining split diffusion tensor imaging (DTI) measurements with split renal parenchymal volume (RPV) for assessing split renal functional impairment in patients with lupus nephritis (LN). MATERIALS AND METHODS: Seventy-four participants [48 LN patients and 26 healthy volunteers (HV)] were included in the study. All participant underwent conventional MR and DTI (b = 0, 400, and 600 s/mm2) examinations using a 3.0 T MRI scanner to determine the split renal DTI measurements and split RPV. In LN patients, renography glomerular filtration rate (rGFR) was measured using 99mTc-DTPA scintigraphy based on Gates' method, serving as the reference standard to categorize all split kidneys of LN patients into LN with mild impairment (LNm, n = 65 kidneys) and LN with moderate to severe (LNms, n = 31 kidneys) groups according to the threshold of 30 ml/min in spilt rGFR. All statistical analyses were performed using SPSS 25.0 and MedCalc 20.0 software packages. RESULTS: Only split medullary fractional anisotropy (FA) and the product of split medullary FA and RPV could distinguish pairwise subgroups among the HV and each LN subgroup (all p < 0.05). ROC curve analysis demonstrated that split medullary FA (AUC = 0.866) significantly outperformed other parameters in differentiating HV from LNm groups, while the product of split medullary FA and split RPV was superior in distinguishing LNm and LNms groups (AUC = 0.793) than other parameters. The combination of split medullary FA and split RPV showed best correlation with split rGFR (r = 0.534, p < 0.001). CONCLUSION: Split medullary FA, and its combination with split RPV, are valuable biomarkers for detecting early functional changes in renal alterations and predicting disease progression in patients with LN.


Subject(s)
Diffusion Tensor Imaging , Glomerular Filtration Rate , Kidney , Lupus Nephritis , Humans , Female , Male , Lupus Nephritis/diagnostic imaging , Adult , Diffusion Tensor Imaging/methods , Kidney/diagnostic imaging , Early Diagnosis , Middle Aged , Sensitivity and Specificity , Organ Size , Radioisotope Renography/methods , Case-Control Studies , Young Adult
12.
Cell Death Dis ; 15(1): 45, 2024 01 13.
Article in English | MEDLINE | ID: mdl-38218875

ABSTRACT

Interferon-induced transmembrane protein 3 (IFITM3) has been previously verified to be an endosomal protein that prevents viral infection. Recent findings suggested IFITM3 as a key factor in tumor invasion and progression. To clarify the role and molecular mechanism of IFITM3 in Glioblastoma multiforme (GBM) progression, we investigated the expression of IFITM3 in glioma datasets culled from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA). Primary GBM stem cells (GSCs) were cultured and identified in vitro. Loss-of-function and gain-of-function experiments were established by using shRNAs and lentiviral vectors targeting IFITM3. Co-culture system of GSCs and vascular endothelial cells was constructed in a Transwell chamber. Tube formation and spheroid-based angiogenesis assays were performed to determine the angiogenic capacity of endothelial cells. Results revealed that IFITM3 is elevated in GBM samples and predictive of adverse outcome. Mechanistically, GSCs-derived IFITM3 causes activation of Jak2/STAT3 signaling and leads to robust secretion of bFGF into tumor environment, which eventually results in enhanced angiogenesis. Taken together, these evidence indicated IFITM3 as an essential factor in GBM angiogenesis. Our findings provide a new insight into mechanism by which IFITM3 modulates GBM angiogenesis.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/pathology , Endothelial Cells/metabolism , Angiogenesis , Glioma/genetics , Signal Transduction , Stem Cells/metabolism , Brain Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
13.
Food Chem ; 443: 138540, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38277935

ABSTRACT

The authentication of dairy species has great significance for food safety. This study focused on a more rapid method for identifying major dairy species, and specific recombinase polymerase amplification (RPA)-based assays for cattle, goat, sheep, camel and donkey were developed. Through the developed RPA-based assays, goats and sheep could be simultaneously identified and bovine families could be differentiated. The performances of the RPA assays were validated using 37 milk powder samples, of which 16.2% (6/37) were suspected of being adulterated and 24.3% (9/37) were potentially at risk of being wrongly identified as adulteration. The effectiveness of the developed assays for crude DNA detection was also validated by a rapid nucleic acid extraction kit, and results showed that the presence of large amounts of protein and fat did not affect the qualitative results. Therefore, these assays could combine with the rapid nucleic acids extraction methods for being used in field detection.


Subject(s)
Nucleic Acids , Recombinases , Humans , Animals , Cattle , Sheep/genetics , Recombinases/genetics , Powders , Milk , DNA , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity
14.
Int J Sports Med ; 45(1): 33-40, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37956874

ABSTRACT

Cardiac hypertrophy (CH) is an early marker in the clinical course of heart failure. Circular RNAs (circRNAs) play important roles in human disease. However, the role of circ_Larp4b in myocardial hypertrophy has not been studied. Angiotensin II (Ang II) treated HL-1 cells to induce a CH cell model. Quantitative real-time polymerase chain reaction was used to detect the expression of circ_Larp4b, microRNA-298-5p, and myocyte enhancer factor 2 (Mef2c). Western blot detected the protein level of alpha-actinin-2 (ACTN2), beta-myosin heavy chain (ß-MHC), atrial natriuretic peptide (ANP), and Mef2c. The relationship between miR-298-5p and circ_Larp4b or Mef2c was verified by dual-luciferase reporter assay and RNA pull-down assay. Circ_Larp4b and Mef2c were upregulated in HL-1 cells treated with Ang II. Moreover, circ_Larp4b down-regulation regulated the progress of CH induced by Ang II. MiR-298-5p was a target of circ_Larp4b, and Mef2c was a target of miR-298-5p. Overexpressed Mef2c reversed the cell size inhibited by miR-298-5p in Ang II-induced HL-1 cells. Circ_Larp4b regulated CH progress by regulating miR-298-5p/Mef2c axis.


Subject(s)
MicroRNAs , Peptide Hormones , Humans , Angiotensin II/pharmacology , RNA, Circular/genetics , MEF2 Transcription Factors/genetics , Cardiomegaly/genetics , MicroRNAs/genetics , Cell Proliferation
15.
J Coll Physicians Surg Pak ; 33(12): 1344-1348, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38062586

ABSTRACT

OBJECTIVE: To investigate the potential treatments for aortic stenosis and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using bioinformatics and systems biology. STUDY DESIGN: Observational study. Place and Duration of the Study: Jiading District Central Hospital affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China, from August to December 2022. METHODOLOGY: GSE147507 was chosen as the SARS-CoV-2 infection dataset from the Biotechnology Information (NCBI) GEO database, while GSE153555 was chosen as the dataset of patients with aortic stenosis (AS). This analysis predicted protein-drug interactions (PDIs) and found therapeutic compounds for AS and COVID-19. RESULTS: One hundred and four DEGs were shared between the two datasets. Researchers built a PPI network to identify 10 hub genes from the network. Researchers discovered that COVID-19 and AS shared certain pathogenic pathways and found a relationship between hub genes and transcription factors and miRNAs, as well as a connection between hub genes and proposed treatments. CONCLUSION: Hub genes were identified as potential pathogenic pathways in SARS-CoV-2 infection and AS. In addition, new prescription medication options for treating both illnesses were provided. KEY WORDS: SARS-CoV-2 infection, COVID-19, Aortic stenosis, Differentially expressed genes, Hub genes, Gene-disease, Drug molecule.


Subject(s)
Aortic Valve Stenosis , COVID-19 , MicroRNAs , Humans , SARS-CoV-2 , China , Aortic Valve Stenosis/epidemiology , Aortic Valve Stenosis/genetics , Computational Biology
16.
BMC Geriatr ; 23(1): 706, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37907840

ABSTRACT

BACKGROUND: Associations between adverse childhood experiences (ACEs) and common psychiatric disorders among older Chinese individuals have not been well reported. The objectives of this study are to examine the prevalence of ACEs and the associations of ACEs with common psychiatric disorders among older adults in China. METHODS: The study used data from the China Mental Health Survey (CMHS), a nationally representative epidemiological survey, which used computer-assisted personal interviewing (CAPI), logistic regression models were used to examine community-based adult psychiatric disorders and associated risk factors. Finally, 2,317 individuals aged 60 years or over were included in the CMHS. The national prevalence of ACEs in older adults were estimated and logistic regression were used to analyse the association between ACEs and past-year psychiatric disorders. RESULTS: Prevalence of ACEs among older adults in China was 18.1%. The three most common types of ACEs were neglect (11.6%), domestic violence (9.2%), and parental loss (9.1%). This study proved the association between ACEs and common past-year psychiatric disorders in older adults. ACEs increased the risk of past-year psychiatric disorders in older adults. After adjustment for age, sex, marital status, employment status, education, rural or urban residence, region, and physical diseases, the association between ACEs and past-year psychiatric disorders were still significant. CONCLUSIONS: ACEs are linked to an increased risk for past-year psychiatric disorders in older adults. ACEs may have long-term effects on older adults' mental well-being. Preventing ACEs may help reduce possible adverse health outcomes in later life.


Subject(s)
Adverse Childhood Experiences , Mental Disorders , Humans , Aged , Mental Disorders/epidemiology , Mental Health , China/epidemiology , Health Surveys
17.
Org Biomol Chem ; 21(46): 9200-9209, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37960944

ABSTRACT

A formal [4 + 2]-cycloaddition reaction of N-alkoxy acrylamides and acyl isothiocyanates was developed via a Lewis base-catalyzed cascade aza-nucleophilic addition/thio-Michael addition process under mild conditions. This study provides a facile approach for preparing 2-imino-1,3-thiazinone derivatives in moderate to excellent yields and enriches the field of heterocyclic acrylamide chemistry. The reported method features metal-free reaction conditions, high atom economy, and easy operation. Moreover, the reaction was successfully scaled up and derivatization reactions were successfully performed.

18.
J Org Chem ; 88(22): 15805-15816, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37906181

ABSTRACT

An Et3N-catalyzed cascade [3 + 2]-annulation of ß-oxo-acrylamides with cyclic N-sulfonyl ketimines or sulfamate-derived imines is developed under mild reaction conditions, which provides a concise and efficient route to access valuable sultam- or sulfamidate-fused imidazolidinone derivatives in good to excellent yields (80-95% yields) with excellent diastereoselectivities (>20:1 drs). The current protocol features atom economy, a transition-metal-free process, and broad functional group tolerance. Moreover, the asymmetric variant of the [3 + 2]-cycloaddition reaction was achieved in the presence of diphenylethanediamine or quinine-based bifunctional squaramide organocatalysts C-1 and C-11, giving the corresponding chiral polycyclic imidazolidinones in 68-90% yields with 25-94% ees and >20:1 drs in all cases.

19.
Biomed Pharmacother ; 166: 115336, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37591126

ABSTRACT

Lung cancer (LC) is one of the leading causes of cancer-related deaths worldwide, with a significant morbidity and mortality rate, endangering human life and health. The introduction of immunotherapies has significantly altered existing cancer treatment strategies and is expected to improve immune responses, objective response rates, and survival rates. However, a better understanding of the complex immunological networks of LC is required to improve immunotherapy efficacy further. Tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs) are significantly expressed by LC cells, which activate dendritic cells, initiate antigen presentation, and activate lymphocytes to exert antitumor activity. However, as tumor cells combat the immune system, an immunosuppressive microenvironment forms, enabling the enactment of a series of immunological escape mechanisms, including the recruitment of immunosuppressive cells and induction of T cell exhaustion to decrease the antitumor immune response. In addition to the direct effect of LC cells on immune cell function, the secreting various cytokines, chemokines, and exosomes, changes in the intratumoral microbiome and the function of cancer-associated fibroblasts and endothelial cells contribute to LC cell immune escape. Accordingly, combining various immunotherapies with other therapies can elicit synergistic effects based on the complex immune network, improving immunotherapy efficacy through multi-target action on the tumor microenvironment (TME). Hence, this review provides guidance for understanding the complex immune network in the TME and designing novel and effective immunotherapy strategies for LC.


Subject(s)
Endothelial Cells , Lung Neoplasms , Humans , Tumor Microenvironment , Lung Neoplasms/therapy , Immunotherapy , Antigen-Antibody Complex
20.
Aging (Albany NY) ; 15(16): 8458-8470, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37632838

ABSTRACT

OBJECTIVE: Cognitive impairment, one of the most prevalent complications of trigeminal neuralgia, is troubling for patients and clinicians due to limited therapeutic options. Curcumin shows antinociception and neuroprotection pharmacologically, suggesting that it may have therapeutic effect on this complication. This study aimed to investigate whether curcumin alleviates orofacial allodynia and improves cognitive impairment by regulating hippocampal CA1 region synaptic plasticity in trigeminal neuralgia. METHODS: A mouse model of trigeminal neuralgia was established by partially transecting the infraorbital nerve (pT-ION). Curcumin was administered by gavage twice daily for 14 days. Nociceptive thresholds were measured using the von Frey and acetone test, and the cognitive functions were evaluated using the Morris water maze test. Dendritic spines and synaptic ultrastructures in the hippocampal CA1 area were observed by Golgi staining and transmission electron microscopy. RESULTS: Curcumin intervention increased the mechanical and cold pain thresholds of models. It decreased the escape latency and distance to the platform and increased the number of platform crossings and dwell time in the target quadrant of models, and improved spatial learning and memory deficits. Furthermore, it partially restored the disorder of the density and proportion of dendritic spines and the abnormal density and structure of synapses in the hippocampal CA1 region of models. CONCLUSION: Curcumin alleviates abnormal orofacial pain and cognitive impairment in pT-ION mice by a mechanism that may be related to the synaptic plasticity of hippocampal CA1, suggesting that curcumin is a potential strategy for repairing cognitive dysfunction under long-term neuropathic pain conditions.


Subject(s)
Cognitive Dysfunction , Curcumin , Trigeminal Neuralgia , Animals , Mice , Hyperalgesia , Hippocampus , Disease Models, Animal , Mice, Neurologic Mutants , Neuronal Plasticity
SELECTION OF CITATIONS
SEARCH DETAIL