Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Front Pharmacol ; 11: 747, 2020.
Article in English | MEDLINE | ID: mdl-32670053

ABSTRACT

Oleanolic acid (OA), a natural triterpenoid, which has the development prospects in anti-tumor therapy is a widely used hepatoprotective drug in China. It has been reported that OA can cause liver toxicity after higher doses or longer-term use. Therefore, the study aims to explore the possible hepatotoxicity mechanism based on liver metabolic profiles. Liver metabolic profiles were obtained from untargeted ultrahigh performance liquid chromatography (UHPLC)-Q Exactive Orbitrap mass spectrometry (MS) technique. It was found that altered bile acid, amino acid, and energy metabolism might be at least partly responsible for OA-induced hepatotoxicity. Bile acid metabolism, as the most important pathway, was verified by using UHPLC-TSQ-MS, indicating that conjugated bile acids were the main contributors to OA-induced liver toxicity. Our findings confirmed that increased bile acids were the key element of OA hepatotoxicity, which may open new insights for OA hepatotoxicity in-depth investigations, as well as provide a reference basis for more hepatotoxic drug mechanism research.

2.
Zhongguo Zhong Yao Za Zhi ; 42(21): 4195-4200, 2017 Nov.
Article in Chinese | MEDLINE | ID: mdl-29271160

ABSTRACT

Zuotai and cinnabar(96%HgS) are contained in many traditional medicines. To examine their potential effects on drug metabolism genes, mice were orally given Zuotai or HgS at doses of 10, 30, 100, 300 mg•kg⁻¹ for 7 days. HgCl2(33.6 mg•kg⁻¹) was gavaged for control. Twenty-four hour later after the last administration, livers were collected, and expressions of genes related to metabolic enzymes and transporters were examined. Zuotai and HgS had no effects on major phase-1, phase-2 and transporter genes; HgCl2 increased the expressions of CYP2B10, CYP4A10, OATP1A4, UGT1A1, UGT2A3, SULT1A1, SULT2A1, MRP1, MRP3 and MRP4; expression of OATP1A1 was decreased by HgCl2, but not by Zuotai and HgS. Therefore, Zuotai and HgS have different adverse effects on drug-metabolizing genes from HgCl2.


Subject(s)
Gene Expression/drug effects , Liver/drug effects , Mercury Compounds/pharmacology , Animals , Liver/enzymology , Mercuric Chloride , Mice
3.
J Pharm Pharmacol ; 69(10): 1409-1417, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28722145

ABSTRACT

OBJECTIVES: In our previous studies, Dendrobium nobile Lindl. alkaloids (DNLA) has been shown to have glucose-lowering and antihyperlipidaemia effects in diabetic rats, in rats fed with high-fat diets, and in mice challenged with adrenaline. This study aimed to examine the effects of DNLA on the expression of glucose and lipid metabolism genes in livers of mice. METHODS: Mice were given DNLA at doses of 10-80 mg/kg, po for 8 days, and livers were removed for total RNA and protein isolation to perform real-time RT-PCR and Western blot analysis. KEY FINDINGS: Dendrobium nobile Lindl. alkaloids increased PGC1α at mRNA and protein levels and increased glucose metabolism gene Glut2 and FoxO1 expression. DNLA also increased the expression of fatty acid ß-oxidation genes Acox1 and Cpt1a. The lipid synthesis regulator Srebp1 (sterol regulatory element-binding protein-1) was decreased, while the lipolysis gene ATGL was increased. Interestingly, DNLA increased the expression of antioxidant gene metallothionein-1 and NADPH quinone oxidoreductase-1 (Nqo1) in livers of mice. Western blot on selected proteins confirmed these changes including the increased expression of GLUT4 and PPARα. CONCLUSIONS: DNLA has beneficial effects on liver glucose and lipid metabolism gene expressions, and enhances the Nrf2-antioxidant pathway gene expressions, which could play integrated roles in regulating metabolic disorders.


Subject(s)
Alkaloids/pharmacology , Dendrobium , Liver/drug effects , Liver/metabolism , Plant Extracts/pharmacology , Alkaloids/isolation & purification , Alkaloids/therapeutic use , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diet, High-Fat/adverse effects , Gene Expression , Male , Mice , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use
4.
Int J Neuropsychopharmacol ; 17(6): 871-81, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24513083

ABSTRACT

Phosphodiesterase-5 (PDE5) inhibitors are predominantly used in the treatment of erectile dysfunction, and have been recently shown to have a potential therapeutic effect for the treatment of Alzheimer's disease (AD) through stimulation of nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signalling by elevating cGMP, which is a secondary messenger involved in processes of neuroplasticity. In the present study, the effects of a PDE5 inhibitor, icarrin (ICA), on learning and memory as well as the pathological features in APP/PS1 transgenic AD mice were investigated. Ten-month-old APP/PS1 transgenic mice overexpressing human amyloid precursor protein (APP695swe) and presenilin 1 (PS1-dE9) were given ICA (30 and 60 mg/kg) or sildenafil (SIL) (2 mg/kg), age-matched wild-type (WT) mice were given ICA (60 mg/kg), and APP/PS1 and WT control groups were given an isovolumic vehicle orally twice a day for four months. Results demonstrated that ICA treatments significantly improved learning and memory of APP/PS1 transgenic mice in Y-maze tasks. The amyloid precursor protein (APP), amyloid-beta (Aß1-40/42) and PDE5 mRNA and/or protein levels were increased in the hippocampus and cortex of APP/PS1 mice, and ICA treatments decreased these physiopathological changes. Furthermore, ICA-treated mice showed an increased expression of three nitric oxide synthase (NOS) isoforms at both mRNA and protein levels, together with increased NO and cGMP levels in the hippocampus and cortex of mice. These findings demonstrate that ICA improves learning and memory functions in APP/PS1 transgenic mice possibly through the stimulation of NO/cGMP signalling and co-ordinated induction of NOS isoforms.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/physiopathology , Cyclic GMP/metabolism , Flavonoids/pharmacology , Nitric Oxide/metabolism , Nootropic Agents/pharmacology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Cerebral Cortex/drug effects , Cerebral Cortex/physiopathology , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Hippocampus/drug effects , Hippocampus/physiopathology , Humans , Male , Maze Learning/drug effects , Maze Learning/physiology , Mice, Transgenic , Nitric Oxide Synthase/metabolism , Peptide Fragments/metabolism , Phosphodiesterase 5 Inhibitors/pharmacology , Presenilin-1/genetics , Presenilin-1/metabolism , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL