Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
iScience ; 27(8): 110493, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39175777

ABSTRACT

Chronic kidney disease (CKD) raises major concerns for global public health as it is characterized by high prevalence, low awareness, high healthcare costs, and poor prognosis. Therefore, our study prospectively established and validated native T1 mapping-based radiomics models for the prediction of renal fibrosis and renal function in patients with CKD. Moreover, the area under the receiver operating characteristic curve (AUC) and diagnostic sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were used to evaluate its performance. Thus, our results show that radiomics based on native T1 mapping images can better identify renal function and renal fibrosis in patients with CKD and outperform conventional T1 mapping parameters of ΔT1 and T1%, thus providing more information for CKD management and clinical decision-making.

2.
Front Physiol ; 15: 1427748, 2024.
Article in English | MEDLINE | ID: mdl-39139479

ABSTRACT

Objective: The objective of this investigation is to examine the contribution of key muscle groups in the lower limbs to vertical jumping performance in elite male volleyball players. Specifically, the study focuses on the rectus femoris (RF), vastus lateralis (VL), and lateral gastrocnemius (LG), as well as exploring differences between attack jump and other vertical jump types. Methods: To achieve this, we employed B-mode ultrasound to evaluate the anatomical cross-sectional area (ACSA), muscle thickness (MT), pennation angle (PA), and fascicle length (FL) of the RF, VL, and LG in the participants. Fifteen elite male volleyball players were recruited as participants for this study. Jump heights were measured for four types of vertical jumps: attack jump (AJ), countermovement jump (CMJ), squat jump (SJ), and drop jump (DJ). We conducted regression analyses to assess whether the previously mentioned muscle structures could predict jump performance. Results: Our findings reveal that the muscle structure of the RF does not exhibit any significant correlation with the height of any jump. However, VL-ACSA displays a significant and the most potent predictive effect on jump height for all four jump types (AJ: R 2 = 0.32, p = 0.001; CMJ: R 2 = 0.37, p = 0.005; SJ: R 2 = 0.52, p = 0.001; DJ: R 2 = 0.25, p = 0.021). Conversely, LG-FL only demonstrates a significant and stronger predictive effect on AJ jump height (R 2 = 0.18, p = 0.009). Combining VL-ACSA, LG-FL, and training age through multiple linear regression analysis resulted in a highly significant model for predicting AJ jump height (F = 13.86, R 2 = 0.73). Moreover, the model incorporating VL-ACSA and training age is also important for predicting CMJ, SJ, and DJ jump heights (F = 8.41, R 2 = 0.51; F = 13.14, R 2 = 0.63; F = 5.95, R 2 = 0.41; respectively). Conclusion: The muscle structure indicators in the lower limbs significantly predict jump performance among elite male volleyball players. However, different jump types are influenced by distinct indicators, particularly in the case of AJ, which is associated with LG-FL. This suggests that enhancing LG-FL may positively impact AJ ability, thereby emphasizing the importance of specificity in training. To optimize specialized jump performance in volleyball players, practitioners are advised to assess VL-ACSA and LG-FL and incorporate step-up and eccentric strength training targeting the calf muscles to yield considerable benefits.

3.
Cancer Discov ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39121480

ABSTRACT

Current treatments for KRAS-mutant colorectal cancers (CRCs) are often limited by cellular plasticity and rewiring responses. Here we describe a promising therapeutic strategy that simultaneously targets epigenetic and oncogenic signals. Specifically, we show that inhibitors of the histone methyltransferase, EZH2, synergize with various RAS pathway inhibitors and promote dramatic tumor regression in vivo. Together these agents cooperatively suppress WNT-driven transcription and drive CRCs into a more differentiated cell state by inducing the Groucho/TLE corepressor, TLE4, along with a network of WNT pathway inhibitors and intestinal differentiation proteins. However, these agents also induce the pro-apoptotic protein BMF, which subsequently kills these more differentiated cells. Accordingly, cell death can be prevented by activating ß-catenin, blocking differentiation, or by ablating BMF expression. Collectively, these studies reveal a new therapeutic approach for treating KRAS-mutant CRCs and illustrate a critical convergence of EZH2 and RAS on oncogenic WNT signals, intestinal differentiation, and apoptosis.

4.
Toxics ; 12(7)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-39058101

ABSTRACT

Glyoxalase 1 (Glo1) is an essential enzyme to detoxify methylglyoxal (MGO), a cytotoxic byproduct of glycolysis. Accumulating studies have shown an important role of Glo1 in regulating cortical development and neurogenesis, potentially contributing to the pathogenesis of autism spectrum disorder (ASD) when impaired. We have previously shown that prenatal exposure to non-apoptotic low-dose methylmercury (MeHg), an environmental pollutant, induces premature cortical neurogenesis and ASD-like behaviors in a rodent model. In this study, we aimed to determine the underlying molecular mechanisms that mediate prenatal MeHg-induced premature neuronal differentiation and abnormal neurodevelopment. Using single-cell RNA sequencing (scRNA-seq) and real-time quantitative PCR (RT-qPCR), we found that prenatal MeHg exposure at a non-apoptotic dose significantly reduced Glo1 gene expression in embryonic cultured radial glia precursors (RGPs). In cultured RGPs, the knockdown of Glo1 expression increased neuronal production at the expense of the cultured RGPs population, while overexpression of Glo1 restored MeHg-induced neuronal differentiation back to normal levels. Furthermore, we found that co-treatment with both MeHg and multiple MGO scavengers or a CREB inhibitor (iCREB) mitigated MeHg-induced premature neuronal differentiation, reinforcing the role of Glo1 and CREB in mediating MeHg-induced neuronal differentiation. Our findings demonstrate a direct link between MeHg exposure and expression of an ASD risk gene Glo1 in cortical development, supporting the important role of gene-environment interaction in contributing to the etiology of neural developmental disorders, such as ASD.

5.
Curr Eye Res ; : 1-7, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913085

ABSTRACT

PURPOSE: This study aimed to compare early changes in classified higher-order aberrations (HOAs) pre- and postsurgery in patients who received nontoric versus toric implantable collamer lenses (ICL; ICL Model V4c; STAAR Surgical, Monrovia, CA, USA). METHODS: This prospective study included 124 eyes of 64 patients: 49 eyes were treated using a nontoric implantable collamer lens (ICL), and 75 eyes were treated using a toric implantable collamer lenses (TICL). Refractive parameters and ocular aberrations were examined before and 1 month after surgery. RESULTS: At one month, the safety indices were 1.24 ± 0.17 in the ICL group and 1.20 ± 0.25 in the TICL group (p = 0.39). The efficacy indices were 1.07 ± 0.17 in the ICL group and 1.15 ± 0.26 in the TICL group (p = 0.02). The root mean square (RMS) values of whole-eye total HOAs, trefoil, corneal total HOAs, spherical aberration, and intraocular spherical aberration significantly increased postoperatively in both groups. The RMS of intraocular total HOAs in the TICL group significantly increased 1 month postoperatively. No statistically significant differences were observed in HOA changes between the ICL and TICL groups. CONCLUSIONS: The dominant increases in short-term aberrations after ICL and TICL V4c implantation were in corneal trefoil and intraocular spherical aberrations, which were related to the corneal incision and implanted lens. The HOA changes post-surgery were not statistically different between the two lens types.

6.
Water Res ; 258: 121793, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38788525

ABSTRACT

Urban drainage systems are significant contributors to the issue of black-odorous water bodies. The current application of stormwater pipe inspection technologies faces substantial limitations, especially in industrial areas with diverse wastewater. This study introduced an innovative approach using excitation-emission matrix (EEM) fluorescence spectroscopy for rapid and accurate diagnosis, providing a new perspective for diagnosing illicit connections. In single wastewater-type areas like residential zones, the method achieved a remarkable 91.5 % accuracy solely through spectra observation and fluorescence peak intensity comparison, outperforming conventional NH3-N-based techniques, which reached an accuracy of only 68.1 %. For regions with complex wastewater scenarios, after EEM subtraction, the residual spectra can be roughly categorized into four distinctive categories based on characteristics. This provides a preliminary assessment and helps in initially identifying the types and sources of inflowing wastewater. Furthermore, the least squares (LS) method refines diagnosis results, offering calculated coefficients reflecting the probability and severity of suspected wastewater intrusion. Simulation experiments and field sample analyses validated the feasibility and accuracy of the EEM-based method, highlighting its advantages for diagnosing illicit connections in both single and mixed wastewater scenarios. The results can significantly narrow down the investigation scope and enhance the confirmation of wastewater sources, exhibiting promising application prospects.


Subject(s)
Environmental Monitoring , Spectrometry, Fluorescence , Wastewater , Spectrometry, Fluorescence/methods , Environmental Monitoring/methods , Cities , Rain
7.
Article in English | MEDLINE | ID: mdl-38673397

ABSTRACT

BACKGROUND: Globally, the prevalence of diabetes is increasing, especially in low- and middle-income countries (LMICs), including those in the sub-Saharan African region. However, the independent socioeconomic correlates of glycemic control as measured by hemoglobin A1C have yet to be identified. Therefore, the aim of this analysis was to understand the independent correlates of glycemic control in South Africa. METHODS: Data from the 2016 South Africa Demographic and Health Survey on adults with diabetes were used for this analysis. The dependent variable, glycemic control, was defined using hemoglobin A1c (HbA1c). Independent variables included: age, gender, ethnicity, marital status, region, urban/rural residence, ability to read, education, insurance, wealth, occupation, and employment in the last year. Analysis of variance was used to test for differences in mean HbA1c for each category of all independent variables, and a fully adjusted linear regression model was used to identify independent correlates of glycemic control (HbA1c). RESULTS: Among the 772 people included in this analysis, there were significant differences in mean HbA1c by age (p < 0.001), ethnicity (p < 0.001), place of residence (p = 0.024), wealth index (p = 0.001), and employment in the last year (p = 0.008). Independent correlates of HbA1c included age, ethnicity, and wealth index. CONCLUSIONS: This study used data from a large diverse population with a high prevalence of diabetes in sub-Saharan Africa and provides new evidence on the correlates of glycemic control and potential targets for interventions designed to lower HbA1c and improve diabetes-related health outcomes of adults in South Africa.


Subject(s)
Diabetes Mellitus , Glycated Hemoglobin , Glycemic Control , Humans , Male , South Africa/epidemiology , Female , Middle Aged , Adult , Diabetes Mellitus/epidemiology , Diabetes Mellitus/blood , Glycated Hemoglobin/analysis , Glycemic Control/statistics & numerical data , Aged , Socioeconomic Factors , Young Adult , Adolescent
8.
Int J Nanomedicine ; 19: 2091-2112, 2024.
Article in English | MEDLINE | ID: mdl-38476278

ABSTRACT

Currently, cancer remains one of the most significant threats to human health. Treatment of most cancers remains challenging, despite the implementation of diverse therapies in clinical practice. In recent years, research on the mechanism of ferroptosis has presented novel perspectives for cancer treatment. Ferroptosis is a regulated cell death process caused by lipid peroxidation of membrane unsaturated fatty acids catalyzed by iron ions. The rapid development of bio-nanotechnology has generated considerable interest in exploiting iron-induced cell death as a new therapeutic target against cancer. This article provides a comprehensive overview of recent advancements at the intersection of iron-induced cell death and bionanotechnology. In this respect, the mechanism of iron-induced cell death and its relation to cancer are summarized. Furthermore, the feasibility of a nano-drug delivery system based on iron-induced cell death for cancer treatment is introduced and analyzed. Secondly, strategies for inducing iron-induced cell death using nanodrug delivery technology are discussed, including promoting Fenton reactions, inhibiting glutathione peroxidase 4, reducing low glutathione levels, and inhibiting system Xc-. Additionally, the article explores the potential of combined treatment strategies involving iron-induced cell death and bionanotechnology. Finally, the application prospects and challenges of iron-induced nanoagents for cancer treatment are discussed.


Subject(s)
Ferroptosis , Neoplasms , Humans , Combined Modality Therapy , Cell Death , Iron , Lipid Peroxidation
9.
Bioresour Technol ; 395: 130381, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38281545

ABSTRACT

Biogas production via anaerobic digestion is highly attractive for microalgae. The technology of microalgae cultivation has profound impacts on biogas production system as it is the most energy-consuming process. However, a comprehensive evaluation of the environmental and economic benefits of different cultivation systems has yet to be sufficiently conducted. Here, life-cycle and economic assessments of open raceway ponds, photobioreactors and biofilm systems were investigated. Results showed greenhouse gas emissions of all systems were positive because more than two-thirds of carbon in fuel gas was lost and the fixed carbon in product gas and solid fertilizer was less than the emitted carbon during energy input. Particularly, biofilm system achieved the least greenhouse gas emissions (9.3 g CO2-eq/MJ), net energy ratio (0.7) and levelized cost of energy (0.9 $/kWh), indicating the optimum cultivation system. Open raceway ponds and photobioreactors failed to achieve positive benefits because of low harvesting efficiency and biomass concentration.


Subject(s)
Greenhouse Gases , Microalgae , Biofuels/analysis , Carbon Dioxide/analysis , Biomass , Biofilms , Carbon
11.
Int J Nanomedicine ; 19: 109-135, 2024.
Article in English | MEDLINE | ID: mdl-38192633

ABSTRACT

The tumor microenvironment (TME) plays an important role in various stages of tumor generation, metastasis, and evasion of immune monitoring and treatment. TME targeted therapy is based on TME components, related pathways or active molecules as therapeutic targets. Therefore, TME targeted therapy based on environmental differences between TME and normal cells has been widely studied. Biomimetic nanocarriers with low clearance, low immunogenicity, and high targeting have enormous potential in tumor treatment. This review introduces the composition and characteristics of TME, including cancer­associated fibroblasts (CAFs), extracellular matrix (ECM), tumor blood vessels, non-tumor cells, and the latest research progress of biomimetic nanoparticles (NPs) based on TME. It also discusses the opportunities and challenges of clinical transformation of biomimetic nanoparticles.


Subject(s)
Cancer-Associated Fibroblasts , Neoplasms , Humans , Biomimetics , Tumor Microenvironment , Neoplasms/drug therapy , Extracellular Matrix
SELECTION OF CITATIONS
SEARCH DETAIL