Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.779
1.
Phys Rev Lett ; 132(20): 203602, 2024 May 17.
Article En | MEDLINE | ID: mdl-38829095

Fock states with a well-defined number of photons in an oscillator have shown a wide range of applications in quantum information science. Nonetheless, their usefulness has been marred by single and multiphoton losses due to unavoidable environment-induced dissipation. Though several dissipation engineering methods have been developed to counteract the leading single-photon-loss error, averting multiple-photon losses remains elusive. Here, we experimentally demonstrate a dissipation engineering method that autonomously stabilizes multiphoton Fock states against losses of multiple photons using a cascaded selective photon-addition operation in a superconducting quantum circuit. Through measuring the photon-number populations and Wigner tomography of the oscillator states, we observe a prolonged preservation of nonclassical Wigner negativities for the stabilized Fock states |N⟩ with N=1, 2, 3 for a duration of about 10 ms. Furthermore, the dissipation engineering method demonstrated here also facilitates the implementation of a nonunitary operation for resetting a binomially encoded logical qubit. These results highlight potential applications in error-correctable quantum information processing against multiple-photon-loss errors.

3.
Anal Chem ; 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38838250

In this study, a novel europium dual-ligand metal-organic gel (Eu-D-MOGs) with high-efficient anodic annihilation electrochemiluminescence (ECL) was synthesized as an ECL emitter to construct a biosensor for ultrasensitive detection of microRNA-221 (miR-221). Impressively, compared to the ECL signal of europium single-ligand metal-organic gels (Eu-S-MOGs), the ECL signal of Eu-D-MOGs was significantly improved since the two organic ligands could jointly replace the H2O and coordinate with Eu3+, which could remarkably reduce the nonradiative vibrational energy transfer caused by the coordination between H2O and Eu3+ with a high coordination demand. In addition, Eu-D-MOGs could be electrochemically oxidized to Eu-D-MOGs•+ at 1.45 V and reduced to Eu-D-MOGs•- at 0.65 V to achieve effective annihilation of ECL, which overcame the side reaction brought by the remaining emitters at negative potential. This benefited from the annihilation ECL performance of the central ion Eu3+ caused by its redox in the electrochemical process. Furthermore, the annihilation ECL signal of Eu3+ could be improved by sensitizing Eu3+ via the antenna effect. In addition, combined with the improved rolling circle amplification-assisted strand displacement amplification strategy (RCA-SDA), a sensitive biosensor was constructed for the sensitive detection of miR-221 with a low detection limit of 5.12 aM and could be successfully applied for the detection of miR-221 in the lysate of cancer cells. This strategy offered a unique approach to synthesizing metal-organic gels as ECL emitters without a coreactant for the construction of ECL biosensing platforms in biomarker detection and disease diagnosis.

4.
Front Neurol ; 15: 1392568, 2024.
Article En | MEDLINE | ID: mdl-38841691

Objectives: Cardiogenic cerebral embolism (CCE) poses a significant health risk; however, there is a dearth of published prognostic prediction models addressing this issue. Our objective is to establish prognostic prediction models (PM) for predicting poor functional outcomes at 3 months in patients with acute CCE associated with non-valvular atrial fibrillation (NVAF) and perform both internal and external validations. Methods: We included a total of 730 CCE patients in the development cohort. The external regional validation cohort comprised 118 patients, while the external time-sequential validation cohort included 63 patients. Multiple imputation by chained equations (MICE) was utilized to address missing values and the least absolute shrink and selection operator (LASSO) regression was implemented through the glmnet package, to screen variables. Results: The 3-month prediction model for poor functional outcomes, denoted as N-ABCD2, was established using the following variables: NIHSS score at admission (N), Age (A), Brain natriuretic peptide (BNP), C-reactive protein (CRP), D-dimer polymers (D), and discharge with antithrombotic medication (D). The model's Akaike information criterion (AIC) was 637.98, and the area under Curve (AUC) for the development cohort, external regional, and time-sequential cohorts were 0.878 (95% CI, 0.854-0.902), 0.918 (95% CI, 0.857-0.979), and 0.839 (95% CI, 0.744-0.934), respectively. Conclusion: The N-ABCD2 model can accurately predict poor outcomes at 3 months for CCE patients with NVAF, demonstrating strong prediction abilities. Moreover, the model relies on objective variables that are readily obtainable in clinical practice, enhancing its convenience and applicability in clinical settings.

5.
Front Oncol ; 14: 1389608, 2024.
Article En | MEDLINE | ID: mdl-38841162

Objectives: Confocal laser endomicroscopy (CLE) is an intraoperative real-time cellular resolution imaging technology that images brain tumor histoarchitecture. Previously, we demonstrated that CLE images may be interpreted by neuropathologists to determine the presence of tumor infiltration at glioma margins. In this study, we assessed neurosurgeons' ability to interpret CLE images from glioma margins and compared their assessments to those of neuropathologists. Methods: In vivo CLE images acquired at the glioma margins that were previously reviewed by CLE-experienced neuropathologists were interpreted by four CLE-experienced neurosurgeons. A numerical scoring system from 0 to 5 and a dichotomous scoring system based on pathological features were used. Scores from assessments of hematoxylin and eosin (H&E)-stained sections and CLE images by neuropathologists from a previous study were used for comparison. Neurosurgeons' scores were compared to the H&E findings. The inter-rater agreement and diagnostic performance based on neurosurgeons' scores were calculated. The concordance between dichotomous and numerical scores was determined. Results: In all, 4275 images from 56 glioma margin regions of interest (ROIs) were included in the analysis. With the numerical scoring system, the inter-rater agreement for neurosurgeons interpreting CLE images was moderate for all ROIs (mean agreement, 61%), which was significantly better than the inter-rater agreement for the neuropathologists (mean agreement, 48%) (p < 0.01). The inter-rater agreement for neurosurgeons using the dichotomous scoring system was 83%. The concordance between the numerical and dichotomous scoring systems was 93%. The overall sensitivity, specificity, positive predictive value, and negative predictive value were 78%, 32%, 62%, and 50%, respectively, using the numerical scoring system and 80%, 27%, 61%, and 48%, respectively, using the dichotomous scoring system. No statistically significant differences in diagnostic performance were found between the neurosurgeons and neuropathologists. Conclusion: Neurosurgeons' performance in interpreting CLE images was comparable to that of neuropathologists. These results suggest that CLE could be used as an intraoperative guidance tool with neurosurgeons interpreting the images with or without assistance of the neuropathologists. The dichotomous scoring system is robust yet simple and may streamline rapid, simultaneous interpretation of CLE images during imaging.

6.
Cell Mol Life Sci ; 81(1): 247, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38829550

BACKGROUND: The high degree of intratumoral genomic heterogeneity is a major obstacle for glioblastoma (GBM) tumors, one of the most lethal human malignancies, and is thought to influence conventional therapeutic outcomes negatively. The proneural-to-mesenchymal transition (PMT) of glioma stem cells (GSCs) confers resistance to radiation therapy in glioblastoma patients. POLD4 is associated with cancer progression, while the mechanisms underlying PMT and tumor radiation resistance have remained elusive. METHOD: Expression and prognosis of the POLD family were analyzed in TCGA, the Chinese Glioma Genome Atlas (CGGA) and GEO datasets. Tumorsphere formation and in vitro limiting dilution assay were performed to investigate the effect of UCHL3-POLD4 on GSC self-renewal. Apoptosis, TUNEL, cell cycle phase distribution, modification of the Single Cell Gel Electrophoresis (Comet), γ-H2AX immunofluorescence, and colony formation assays were conducted to evaluate the influence of UCHL3-POLD4 on GSC in ionizing radiation. Coimmunoprecipitation and GST pull-down assays were performed to identify POLD4 protein interactors. In vivo, intracranial xenograft mouse models were used to investigate the molecular effect of UCHL3, POLD4 or TCID on GCS. RESULT: We determined that POLD4 was considerably upregulated in MES-GSCs and was associated with a meagre prognosis. Ubiquitin carboxyl terminal hydrolase L3 (UCHL3), a DUB enzyme in the UCH protease family, is a bona fide deubiquitinase of POLD4 in GSCs. UCHL3 interacted with, depolyubiquitinated, and stabilized POLD4. Both in vitro and in vivo assays indicated that targeted depletion of the UCHL3-POLD4 axis reduced GSC self-renewal and tumorigenic capacity and resistance to IR treatment by impairing homologous recombination (HR) and nonhomologous end joining (NHEJ). Additionally, we proved that the UCHL3 inhibitor TCID induced POLD4 degradation and can significantly enhance the therapeutic effect of IR in a gsc-derived in situ xenograft model. CONCLUSION: These findings reveal a new signaling axis for GSC PMT regulation and highlight UCHL3-POLD4 as a potential therapeutic target in GBM. TCID, targeted for reducing the deubiquitinase activity of UCHL3, exhibited significant synergy against MES GSCs in combination with radiation.


Neoplastic Stem Cells , Radiation Tolerance , Ubiquitin Thiolesterase , Humans , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Radiation Tolerance/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/radiation effects , Animals , Mice , Cell Line, Tumor , Glioma/pathology , Glioma/genetics , Glioma/radiotherapy , Glioma/metabolism , Apoptosis/genetics , Apoptosis/radiation effects , Ubiquitination , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , Mice, Nude , Phenotype , Gene Expression Regulation, Neoplastic , Prognosis
7.
Front Immunol ; 15: 1361531, 2024.
Article En | MEDLINE | ID: mdl-38698849

The whole-genome sequence of an African swine fever virus (ASFV) strain (HuB/HH/2019) isolated from Hubei, China, was highly similar to that of the Georgia 2007/1 strain ASFV. After infection with strong strains, domestic pigs show typical symptoms of infection, including fever, depression, reddening of the skin, hemorrhagic swelling of various tissues, and dysfunction. The earliest detoxification occurred in pharyngeal swabs at 4 days post-infection. The viral load in the blood was extremely high, and ASFV was detected in multiple tissues, with the highest viral loads in the spleen and lungs. An imbalance between pro- and anti-inflammatory factors in the serum leads to an excessive inflammatory response in the body. Immune factor expression is suppressed without effectively eliciting an immune defense. Antibodies against p30 were not detected in acutely dead domestic pigs. Sequencing of the peripheral blood mononuclear cell transcriptome revealed elevated transcription of genes associated with immunity, defense, and stress. The massive reduction in lymphocyte counts in the blood collapses the body's immune system. An excessive inflammatory response with a massive reduction in the lymphocyte count may be an important cause of mortality in domestic pigs. These two reasons have inspired researchers to reduce excessive inflammatory responses and stimulate effective immune responses for future vaccine development.


African Swine Fever Virus , African Swine Fever , Animals , Swine , African Swine Fever/virology , African Swine Fever/immunology , African Swine Fever Virus/immunology , African Swine Fever Virus/genetics , Cytokines , Lymphocytes/immunology , Lymphocytes/metabolism , Genotype , Viral Load , Sus scrofa , Lymphocyte Count
8.
Article En | MEDLINE | ID: mdl-38718831

INTRODUCTION: Oridonin possesses remarkable anti-inflammatory, immunoregulatory properties. However, the renoprotective effects of Oridonin and the underlying molecular mechanisms have not been explored in Diabetic Nephropathy (DN). We hypothesized that Oridonin could ameliorate diabetes­induced renal fibrosis. METHODS: We used streptozocin (STZ)-induced diabetic rats combined high-fat diet to establish a type 2 diabetes mellitus (T2DM) animal model, and then treated with Oridonin (10,20mg/kg/day) for two weeks. Kidney function and renal fibrosis were assessed. We also treated high glucose-induced human renal proximal tubule epithelial cells (HK-2) with Oridonin. In addition, the expression of inflammatory factors and fibrotic markers were analyzed. RESULTS: Oridonin treatment preserved kidney function and markedly limited the renal fibrosis size in diabetic rats. The renal fibrotic markers were inhibited in the 10mg/kg/day group and 20mg/kg/day group compared to the T2DM group. Moreover, the expression levels of TXNIP/NLRP3 and NF­κB pathway were decreased and the level of PPARγ were increased in the Oridonin treatment group compared to non-treated group. In vitro, intervention of PPARγ could significantly regulate the effect of Oridonin on the high glucose-induced inflammatory changes in HK-2. CONCLUSION: Oridonin reduces renal fibrosis and preserves kidney function via the inhibition of TXNIP/NLRP3 and NF­κB pathway by activating PPARγ in T2DM rat model, which indicates potential therapeutic effect of Oridonin on DN.

9.
FASEB J ; 38(10): e23698, 2024 May 31.
Article En | MEDLINE | ID: mdl-38780613

Prostate cancer (PCa) is a widespread global health concern characterized by elevated rates of occurrence, and there is a need for novel therapeutic targets to enhance patient outcomes. FOXS1 is closely linked to different cancers, but its function in PCa is still unknown. The expression of FOXS1, its prognostic role, clinical significance in PCa, and the potential mechanism by which FOXS1 affects PCa progression were investigated through bioinformatics analysis utilizing public data. The levels of FOXS1 and HILPDA were evaluated in clinical PCa samples using various methods, such as western blotting, immunohistochemistry, and qRT-PCR. To examine the function and molecular mechanisms of FOXS1 in PCa, a combination of experimental techniques including CCK-8 assay, flow cytometry, wound-healing assay, Transwell assay, and Co-IP assay were employed. The FOXS1 expression levels were significantly raised in PCa, correlating strongly with tumor aggressiveness and an unfavorable prognosis. Regulating FOXS1 expression, whether upregulating or downregulating it, correspondingly enhanced or inhibited the growth, migration, and invasion capabilities of PCa cells. Mechanistically, we detected a direct interaction between FOXS1 and HILPDA, resulting in the pathway activation of FAK/PI3K/AKT and facilitation EMT in PCa cells. FOXS1 collaborates with HILPDA to initiate EMT, thereby facilitating the PCa progression through the FAK/PI3K/AKT pathway activation.


Epithelial-Mesenchymal Transition , Forkhead Transcription Factors , Gene Expression Regulation, Neoplastic , Phosphatidylinositol 3-Kinases , Prostatic Neoplasms , Proto-Oncogene Proteins c-akt , Humans , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Male , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Signal Transduction , Up-Regulation , Cell Movement , Cell Proliferation , Animals , Mice , Oncogenes , Prognosis , Mice, Nude
10.
Article En | MEDLINE | ID: mdl-38819182

Objective: This study aimed to explore the application effectiveness of intraoperative coordination and nursing in the interventional treatment of patients with ST-segment elevation myocardial infarction (STEMI). Specifically, the study sought to investigate the specific protocols or practices within the systematic nursing collaboration approach and their impact on patient outcomes. Methods: A total of 60 STEMI patients treated in our hospital from April 2019 to June 2020 were randomly assigned to either the routine care group (n=30) or the systematic nursing collaboration group (n=30). Both groups underwent percutaneous coronary intervention (PCI). Outcome measures, including time to unblock infarcted vessels, incidence of adverse reactions during interventional therapy, mortality, treatment success rate, improvement in cardiac function, and length of hospital stay, were assessed using appropriate statistical analysis methods. Results: A t test showed that the systematic nursing collaboration group exhibited a significantly shorter time to unblock infarcted vessels compared to the routine care group (P < .05). The incidence of adverse reactions during interventional therapy was significantly lower in the systematic group compared to the routine group (P < .05), analyzed using a chi-square test. Furthermore, the systematic group demonstrated a higher treatment success rate (P < .05), analyzed using a chi-square test. Moreover, the improvement in cardiac function in the systematic group was significantly better compared to the routine group (P < .05), analyzed using a t test. Additionally, the systematic group had a significantly shorter length of hospital stay compared to the routine group (P < .05), analyzed using a t test. Conclusion: The findings of this study highlight the effectiveness of intraoperative coordination and nursing practices in reducing adverse reactions and mortality, improving treatment success rates, enhancing cardiac function, and shortening hospital stays in patients with STEMI. These results emphasize the importance of implementing systematic nursing collaboration in the interventional treatment of STEMI patients. Further research can explore specific protocols and strategies for integrating systematic nursing collaboration into medical practices, leading to improved healthcare delivery and patient outcomes.

11.
Genes (Basel) ; 15(5)2024 May 07.
Article En | MEDLINE | ID: mdl-38790221

Early-onset breast cancer (EoBC), defined by a diagnosis <40 years of age, is associated with poor prognosis. This study investigated the mutational landscape of non-metastatic EoBC and the prognostic relevance of mutational signatures using 100 tumour samples from Alberta, Canada. The MutationalPatterns package in R/Bioconductor was used to extract de novo single-base substitution (SBS) and insertion-deletion (indel) mutational signatures and to fit COSMIC SBS and indel signatures. We assessed associations between these signatures and clinical characteristics of disease, in addition to recurrence-free (RFS) and overall survival (OS). Five SBS and two indel signatures were extracted. The SBS13-like signature had higher relative contributions in the HER2-enriched subtype. Patients with higher than median contribution tended to have better RFS after adjustment for other prognostic factors (HR = 0.29; 95% CI: 0.08-1.06). An unsupervised clustering algorithm based on absolute contribution revealed three clusters of fitted COSMIC SBS signatures, but cluster membership was not associated with clinical variables or survival outcomes. The results of this exploratory study reveal various SBS and indel signatures may be associated with clinical features of disease and prognosis. Future studies with larger samples are required to better understand the mechanistic underpinnings of disease progression and treatment response in EoBC.


Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/mortality , Adult , Prognosis , Age of Onset , Mutation , INDEL Mutation , Biomarkers, Tumor/genetics , Alberta/epidemiology , Middle Aged
12.
J Agric Food Chem ; 72(21): 11900-11916, 2024 May 29.
Article En | MEDLINE | ID: mdl-38709250

Food quality and safety are related to the health and safety of people, and food hazards are important influencing factors affecting food safety. It is strongly necessary to develop food safety rapid detection technology to ensure food safety. As a new detection technology, artificial nanochannel-based electrochemical and other methods have the advantages of being real-time, simple, and sensitive and are widely used in the detection of food hazards. In this paper, we review artificial nanochannel sensors as a new detection technology in food safety for different types of food hazards: biological hazards (bacteria, toxins, viruses) and chemical hazards (heavy metals, organic pollutants, food additives). At the same time, we critically discuss the advantages and disadvantages of artificial nanochannel sensor detection, as well as the restrictions and solutions of detection, and finally look forward to the challenges and development prospects of food safety detection technology based on the limitations of artificial nanochannel detection. We expect to provide a theoretical basis and inspiration for the development of rapid real-time detection technology for food hazards and the production of portable detection equipment in the future.


Biosensing Techniques , Food Contamination , Food Safety , Food Contamination/analysis , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Nanostructures/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation
13.
ACS Appl Mater Interfaces ; 16(20): 25843-25855, 2024 May 22.
Article En | MEDLINE | ID: mdl-38717308

Poor hemostatic ability and less vascularization at the injury site could hinder wound healing as well as adversely affect the quality of life (QOL). An ideal wound dressing should exhibit certain characteristics: (a) good hemostatic ability, (b) rapid wound healing, and (c) skin appendage formation. This necessitates the advent of innovative dressings to facilitate skin regeneration. Therapeutic ions, such as silicon ions (Si4+) and calcium ions (Ca2+), have been shown to assist in wound repair. The Si4+ released from silica (SiO2) can upregulate the expression of proteins, including the vascular endothelial growth factor (VEGF) and alpha smooth muscle actin (α-SMA), which is conducive to vascularization; Ca2+ released from tricalcium phosphate (TCP) can promote the coagulation alongside upregulating the expression of cell migration and cell differentiation related proteins, thereby facilitating the wound repair. The overarching objective of this study was to exploit short SiO2 nanofibers along with the TCP to prepare TCPx@SSF aerogels and assess their wound healing ability. Short SiO2 nanofibers were prepared by electrospinning and blended with varying proportions of TCP to afford TCPx@SSF aerogel scaffolds. The TCPx@SSF aerogels exhibited good cytocompatibility in a subcutaneous implantation model and manifested a rapid hemostatic effect (hemostatic time 75 s) in a liver trauma model in the rabbit. These aerogel scaffolds also promoted skin regeneration and exhibited rapid wound closure, epithelial tissue regeneration, and collagen deposition. Taken together, TCPx@SSF aerogels may be valuable for wound healing.


Calcium Phosphates , Nanofibers , Silicon Dioxide , Tissue Scaffolds , Wound Healing , Nanofibers/chemistry , Animals , Rabbits , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Wound Healing/drug effects , Tissue Scaffolds/chemistry , Skin/drug effects , Regeneration/drug effects , Mice , Gels/chemistry
14.
Accid Anal Prev ; 203: 107605, 2024 Aug.
Article En | MEDLINE | ID: mdl-38743983

Safety is one of the most essential considerations when evaluating the performance of autonomous vehicles (AVs). Real-world AV data, including trajectory, detection, and crash data, are becoming increasingly popular as they provide possibilities for a realistic evaluation of AVs' performance. While substantial research was conducted to estimate general crash patterns utilizing structured AV crash data, a comprehensive exploration of AV crash narratives remains limited. These narratives contain latent information about AV crashes that can further the understanding of AV safety. Therefore, this study utilizes the Structural Topic Model (STM), a natural language processing technique, to extract latent topics from unstructured AV crash narratives while incorporating crash metadata (i.e., the severity and year of crashes). In total, 15 topics are identified and are further divided into behavior-related, party-related, location-related, and general topics. Using these topics, AV crashes can be systematically described and clustered. Results from the STM suggest that AVs' abilities to interact with vulnerable road users (VRUs) and react to lane-change behavior need to be further improved. Moreover, an XGBoost model is developed to investigate the relationships between the topics and crash severity. The model significantly outperforms existing studies in terms of accuracy, suggesting that the extracted topics are closely related to crash severity. Results from interpreting the model indicate that topics containing information about crash severity and VRUs have significant impacts on the model's output, which are suggested to be included in future AV crash reporting.


Accidents, Traffic , Natural Language Processing , Humans , Narration , Automobiles
15.
Anal Sci ; 2024 May 25.
Article En | MEDLINE | ID: mdl-38795278

In this study, a reliable method for determining eugenol content in environmental water samples was established by combining magnetic solid-phase extraction with high-performance liquid chromatography. Magnetic molecular imprinted polymers MGO@MIPs were prepared through surface molecular imprinting technique with eugenol as the template molecule. The material displayed good superparamagnetic properties and magnetic responsiveness in favor of rapid separation. The adsorption properties of MGO@MIPs for eugenol were evaluated through adsorption kinetics and selectivity experiments. MGO@MIPs were found to have favorable reusability and obvious selectivity for eugenol. In addition, adsorption and elution conditions were investigated. Under optimal conditions, a linear relationship was obtained between the concentration of eugenol and its peak area in the range of 0.02-5 mg/L (R2 = 0.9998) and the limit of detection was 4.0 × 10-6 mg/mL. The performance of the established method was assessed with the average recovery of 96.59-102.20% and the relative standard deviation (RSD) below 3.5%. The application of this method provides a new perspective for the separation, enrichment and detection of eugenol in water environment.

16.
Talanta ; 275: 126196, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38705018

We have developed an innovative optical emission spectrometry imaging device integrating a diode laser for sample introduction and an atmospheric pressure plasma based on dielectric barrier discharge for atomization and excitation. By optimizing the device parameters and ensuring appropriate leaf moisture, we achieved effective imaging with a lateral resolution as low as 50 µm. This device allows for tracking the accumulation of Cd and related species such as K, Zn, and O2+∙, in plant leaves exposed to different Cd levels and culture times. The results obtained are comparable to established in-lab imaging and quantitative methods. With its features of compact construction, minimal sample preparation, ease of operation, and low limit of detection (0.04 µg/g for Cd), this novel methodology shows promise as an in-situ elemental imaging tool for interdisciplinary applications.


Atmospheric Pressure , Cadmium , Plant Leaves , Cadmium/analysis , Cadmium/chemistry , Plant Leaves/chemistry , Plasma Gases/chemistry , Zinc/chemistry , Zinc/analysis , Spectrum Analysis/methods , Potassium/analysis , Potassium/blood , Potassium/chemistry
17.
Int Immunopharmacol ; 135: 112223, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38772295

Although smoking is a significant risk factor for osteomyelitis, there is limited experimental evidence that nicotine, a key tobacco constituent, is associated with this condition, leaving its mechanistic implications uncharacterized. This study revealed that nicotine promotes Staphylococcus aureus-induced osteomyelitis by increasing Nrf2 and Slc7a11 expression in vivo and in vitro. Inhibition of Slc7a11 using Erastin augmented bacterial phagocytosis/killing capabilities and fortified antimicrobial responses in an osteomyelitis model. Moreover, untargeted metabolomic analysis demonstrated that Erastin mitigated the effects of nicotine on S. aureus-induced osteomyelitis by altering glutamate/glutathione metabolism. These findings suggest that nicotine aggravates S. aureus-induced osteomyelitis by activating the Nrf2/Slc7a11 signaling pathway and that Slc7a11 inhibition can counteract the detrimental health effects of nicotine.


Amino Acid Transport System y+ , NF-E2-Related Factor 2 , Nicotine , Osteomyelitis , Signal Transduction , Staphylococcal Infections , Staphylococcus aureus , Animals , NF-E2-Related Factor 2/metabolism , Staphylococcus aureus/drug effects , Nicotine/pharmacology , Signal Transduction/drug effects , Staphylococcal Infections/drug therapy , Osteomyelitis/microbiology , Osteomyelitis/drug therapy , Osteomyelitis/metabolism , Mice , Amino Acid Transport System y+/metabolism , Mice, Inbred C57BL , Humans , Male , Phagocytosis/drug effects , Disease Models, Animal
18.
Article En | MEDLINE | ID: mdl-38776891

Detecting cognitive decline early in the older adults is crucial for effective intervention. This study, part of the Ma'anshan Healthy Aging Cohort Study, examined 2,288 participants with normal cognitive function. Forty-two potential predictors, including demographics, chronic diseases, lifestyle factors, and baseline cognitive function, were selected. The dataset was divided into training, validation, and test sets (60%, 20%, and 20%, respectively). Recursive feature elimination (RFE) and six machine learning algorithms were used for model development. Model performance was assessed using area under the curve (AUC), specificity, sensitivity, and accuracy. SHapley Additive exPlanations (SHAP) was applied for interpretability, revealing the top ten influential features: baseline MMSE, education, economic status, social activities, PSQI, BMI, SBP, DBP, IADL, and age. The Naïve Bayes (NB) algorithm-based model achieved an AUC of 0.820 (95% CI 0.773-0.887) on the test set, outperforming other algorithms. This model can help primary healthcare staff in community settings identify individuals at higher risk of cognitive impairment within three years among older adults.

19.
Life (Basel) ; 14(5)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38792597

(1) Background: Oxygen has exerted a great effect in shaping the environment and driving biological diversity in Earth's history. Green lineage has evolved primary and secondary carotenoid biosynthetic systems to adapt to Earth's oxygenation, e.g., Haematococcus lacustris, which accumulates the highest amount of secondary astaxanthin under stresses. The two systems are controlled by lycopene ε-cyclase (LCYE) and ß-cyclase (LCYB), which leave an important trace in Earth's oxygenation. (2) Objectives: This work intends to disclose the underlying molecular evolutionary mechanism of Earth's oxygenation in shaping green algal carotenogensis with a special focus on lycopene cyclases. (3) Methods: The two kinds of cyclases were analyzed by site-directed mutagenesis, phylogeny, divergence time and functional divergence. (4) Results: Green lineage LCYEs appeared at ~1.5 Ga after the first significant appearance and accumulation of atmospheric oxygen, the so-called Great Oxygenation Event (GOE), from which LCYBs diverged by gene duplication. Bacterial ß-bicyclases evolved from ß-monocyclase. Enhanced catalytic activity accompanied evolutionary transformation from ε-/ß-monocyclase to ß-bicyclase. Strong positive selection occurred in green lineage LCYEs after the GOE and in algal LCYBs during the second oxidation, the Neoproterozoic Oxygenation Event (NOE). Positively selected sites in the catalytic cavities of the enzymes controlled the mono-/bicyclase activity, respectively. Carotenoid profiling revealed that oxidative adaptation has been wildly preserved in evolution. (5) Conclusions: the functionalization of the two enzymes is a result of primary to secondary adaptations to Earth's oxygenation.

20.
Epilepsia ; 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38606600

OBJECTIVE: This study was undertaken to determine whether hippocampal T2 hyperintensity predicts sequelae of febrile status epilepticus, including hippocampal atrophy, sclerosis, and mesial temporal lobe epilepsy. METHODS: Acute magnetic resonance imaging (MRI) was obtained within a mean of 4.4 (SD = 5.5, median = 2.0) days after febrile status on >200 infants with follow-up MRI at approximately 1, 5, and 10 years. Hippocampal size, morphology, and T2 signal intensity were scored visually by neuroradiologists blinded to clinical details. Hippocampal volumetry provided quantitative measurement. Upon the occurrence of two or more unprovoked seizures, subjects were reassessed for epilepsy. Hippocampal volumes were normalized using total brain volumes. RESULTS: Fourteen of 22 subjects with acute hippocampal T2 hyperintensity returned for follow-up MRI, and 10 developed definite hippocampal sclerosis, which persisted through the 10-year follow-up. Hippocampi appearing normal initially remained normal on visual inspection. However, in subjects with normal-appearing hippocampi, volumetrics indicated that male, but not female, hippocampi were smaller than controls, but increasing hippocampal asymmetry was not seen following febrile status. Forty-four subjects developed epilepsy; six developed mesial temporal lobe epilepsy and, of the six, two had definite, two had equivocal, and two had no hippocampal sclerosis. Only one subject developed mesial temporal epilepsy without initial hyperintensity, and that subject had hippocampal malrotation. Ten-year cumulative incidence of all types of epilepsy, including mesial temporal epilepsy, was highest in subjects with initial T2 hyperintensity and lowest in those with normal signal and no other brain abnormalities. SIGNIFICANCE: Hippocampal T2 hyperintensity following febrile status epilepticus predicted hippocampal sclerosis and significant likelihood of mesial temporal lobe epilepsy. Normal hippocampal appearance in the acute postictal MRI was followed by maintained normal appearance, symmetric growth, and lower risk of epilepsy. Volumetric measurement detected mildly decreased hippocampal volume in males with febrile status.

...