Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Front Biosci (Landmark Ed) ; 29(7): 256, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39082359

ABSTRACT

BACKGROUND: Prostate cancer (PCa) is one of the most common malignant tumors of the male urinary system, and its incidence and mortality rates have been increasing worldwide. Benign prostatic hyperplasia (BPH) represents stromal and epithelial cell proliferation in the prostate in elderly males. Abnormal activation of inflammation-related signalling molecules, such as toll-like receptor 4 (TLR4) and Janus kinase/signal transducers and activators of transcription (JAK/STAT) has been linked to the initiation and progression of various human diseases including PCa and BPH. Cylindromatosis (CYLD) gene alterations are associated with PCa progression. In this study, the contribution of CYLD, JAK2, and TLR4 gene variants to PCa and BPH risks and their associations with prostate-specific antigen (PSA) levels, immunophenotype, and clinical features in Vietnamese men were determined. METHODS: A total of 102 patients with PCa, 65 with BPH, and 114 healthy controls were enrolled. The immunophenotype was analyzed by flow cytometry, cytokine secretion by enzyme-linked immunosorbent assay (ELISA), and gene variants by DNA sequencing. RESULTS: Lower levels of transforming growth factor ß (TGF-ß) and higher numbers of CD13+CD117- and CD56+CD25+ cells were observed in the PCa group than in the BPH group. Genetic analysis of the CYLD gene identified five single nucleotide polymorphisms (SNPs), of which c.2351-47 C>T, c.2351-46A>T, and rs1971432171 T>G had significantly higher frequencies in PCa patients than in the control and BPH groups. Sequencing of the TLR4 gene revealed five nucleotide changes, in which the rs2149356 SNP showed an increased risk for both PCa and BPH and the c.331-206 SNP had a reduced risk for PCa. Importantly, the expansion of activated natural killer (NK) cells and higher levels of PSA were found in PCa patients carrying the CT genotype of the CYLD c.2351-47 compared to those with the wild-type genotype. CONCLUSION: Activation of NK cells in CYLD-sensitive PCa patients was associated with serum PSA release and the CYLD c.2351-47 variant may be a significant risk factor for prostatitis in PCa patients.


Subject(s)
Deubiquitinating Enzyme CYLD , Janus Kinase 2 , Prostate-Specific Antigen , Prostatic Hyperplasia , Prostatic Neoplasms , Toll-Like Receptor 4 , Humans , Male , Prostatic Hyperplasia/genetics , Prostatic Hyperplasia/blood , Prostatic Neoplasms/genetics , Prostatic Neoplasms/immunology , Prostatic Neoplasms/blood , Toll-Like Receptor 4/genetics , Deubiquitinating Enzyme CYLD/genetics , Deubiquitinating Enzyme CYLD/metabolism , Prostate-Specific Antigen/blood , Aged , Janus Kinase 2/genetics , Middle Aged , Immunophenotyping , Genotype , Polymorphism, Single Nucleotide , Case-Control Studies
2.
Medicine (Baltimore) ; 103(26): e38737, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941371

ABSTRACT

Alterations in signaling pathways and modulation of cell metabolism are associated with the pathogenesis of cancers, including hepatocellular carcinoma (HCC). Small ubiquitin-like modifier (SUMO) proteins and NF-κB family play major roles in various cellular processes. The current study aims to determine the expression profile of SUMO and NF-κB genes in HCC tumors and investigate their association with the clinical outcome of HCC. The expression of 5 genes - SUMO1, SUMO2, SUMO3, NF-κB p65, and NF-κB p50 - was quantified in tumor and adjacent non-tumor tissues of 58 HBV-related HCC patients by real-time quantitative PCR and was analyzed for the possible association with clinical parameters of HCC. The expression of SUMO2 was significantly higher in HCC tumor tissues compared to the adjacent non-tumor tissues (P = .01), while no significant difference in SUMO1, SUMO3, NF-κB p65, and NF-κB p50 expression was observed between HCC tumor and non-tumor tissues (P > .05). In HCC tissues, a strong correlation was observed between the expression of SUMO2 and NF-κB p50, between SUMO3 and NF-κB p50, between SUMO3 and NF-κB p65 (Spearman rho = 0.83; 0.82; 0.772 respectively; P < .001). The expression of SUMO1, SUMO2, SUMO3, NF-κB p65, and NF-κB p50 was decreased in grade 3 compared to grades 1 and 2 in HCC tumors according to the World Health Organization grades system. Our results highlighted that the SUMO2 gene is upregulated in tumor tissues of patients with HCC, and is related to the development of HCC, thus it may be associated with the pathogenesis of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Small Ubiquitin-Related Modifier Proteins , Humans , Carcinoma, Hepatocellular/virology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/virology , Liver Neoplasms/metabolism , Male , Female , Middle Aged , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , SUMO-1 Protein/genetics , SUMO-1 Protein/metabolism , NF-kappa B/metabolism , Adult , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Hepatitis B virus/genetics , NF-kappa B p50 Subunit/genetics , NF-kappa B p50 Subunit/metabolism , Aged , Gene Expression Regulation, Neoplastic , Ubiquitins/genetics , Ubiquitins/metabolism , Hepatitis B/complications , Hepatitis B/genetics
3.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 1-9, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814241

ABSTRACT

Non-Hodgkin lymphoma (NHL) is a lymphoproliferative disorder derived from either B or T lymphocytes. Among NHL, activated B-cell-like (ABC) diffuse large B-cell lymphoma (DLBCL) and T cell non-Hodgkin lymphomas (T-NHL) are poor prognosis and aggressive subtypes. Macrophages are professional phagocytic cells and dendritic cells (DCs) are professional antigen-presenting cells in immune system. Doxorubicin (Dox) and Etoposide (ET) are the most effective anti-cancer drugs. A20 and CYLD are negative regulators of NF-κB-dependent functions in many cell types. Little is known about the roles of A20 and CYLD in regulating functions of DCs and macrophages from NHL. The present study, therefore, explored whether A20/CYLD expression contributes to functions of DCs and macrophages from NHL. To this end, blood samples of seventy-nine patients with ABC DLBCL and T-NHL were examined. Gene expression profile was determined by quantitative RT-PCR and immunophenotype, cell apoptosis and phagocytosis by flow cytometry. As a result, immunophenotypic analysis showed that the numbers of CD13+CD117-, CD56+CD40+ and CD23+CD40+ expressing cells were significantly elevated in ABC DLBCL cases compared to healthy individuals and T-NHL patients. Interestingly, upon treatment of Dox and ET, the phagocytosis of lymphoma cells was significantly reduced by CD11c+CD123- DCs and the percentage of CD56+ mature DCs was significantly enhanced in ABC DLBCL patients only in the presence of A20 siRNA, but not CYLD siRNA. In conclusion, ABC DLBCL patients with low A20 expression were defective in elimination of lymphoma cells by DCs and linked to killer DC expansion in circulation.


Subject(s)
Dendritic Cells , Lymphoma, Large B-Cell, Diffuse , Phagocytosis , Tumor Necrosis Factor alpha-Induced Protein 3 , Humans , Dendritic Cells/immunology , Dendritic Cells/metabolism , Phagocytosis/drug effects , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Female , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/immunology , Middle Aged , Male , Lymphoma, Non-Hodgkin/pathology , Lymphoma, Non-Hodgkin/immunology , Apoptosis/drug effects , Aged , Adult , Macrophages/metabolism , Macrophages/immunology , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Immunophenotyping
4.
Biodegradation ; 35(5): 583-599, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38662140

ABSTRACT

Pretilachlor and safener fenclorim are the main components of herbicides widely applied to control weeds. Although some pure cultures of bacteria and fungi which degraded these compounds under aerobic conditions were isolated, no isolated pretilachlor- and fenclorim-degrading bacterial strains under anaerobic condition had been available. In this study, the degradation of these compounds and the effects of them on bacterial community structures were investigated under anaerobic conditions. The dissipation rates of pretilachlor and fenclorim in slurries were in the order: soil from paddy field ≈ sediment from river > sediment from mangrove. Moreover, three pretilachlor-degrading bacterial strains (Pseudomonas sp. Pr1, Proteiniclasticum sp. Pr2 and Paracoccus denitrificans Pr3) and two fenclorim-degrading strains (Dechloromonas sp. Fe1 and Ralstonia pickettii Fe2) isolated from a slurry of paddy soil utilized the substrates as sole carbon and energy sources under anaerobic conditions. The degradation of pure pretilachlor and fenclorim at various concentrations by corresponding mixed pure cultures followed the Michaelis-Menten model, with the maximum degradation was 3.10 ± 0.31 µM/day for pretilachlor, and 2.08 ± 0.18 µM/day for fenclorim. During the degradation, 2-chloro-N-(2,6-diethylphenyl) acetamide and 2,6-dimethylaniline were produced in pretilachlor degradation, and benzene was a product of fenclorim degradation. The synergistic degradation of both substrates by all isolated bacteria reduced the metabolites concentrations accumulated in media. This study provides valuable information on effects of pretilachlor and fenclorim on bacterial communities in soil and sediments, and degradation of these substrates by isolated bacteria under anaerobic condition.


Subject(s)
Acetanilides , Bacteria , Biodegradation, Environmental , Herbicides , Acetanilides/metabolism , Herbicides/metabolism , Anaerobiosis , Bacteria/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Acetamides
5.
Article in English | MEDLINE | ID: mdl-38376759

ABSTRACT

Ethanol is the most commonly encountered substance in forensic toxicology. Determining blood alcohol concentration (BAC) in autopsies accounts for the majority of work in forensic diagnosis. The most common method to assess BAC is the enzymatic oxidation method because of its low cost, easy operation, and high throughput. Still, the elevated lactate and lactate dehydrogenase (LDH) levels in postmortem blood may affect accuracy. This study uses headspace gas chromatography with a flame ionization detector (HS-GC/FID) to assess the interference of lactate and LDH levels on BAC in 110 autopsied blood samples determined by the enzymatic oxidation method. The results showed that lactate and LDH levels in postmortem blood were higher than in normal blood. There was a weak correlation between the lactate levels and BAC difference (r = 0.23, p < 0.05) and a strong correlation between LDH levels and BAC difference (r = 0.67, p < 0.001). The differentiation of BAC between the enzymatic oxidation method and HS-GC/FID was significant (p < 0.001), confirming the interference significantly. All postmortem blood samples with lactate and LDH levels higher than regular lead to a positive error in determining BAC by enzymatic oxidation method. The study results suggest that the HS-GC/FID method should be used to determine BAC in postmortem blood samples instead of the enzymatic oxidation method to avoid mistakes in forensic diagnosis.

6.
Front Genet ; 14: 1248338, 2023.
Article in English | MEDLINE | ID: mdl-37900180

ABSTRACT

Background: Limb-girdle muscular dystrophy (LGMD) is a group of inherited neuromuscular disorders characterized by atrophy and weakness in the shoulders and hips. Over 30 subtypes have been described in five dominant (LGMD type 1 or LGMDD) and 27 recessive (LGMD type 2 or LGMDR). Each subtype involves a mutation in a single gene and has high heterogeneity in age of onset, expression, progression, and prognosis. In addition, the lack of understanding of the disease and the vague, nonspecific symptoms of LGMD subtypes make diagnosis difficult. Even as next-generation sequencing (NGS) genetic testing has become commonplace, some patients remain undiagnosed for many years. Methods: To identify LGMD-associated mutations, Targeted sequencing was performed in the patients and Sanger sequencing was performed in patients and family members. The in silico analysis tools such as Fathmm, M-CAP, Mutation Taster, PolyPhen 2, PROVEAN, REVEL, SIFT, MaxEntScan, Spliceailookup, Human Splicing Finder, NetGene2, and Fruitfly were used to predict the influence of the novel mutations. The pathogenicity of the mutation was interpreted according to the ACMG guidelines. Results: In this study, six patients from four different Vietnamese families were collected for genetic analysis at The Center for Gene and Protein Research and The Department of Molecular Pathology Faculty of Medical Technology, Hanoi Medical University, Hanoi, Vietnam. Based on clinical symptoms and serum creatine kinase (CK) levels, the patients were diagnosed with limb-girdle muscular dystrophies. Five mutations, including four (c.229C>T, p.Arg77Cys; exon one to three deletion; c.983 + 5G>C; and c.257_258insTGGCT, p.Phe88Leufs*125) in the SGCA gene and one (c.946-4_946-1delACAG) in the CAPN3 gene, were detected in six LGMD patients from four unrelated Vietnamese families. Two homozygous mutations (c.983 + 5G>C and c.257_258insTGGCT) in the SGCA gene were novel. These mutations were identified as the cause of the disease in the patients. Conclusion: Our results contribute to the general understanding of the etiology of the disease and provide the basis for definitive diagnosis and support genetic counseling and prenatal screening.

7.
Medicina (Kaunas) ; 59(10)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37893484

ABSTRACT

Background and Objectives: Psoriasis is an immune-mediated chronic inflammatory skin disorder and commonly associated with highly noticeable erythematous, thickened and scaly plaques. Deubiquitinase genes, such as tumor necrosis factor-alpha protein 3 (TNFAIP3, A20), the cylindromatosis (CYLD) and Cezanne, function as negative regulators of inflammatory response through the Janus kinase/signal transducers and activators of transcription (JAK-STAT) pathways. In this study, polymorphisms and expressions of A20, CYLD and Cezanne genes as well as immunophenotype in psoriatic patients were determined. Materials and Methods: In total, 82 patients with psoriasis and 147 healthy individuals with well-characterized clinical profiles were enrolled. Gene polymorphisms were determined by direct DNA sequencing, gene expression profile by quantitative real time-polymerase chain reaction (PCR), immunophenotype by flow cytometry, and the secretion of cytokines and cancer antigen (CA) 125 by enzyme-linked Immunosorbent assay (ELISA). Results: The inactivation of A20, CYLD and Cezanne and increased levels of TNF-α, IFN-γ and CA 125 was observed in psoriatic patients. Importantly, patients with low A20 expression had significant elevations of triglyceride and total cholesterol concentrations and higher numbers of CD13+CD117- and CD19+CD23+ (activated B) cells than those with high A20 expression. Genetic analysis indicated that all rs4495487 SNPs in the JAK2 gene, rs200878487 SNPs in the A20 gene and four SNPs (c.1584-375, c.1584-374, rs1230581026 and p.W433R) in the Cezanne gene were associated with significant risks, while the rs10974947 variant in the JAK2 gene was at reduced risk of psoriasis. Moreover, in the Cezanne gene, p.W433R was predicted to be probably damaging by the Polyphen-2 prediction tool and an AA/CC haplotype was associated with a high risk of psoriasis. In addition, patients with higher CA 125 levels than the clinical cutoff 35 U/mL showed increased levels of IFN-γ than those with normal CA 125 levels. Conclusions: A20 expression was associated with lipid metabolism and the recruitment of CD13+ CD117- and activated B cells into circulation in psoriatic patients. Besides this, the deleterious effect of the p.W433R variant in the Cezanne gene may contribute to the risk of psoriasis.


Subject(s)
Psoriasis , Signal Transduction , Humans , Cytokines/metabolism , Tumor Necrosis Factor-alpha/metabolism , Psoriasis/genetics , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Deubiquitinating Enzyme CYLD/metabolism
8.
PLoS One ; 18(8): e0283586, 2023.
Article in English | MEDLINE | ID: mdl-37549179

ABSTRACT

Acute myeloid leukemia (AML) is the most aggressive hematopoietic malignancy characterized by uncontrolled proliferation of myeloid progenitor cells within the bone marrow. Tumor suppressor cylindromatosis (CYLD) is a deubiquitinating enzyme, which suppresses inflammatory response in macrophages. Macrophages have a central role in the defense against foreign substances and circulating cancer cells by their professional phagocytic capacity. Little is known about contributions of CYLD to changes in biological properties of human macrophages and its involvement in AML. The present study, therefore, explored whether macrophage functions in healthy individuals and AML patients are influenced by CYLD. To this end, ninety-two newly diagnosed AML patients and 80 healthy controls were recruited. The mRNA expression levels of inflammation-related genes were evaluated by real-time PCR, cell maturation, phagocytosis and apoptosis assays by flow cytometry and secretion of inflammatory cytokines by ELISA. As a result, AML patients with the low CYLD expression were significantly higher in M4/M5 than other subtypes according to the FAB type. The low CYLD expression was also closely associated with older patients and enhanced level of LDH in AML. Moreover, treatment of normal macrophages with CYLD siRNA enhanced activation of STAT-1, leading to increases in expressions of maturation markers and IL-6 production as well as suppression in cell apoptosis and phagocytosis, while macrophage phagocytosis from AML M4/M5b was higher than that from healthy controls upon CYLD siRNA transfection through STAT1 signalling. In conclusion, the inhibitory effects of CYLD on macrophage functions are expected to affect the immune response in AML.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/genetics , Macrophages/metabolism , Cytokines/metabolism , Phagocytosis , RNA, Small Interfering , Deubiquitinating Enzyme CYLD/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism
9.
Front Genet ; 14: 1183663, 2023.
Article in English | MEDLINE | ID: mdl-37388928

ABSTRACT

Background: Merosin-deficient congenital muscular dystrophy type 1A (MDC1A), also known as laminin-α2 chain-deficient congenital muscular dystrophy (LAMA2-MD), is an autosomal recessive disease caused by biallelic variants in the LAMA2 gene. In MDC1A, laminin- α2 chain expression is absent or significantly reduced, leading to some early-onset clinical symptoms including severe hypotonia, muscle weakness, skeletal deformity, non-ambulation, and respiratory insufficiency. Methods: Six patients from five unrelated Vietnamese families presenting with congenital muscular dystrophy were investigated. Targeted sequencing was performed in the five probands. Sanger sequencing was carried out in their families. Multiplex ligation-dependent probe amplification was performed in one family to examine an exon deletion. Results: Seven variants of the LAMA2 (NM_000426) gene were identified and classified as pathogenic/likely pathogenic variants using American College of Medical Genetics and Genomics criteria. Two of these variants were not reported in the literature, including c.7156-5_7157delinsT and c.8974_8975insTGAT. Sanger sequencing indicated their parents as carriers. The mothers of family 4 and family 5 were pregnant and a prenatal testing was performed. The results showed that the fetus of the family 4 only carries c.4717 + 5G>A in the heterozygous form, while the fetus of the family 5 carries compound heterozygous variants, including a deletion of exon 3 and c.4644C>A. Conclusion: Our findings not only identified the underlying genetic etiology for the patients, but also provided genetic counseling for the parents whenever they have an offspring.

10.
Front Pediatr ; 11: 1128716, 2023.
Article in English | MEDLINE | ID: mdl-36873642

ABSTRACT

Background: Harlequin ichthyosis (HI) is a severe rare genetic disease that mainly affects the skin. Neonates with this disease are born with thick skin and large diamond-shaped plates covering most of their bodies. Affected neonates lose the ability to control dehydration and regulate temperature and are more susceptible to infections. They also face respiratory failure and feeding problems. These clinical symptoms are factors associated with high mortality rates of neonates with HI. Until now, there are still no effective treatments for HI patients and most patients die in the newborn period. Mutation in the ABCA12 gene, which encodes an adenosine triphosphate-binding cassette (ABC) transporter, has been demonstrated as the major cause of HI. Case presentation: In this study, we report the case who is one infant that was born prematurely at 32 gestational weeks with the whole body covered with thick plate-like scales of skin. The infant was severely infected with mild edema, multiple cracked skins full of the body, yellow discharge, and necrosis of fingers and toes. The infant was suspected to be affected by HI. Whole exome sequencing (WES) was performed as a tool for detecting the novel mutation in one prematurely born Vietnam infant with HI phenotype. And after that, the mutation was confirmed by the Sanger sequencing method in the patient and the members of his family. In this case, one novel mutation c.6353C > G (p.S2118X, Hom) in the ABCA12 gene, was detected in the patient. The mutation has not been reported in any HI patients previously. This mutation was also found in a heterozygous state in the members of the patient's family, including his parents, an older brother, and an older sister who are no symptoms. Conclusions: In this study, we identified a novel mutation in a Vietnamese patient with HI by whole exome sequencing. The results for the patient and the members of his family will be helpful in understanding the etiology of the disease, diagnosing carriers, assisting in genetic counseling, and emphasizing the need for DNA-based prenatal screening for families with a history of the disease.

11.
Genet Mol Biol ; 45(4): e20220099, 2022.
Article in English | MEDLINE | ID: mdl-36382932

ABSTRACT

Psoriasis is a common chronic, immune-mediated inflammatory disease of the skin. PSORS1C3 is a non-protein coding gene, of which the RNA transcript is found in psoriatic patients. CARD14 is mainly expressed in epidermal keratinocytes. TLR4 is a transmembrane protein to recognize microbial antigens. Our study aimed to assess the relationship among PSORS1C3, CARD14 and TLR4 polymorphisms, inflammatory expression and psoriasis susceptibility. To the end, 71 patients with psoriasis and 46 healthy individuals with the well-characterized clinical profiles were enrolled. Gene polymorphisms were determined by Sanger DNA sequencing and secretion of cytokines by ELISA. As a result, genetic analysis of PSORS1C3 gene identified nine SNPs and three haplotype blocks. Sequencing of the CARD14 gene determined eight SNPs and one haplotype block. Sequencing of TLR4 gene identified nine SNPs, in which a SNP rs1018673641 was found to exert deleterious effect. The linkage disequilibrium analysis showed that seven variants in PSORS1C3 gene and three SNPs in CARD14 gene were in tightly linked. More importantly, a significant association between IL-6 level and rs1018673641 AT genotype in TLR4 gene was detected in psoriatic patients. In conclusion, the PSORS1C3, CARD14 and TLR4 polymorphisms and haplotypes may be correlated with risk of suffering psoriasis and the IL-6-mediated chronic inflammation in psoriasis could be partially regulated by the TLR4 functional variant.

12.
Mol Genet Genomic Med ; 10(10): e2044, 2022 10.
Article in English | MEDLINE | ID: mdl-35996819

ABSTRACT

The JAK2 gene encodes for a non-receptor tyrosine kinase that plays a key role in the JAK/STAT signaling transfer pathway. Genetic polymorphisms of this gene have been indicated to be associated with myeloproliferative neoplasm-associated thrombosis in recent studies. This research aimed to evaluate the association between the variant rs10974944 and different types of Myeloproliferative neoplasms disorders in the Vietnamese population. DNA samples were obtained from 172 essential thrombocythemia patients, 14 primary myelofibrosis patients, 76 polycythemia vera patients, and 192 healthy controls. The JAK2 rs10974944 and V617F genotypes were identified by the polymerase chain reaction-restriction fragment length polymorphism genotyping and Sanger sequencing methods. Results showed that there was a strong association between rs10974944 and Myeloproliferative neoplasms phenotype (p < .0001) and the most significant association was observed in the recessive model of the mutant allele (G). The G allele carriers had a 1.74, 2.86, and 3.03 higher risk of getting essential thrombocythemia, primary myelofibrosis, and polycythemia vera, respectively. Interestingly, this effect of rs10974944 seemed to be independent of the JAK2 V617F genotype. The distribution of rs10974944 genotypes were significantly different between V617F-positive and negative groups (p = .008). Moreover, the GG genotype of rs10974944 was observed to be associated with the risk of getting Myeloproliferative neoplasms both in JAK2 V617F-positive group, and for the first time in JAK2 V617F-negative patients. A systematic meta-analysis in different populations strengthened the evidence regarding the correlation between rs10974944 and myeloproliferative neoplasm disorders. To sum up, our results suggested that rs10974944 can be used as a predisposition screening marker for predicting Myeloproliferative neoplasms susceptibility.


Subject(s)
Janus Kinase 2 , Myeloproliferative Disorders , Polycythemia Vera , Primary Myelofibrosis , Thrombocythemia, Essential , Asian People , DNA , Genetic Markers , Humans , Janus Kinase 2/genetics , Myeloproliferative Disorders/genetics , Polycythemia Vera/genetics , Primary Myelofibrosis/genetics , Thrombocythemia, Essential/genetics , Vietnam
13.
Adv Clin Exp Med ; 31(4): 369-380, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35025147

ABSTRACT

BACKGROUND: Polycythemia vera (PV) is characterized by increased proliferation and accumulation of erythroid and mature myeloid cells and megakaryocyte in the bone marrow and peripheral blood. The JAK2V617F mutation is present in most PV patients. Deubiquitinase (DUB) genes, including TNFAIP3 (A20), CYLD and Cezanne, function as negative regulators of inflammatory reaction through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-eB) signaling. OBJECTIVES: To determine single nucleotide polymorphisms (SNPs) profiling and gene expression of the DUB genes as well as the immunophenotype of PV cells. MATERIAL AND METHODS: Seventy-seven patients with PV and 55 healthy individuals with well-characterized clinical profiles were enrolled. Gene expression profile was determined using quantitative real-time polymerase chain reaction (qRT-PCR), the immunophenotype with flow cytometry, secretion of cytokines using enzyme-linked immunosorbent assay (ELISA), and gene polymorphisms using direct DNA sequencing. RESULTS: Inactivation of A20, CYLD and Cezanne, and increases in interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-á) levels, as well as the enhanced number of CD25+CD4 T, Th1 and regulatory T cells were observed in PV patients. The genetic analysis of the CYLD gene identified 11 SNPs, in which a novel W736G nsSNP in exon 15 and a SNP c.2483+6 T>G in intron 15 were observed in PV cases with the frequencies of 18.2% and 5.2%, respectively. The W736G non-synonymous SNP (nsSNP) was found to be most likely to exert deleterious effect and the intronic SNP c.2483+6 T>G was identified as aberrant splicing. Sequencing of Cezanne gene identified 7 SNPs in intron 10 and PV carriers of the SNPs had at least 2 SNPs in this gene. Importantly, PV carriers of the W736G nsSNP had multiple SNPs in CYLD, but not in A20 or Cezanne gene. CONCLUSIONS: Two identified SNPs, including the W736G nsSNP and the SNP c.2483+6 T>G, in CYLD gene might be associated with a risk of PV disease, in which the deleterious effect of the W736G nsSNP in CYLD gene could contribute to the pathogenesis of PV.


Subject(s)
Deubiquitinating Enzyme CYLD , Polycythemia Vera , Asian People , Deubiquitinating Enzyme CYLD/genetics , Humans , Janus Kinase 2/genetics , Mutation , Prevalence
14.
Cell Mol Biol (Noisy-le-grand) ; 68(10): 47-53, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-37114273

ABSTRACT

Chronic myelogenous leukemia (CML) is characterised by the translocation of regions of the BCR and ABL genes, leading to the fusion gene BCR-ABL forming the Philadelphia (Ph) chromosome. Vinblastine (Vinb) and Vincristine (Vinc) are Vinca alkaloids and frequently used in combination chemotherapy in leukemias and lymphomas. Deubiquitinating enzyme (DUB) genes such as A20, Otubain 1 and CYLD are known as inhibitors of functional activation of immune cells mediated through the NF-κB/STAT pathway. Little is known about the regulatory role of Vinb/Vinc on the function of CML cells and the contribution of the DUBs to those effects. In the end, the gene expression profile was determined by quantitative RT-PCR, physiological properties of CML cells by flow cytometry and cytokine production by ELISA. As a result, inactivated expression of the DUBs A20, CYLD, Otubain 1 and Cezanne and enhanced activation of CD11b+ and CD4T cells were observed in CML patients. Importantly, Vinc enhanced the expression of A20 and CYLD and inhibited the proliferation and survival of CML (K562) cells. The effects were abolished in the presence of A20 siRNA, while cell proliferation only depended on the presence of CYLD. In conclusion, the up-regulation of A20 by Vinc could involve inhibitory effects on the proliferation and survival of K562 cells. The events might contribute to the anticancer effect of Vinc on A20-sensitive CML cells.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Vinblastine , Humans , Deubiquitinating Enzyme CYLD/genetics , Fusion Proteins, bcr-abl/genetics , Gene Expression , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Vinblastine/pharmacology , Vinblastine/therapeutic use , Vincristine/pharmacology
15.
PLoS One ; 16(12): e0258348, 2021.
Article in English | MEDLINE | ID: mdl-34936646

ABSTRACT

BACKGROUND: Since the COVID-19 pandemic began, there have been concerns related to the preparedness of healthcare workers (HCWs). This study aimed to describe the level of awareness and preparedness of hospital HCWs at the time of the first wave. METHODS: This multinational, multicenter, cross-sectional survey was conducted among hospital HCWs from February to May 2020. We used a hierarchical logistic regression multivariate analysis to adjust the influence of variables based on awareness and preparedness. We then used association rule mining to identify relationships between HCW confidence in handling suspected COVID-19 patients and prior COVID-19 case-management training. RESULTS: We surveyed 24,653 HCWs from 371 hospitals across 57 countries and received 17,302 responses from 70.2% HCWs overall. The median COVID-19 preparedness score was 11.0 (interquartile range [IQR] = 6.0-14.0) and the median awareness score was 29.6 (IQR = 26.6-32.6). HCWs at COVID-19 designated facilities with previous outbreak experience, or HCWs who were trained for dealing with the SARS-CoV-2 outbreak, had significantly higher levels of preparedness and awareness (p<0.001). Association rule mining suggests that nurses and doctors who had a 'great-extent-of-confidence' in handling suspected COVID-19 patients had participated in COVID-19 training courses. Male participants (mean difference = 0.34; 95% CI = 0.22, 0.46; p<0.001) and nurses (mean difference = 0.67; 95% CI = 0.53, 0.81; p<0.001) had higher preparedness scores compared to women participants and doctors. INTERPRETATION: There was an unsurprising high level of awareness and preparedness among HCWs who participated in COVID-19 training courses. However, disparity existed along the lines of gender and type of HCW. It is unknown whether the difference in COVID-19 preparedness that we detected early in the pandemic may have translated into disproportionate SARS-CoV-2 burden of disease by gender or HCW type.


Subject(s)
COVID-19/epidemiology , Health Knowledge, Attitudes, Practice , Personnel, Hospital , Adult , COVID-19/prevention & control , Cross-Sectional Studies , Education, Medical, Continuing/statistics & numerical data , Female , Humans , Male , Personnel, Hospital/statistics & numerical data , Socioeconomic Factors , Surveys and Questionnaires
16.
Neurosignals ; 29(1): 14-23, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33784444

ABSTRACT

The antiaging protein Klotho is encoded by the Klotho gene first identified as an 'aging suppressor', in mice. Klotho deficiency is involved in premature aging and early death, while its overexpression is related to longevity. Klotho is mostly expressed in the kidney, but also in the brain, and in other organs. Two forms of Klotho, the cell membrane and secreted form, have pleiotropic activities that include regulation of general metabolism, oxidative stress, and mineral metabolism that correlates with its effect on accelerating aging. Membrane Klotho serves as an obligate co-receptor for the fibroblast growth factor (FGF), while secreted Klotho plays its role as a humoral factor. Klotho protein participates in the regulation of several biological activities, including regulation of calcium-phosphate homeostasis and PTH as well as vitamin D metabolism. The active form of vitamin D, 1,25(OH)2D3 (1,25-dihydroxy-vitamin D3 = calcitriol), acts as a neurosteroid that participates in the regulation of multiple brain functions. It provides neuroprotection and suppresses oxidative stress, inhibits inflammation and inflammatory mediators, and stimulates various neurotrophins. Calcitriol is involved in many brain-related diseases, including multiple sclerosis, Alzheimer´s disease, Parkinson´s disease, and schizophrenia. This review covers the most recent advances in Klotho research and discusses Klotho-dependent roles of calcitriol in neuro-psycho-pathophysiology.


Subject(s)
Calcitriol , Glucuronidase , Animals , Brain/metabolism , Calcium, Dietary , Glucuronidase/metabolism , Klotho Proteins , Mice
17.
Folia Microbiol (Praha) ; 66(2): 273-283, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33404955

ABSTRACT

Phloem-limiting phytoplasmas are known to be causal agents of phyllody, which is recognized by the abnormal development of floral structures resulting in serious yield losses in sesame plants. Currently, identification of the various groups of phytoplasmas that cause sesame phyllody (SP) is conducted by nested PCR, RFLP, and multiplex real-time qPCR assays. However, these methods require intensive labor and are costly and time-consuming so can only be undertaken in well-equipped labs. Here, diagnostic loop-mediated isothermal amplification (LAMP)-based assays allowing rapid detection of specific groups of phytoplasmas within 30 min were developed based on detection of the 16S rRNA sequence of phytoplasmas. Universal 16S rRNA phytoplasma primers and seven primer sets of different 16Sr group phytoplasmas (16SrI, 16SrII, 16SrIII, 16SrIV, 16SrV, 16SrX, 16SrXI) and universal plant cytochrome oxidase (cox) gene primers were used to detect 16S rRNA group phytoplasma sequences and the cox gene in sesame plants. The LAMP assays were carried out using a real-time fluorometer with amplification plots and annealing curves visualized directly. Results demonstrated that the 16SrI and 16SrII group phytoplasmas were causal agents of sesame phyllody in Vietnam. LAMP-based assays for in-field detection of sesame phyllody-causing phytoplasmas revealed advantages and potential applicability in comparison with conventional approaches. To the best of our knowledge, this is the first assessment of multiple phytoplasma infection associated with sesame phyllody disease in Vietnam using LAMP-based assays.


Subject(s)
Phytoplasma , Sesamum , DNA, Bacterial , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Phytoplasma/genetics , Plant Diseases , RNA, Ribosomal, 16S/genetics , Real-Time Polymerase Chain Reaction , Vietnam
18.
J Recept Signal Transduct Res ; 41(4): 331-338, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32808859

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the hematologic malignancy characterized by the aberrant proliferation of immature lymphoid cells. A20 is a deubiquitinase gene that inhibits functional activation of immune cells mediated through NF-κB/STAT pathways and frequently found inactivated in lymphoma. IL-6 is a pro-inflammatory cytokine secreted by immune cells under the pathogenic conditions and regulated by STAT signaling. Little is known about the role of A20 in regulating the function of ALL blasts and underlying molecular mechanisms. The present study, therefore, explored whether A20 expression contributes to IL-6 induced cell migration and activation of myeloid cells in ALL. To this end, blood samples of thirty-five adult ALL patients were examined. Gene expression profile was determined by quantitative RT-PCR, immunophenotype by flow cytometry, secretion of inflammatory cytokines by ELISA, and cell migration by a transwell migration assay. As a result, the expression of A20 was inactivated in ALL. Immunophenotypic analysis indicated that percent of CD11b+CD40+ expressing cells present in ALL was significantly reduced when transfected with PEM-T easy A20. Importantly, IL6-induced CXCL12-mediated migration of ALL blasts was dependent on the presence of A20. The inhibitory effects of A20 on activated myeloid cells and migration of ALL blasts were mediated through the STAT pathway upon IL-6 challenge. In addition, the CA-125 level was much higher in elderly females than either young female or male ALL patients or healthy donors. In conclusion, the inhibitory effects of A20 on activation of ALL blasts are expected to affect the immune response to treatment for adult ALL patients.


Subject(s)
Gene Expression Regulation, Leukemic , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , STAT Transcription Factors/metabolism , Signal Transduction , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Aged , Cell Movement , Chemokine CXCL12/metabolism , Cytokines/metabolism , Dendritic Cells/cytology , Female , Gene Expression Profiling , Humans , Immune System , Immunophenotyping , Inflammation , Interleukin-6/metabolism , Male , Middle Aged , Myeloid Cells/metabolism , NF-kappa B/metabolism
19.
Curr Mol Med ; 21(5): 417-425, 2021.
Article in English | MEDLINE | ID: mdl-33059575

ABSTRACT

Janus kinase-2 (JAK2) is a non-receptor tyrosine kinase that serves key roles as the intracellular signaling effector of the cytokine receptor, such as mediating effects of leptin, erythropoietin, interferon, and growth hormone. A lot of molecular underlying mechanisms of JAK2 participation are known, however, additional signaling mechanisms of its activation, regulation, and pleiotropic signaling roles are still being explored. Here, we review the current knowledge of JAK2-mediated cellular signaling at the molecular level. In the beginning, we will focus on the recent advances in JAK2 activation and regulation. A part of our review focuses on the JAK2 involvement in various diseases/conditions. Recent advances highlight the molecular regulatory mechanisms utilized by the JAK2 signaling, thus, enabling to consider alternative therapeutic strategies to treat various diseases/conditions mediated by JAK2 by using it as a therapeutic target.


Subject(s)
Janus Kinase 2/metabolism , Signal Transduction/physiology , Humans
20.
Iran J Basic Med Sci ; 23(10): 1268-1274, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33149858

ABSTRACT

OBJECTIVES: Chikungunya virus (ChikV) infection is characterized by persistent infection in joints and lymphoid organs. The ChikV Capsid protein plays an important role in regulating virus replication. In this study, we hypothesized that capsid protein may stimulate dendritic cell (DC) activation and maturation and trigger an inflammatory response in mice. MATERIALS AND METHODS: Mice were intraperitoneally injected with capsid protein and examined for changes in immunophenotype in lymph nodes (LNs). Next, DCs were treated with capsid protein or LPS and then expression of maturation markers, cytokine production, and ability to stimulate CD4+ T cells in allo-MLR were analyzed. RESULTS: Injection of mice with capsid protein led to recruitment of myeloid cells and increased activation of T lymphocytes in LNs. Importantly, treatment of DCs with capsid protein prolonged the activation of IKB-α and up-regulated the number of CD11c+CD86+DCs and release of TNF-α and IL-12p70 as well as reducing DC apoptosis, all effects were abolished in the presence of Bay 11-7082. In addition, IL-2 production was higher by CD4+ T cells stimulated with capsid-treated as compared with LPS-induced DCs. CONCLUSION: The observations revealed that capsid protein participates in the regulation of NF-κB signaling and maturation of DCs.

SELECTION OF CITATIONS
SEARCH DETAIL