Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 6(7): 3821-3831, 2020 07 13.
Article in English | MEDLINE | ID: mdl-33463313

ABSTRACT

Zn alloy is recognized as a promising biodegradable metal for bone implant applications because of its good biocompatibility and moderate degradation rate. Nevertheless, the insufficient strength limits its applications. In this study, a rod-like eutectic structure was fabricated in Zn-Al-Sn alloy with the addition of Sn via selective laser melting. It was found that the Al-enriched phase nucleated primarily during cooling and caused the rapid precipitation of Zn. This inevitably consumed the liquid Zn and increased the ratio of Sn to Zn in the liquid phase, resulting in the formation of the eutectic, which was composed of the Sn-enriched phase and the Zn-enriched phase. More importantly, the coupled growth of the Sn-enriched and Zn-enriched phases and their volume differences together led to a rod-like morphology of the eutectic according to the volume fraction theory. Consequently, the yield and ultimate compressive strengths were enhanced to 180 ± 18.8 and 325 ± 29.6 MPa for the Zn-Al-2Sn alloy, respectively. This could be attributed to the pinning effect of the rod-like eutectic, which could block dislocation motion and result in dislocation pile-up, thereby conducing to the mechanical reinforcement. In addition, the Zn-Al-Sn alloy also exhibited good biocompatibility and increased degradation rate because of the enhanced galvanic corrosion. This study showed the potential of rod-like eutectic for the mechanical enhancement of the biodegradable Zn alloy.


Subject(s)
Absorbable Implants , Alloys , Corrosion , Materials Testing , Zinc
2.
J Mech Behav Biomed Mater ; 82: 51-60, 2018 06.
Article in English | MEDLINE | ID: mdl-29567530

ABSTRACT

The orthopedic application of Zn is limited owing to the poor strength and low plasticity. In this study, a novel strategy by combining rapid solidification obtained by selective laser melting (SLM) and alloying with Mg was proposed to improve the mechanical properties of Zn. The microstructures, mechanical properties, as well as in vitro cytocompatibility of SLM processed Zn-xMg (x = 0-4 wt%) were studied systematically. Results shown that SLM processed Zn-xMg alloys consisted of fine equiaxed α-Zn grains with homogeneously precipitated Mg2Zn11 along grain boundaries. More importantly, the grains size of α-Zn was decreased from 104.4 ±â€¯30.4 µm to 4.9 ±â€¯1.4 µm with Mg increasing. And Mg mainly dissolved in α-Zn developing into supersaturated solid solution due to rapid solidification effect. As a consequence, the ultimate tensile strength and elongation were enhanced by 361% and 423%, respectively, with Mg containing up to 3 wt%. Meanwhile, alloying with Mg enhanced the corrosion resistance of Zn, with the degradation rate decreasing from 0.18 ±â€¯0.03 mm year-1 to 0.10 ±â€¯0.04 mm year-1. Furthermore, SLM processed Zn-xMg exhibited good biocompatibility. This research suggested that SLM processed Zn-3Mg alloy was a potential biomaterial for orthopedic applications.


Subject(s)
Alloys/chemistry , Lasers , Mechanical Phenomena , Zinc/chemistry , Cell Line , Corrosion , Electrochemistry , Humans , Materials Testing , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL