Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.484
Filter
1.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3828-3836, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39099356

ABSTRACT

This study aims to further elucidate the efficacy targets of celastrol(CEL) intervention in central inflammation in mice with obesity-depression comorbiditiy, based on the differential mRNA expression in the amygdala(AMY) and dorsal raphe nucleus(DRN) after CEL intervention. C57BL/6J mice were randomly divided into a normal diet group(Chow), a obesity-depression comorbidity(COM) group, and low-, medium-, and high-dose CEL groups(CEL-L, CEL-M, CEL-H, 0.5, 1.0, 2.0 mg·kg~(-1)). The Chow group received a normal diet, while the COM group and CEL-L, CEL-M, CEL-H groups received a high-fat diet combined with chronic stress from wet bedding. After 10 weeks of feeding, the mice were orally administered CEL for three weeks. Subsequently, the AMY and DRN of mice in the Chow, COM, and CEL-H groups were subjected to transcriptome analysis, and the intersection of target differentially expressed genes in both nuclei was visualized using a Venn diagram. The intersected genes were then imported into STRING for protein-protein interaction(PPI) analysis, and Gene Ontology(GO) analysis was performed using DAVID to identify the core targets regulated by CEL in the AMY and DRN. Independent samples were subjected to quantitative real-time PCR(qPCR) to validate the intersection genes. The results revealed that the common genes regulated by CEL in the AMY and DRN included chemokine family genes Ccl2, Ccl5, Ccl7, Cxcl10, Cxcr6, and Hsp70 family genes Hspa1a, Hspa1b, as well as Myd88, Il2ra, Irf7, Slc17a8, Drd2, Parp9, and Nampt. GO analysis showed that the top 5 nodes Ccl2, Cxcl10, Myd88, Ccl5, and Irf7 were all involved in immune-inflammation regulation(P<0.01). The qPCR results from independent samples showed that in the AMY, compared with the results in the Chow group, chemokine family genes, Hsp70, Myd88, Il2ra, Irf7, Slc17a8, Parp9, and Nampt were significantly up-regulated in the COM group, with Drd2 showing a decreasing trend; these pathological changes were significantly improved in the CEL-H group compared to the COM group. In the DRN, compared with the results in the Chow group, chemokine family genes, Hsp70, Myd88, Il2ra, Irf7, Parp9, and Nampt were significantly down-regulated, while Slc17a8 was significantly up-regulated in the COM group; compared with those in the COM group, Cxcr6, Irf7, and Drd2 were significantly up-regulated, while Slc17a8 was significantly down-regulated in the CEL-H group. In both the AMY and DRN, the expression of Irf7 by CEL showed both inhibition and activation in a dose-dependent manner(R~2 were 0.709 8 and 0.917 2, respectively). These findings suggest that CEL can effectively improve neuroinflammation by regulating bidirectional expression of the same target proteins, thereby intervening in the immune activation of the AMY and immune suppression of the DRN in COM mice.


Subject(s)
Amygdala , Depression , Dorsal Raphe Nucleus , Mice, Inbred C57BL , Obesity , Pentacyclic Triterpenes , Triterpenes , Animals , Mice , Amygdala/metabolism , Amygdala/drug effects , Male , Depression/drug therapy , Depression/genetics , Depression/metabolism , Obesity/genetics , Obesity/drug therapy , Obesity/metabolism , Triterpenes/pharmacology , Dorsal Raphe Nucleus/metabolism , Dorsal Raphe Nucleus/drug effects , Inflammation/drug therapy , Inflammation/genetics , Humans
2.
BMC Ophthalmol ; 24(1): 329, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112923

ABSTRACT

BACKGROUND: Considering that changes in the choroidal thickness are closely related to ocular growth, we studied the choroidal thickness (CT) and the blood flow features in children with unilateral myopic anisometropia (UMA) as well as investigating the relationship between choroidal changes and myopia. METHODS: Subjective refractive, axial length (AL), and biometric parameters were measured in 98 UMA children (age: 8-15 years). CT and choroidal blood-flow features, including the choroidal vessel volume (CVV), choroidal vascularity index (CVI), and choriocapillaris perfusion area (CCPA), were measured through swept-source optical coherence tomography angiography. The macular region was categorized into four concentric circles of diameters 0-1 mm (central fovea), 1-3 mm (parafovea), 3-6 mm (perifovea), and 6-9 mm (extended), and further categorized into superior (S), inferior (I), temporal (T), and nasal (N) quadrants. RESULTS: The aforementioned four regions of myopic eyes displayed significantly lower CT, CVV, and CVI than those of non-myopic eyes. CCPA changes differed across different regions of both the eyes (parts of N and T quadrants). There was an inverse association between CT and the interocular AL difference (central and other regions S, T quadrant). No correlation was noted between CVV and CVI with interocular AL difference. CT and CVV were positively correlated in the 0-6-mm macular region of myopic eyes (Spearman correlation coefficient = 0.763, P < 0.001). CONCLUSIONS: In UMA children, CCT and blood flow may be related to myopia progression. A robust correlation between CT and CVV in the 0-6-mm macular region and reduced CT and diminished blood flow indicated an association with myopia.


Subject(s)
Anisometropia , Axial Length, Eye , Choroid , Myopia , Regional Blood Flow , Tomography, Optical Coherence , Humans , Choroid/blood supply , Choroid/pathology , Choroid/diagnostic imaging , Child , Adolescent , Male , Female , Anisometropia/physiopathology , Myopia/physiopathology , Tomography, Optical Coherence/methods , Axial Length, Eye/pathology , Regional Blood Flow/physiology , Refraction, Ocular/physiology , Fluorescein Angiography/methods
4.
Antioxidants (Basel) ; 13(7)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39061860

ABSTRACT

A multi-strain yeast-based paraprobiotic (MsYbP) comprising inactive cells and polysaccharides (ß-glucan, mannan oligosaccharides, and oligosaccharides) derived from Saccharomyces cerevisiae and Cyberlindnera jadinii could ensure optimal growth and health in farmed fish. This study assessed the impact of an MsYbP on the growth, immune responses, antioxidant capacities, and liver health of largemouth bass (Micropterus salmoides) through lab-scale (65 days) and pilot-scale (15 weeks) experiments. Two groups of fish were monitored: one fed a control diet without the MsYbP and another fed 0.08% and 0.1% MsYbP in the lab-scale and pilot-scale studies, respectively (referred to as YANG). In the lab-scale study, four replicates were conducted, with 20 fish per replicate (average initial body weight = 31.0 ± 0.8 g), while the pilot-scale study involved three replicates with approximately 1500 fish per replicate (average initial body weight = 80.0 ± 2.2 g). The results indicate that the MsYbP-fed fish exhibited a significant increase in growth in both studies (p < 0.05). Additionally, the dietary MsYbP led to a noteworthy reduction in the liver function parameters (p < 0.05), such as alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (AKP), and hepatic nuclear density, indicating improved liver health. Furthermore, the dietary MsYbP elevated the antioxidative capacity of the fish by reducing their malondialdehyde levels and increasing their levels and gene expressions related to antioxidative markers, such as total antioxidant ca-pacity (T-AOC), total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), catalase (CAT), nuclear factor erythroid 2-related factor 2 (nrf2) and kelch-1ike ech-associated protein (keap1) in both studies (p < 0.05). In terms of hepatic immune responses, the lab-scale study showed an increase in inflammation-related gene expressions, such as interleukin-1ß (il-1ß) and transforming growth factor ß1 (tgf-ß1), while the pilot-scale study significantly suppressed the expressions of genes related to inflammatory responses, such as tumor necrosis factor α (tnfα) and interleukin-10 (il-10) (p < 0.05). In summary, our findings underscore the role of dietary multi-strain yeast-based paraprobiotics in enhancing the growth and liver health of largemouth bass, potentially through increased antioxidative capacity and the modulation of immune responses, emphasizing the significance of employing yeast-based paraprobiotics in commercial conditions.

5.
Front Med (Lausanne) ; 11: 1416956, 2024.
Article in English | MEDLINE | ID: mdl-39021819

ABSTRACT

Hypermagnesemia commonly occurs in patients with renal dysfunction. Diagnosing hypermagnesemia represents a challenge due to its rarity and the absence of routine monitoring of magnesium levels. Furthermore, the lack of awareness among clinicians regarding this uncommon condition frequently leads to delayed diagnoses. Few patients survive with a serum magnesium level exceeding 7 mmol/L. This article presents a case study of near-fatal hypermagnesemia resulting from the oral administration of Epsom salts in a patient with normal renal function. A 60-year-old female presented to the gastroenterology department on Oct. 6, 2023, with a 3-day history of black stools. She underwent subtotal gastrectomy in 2005 and has a stable history of nephrotic syndrome. To investigate the cause of her bleeding, electronic gastroscopy and colonoscopy were scheduled for Oct. 11, 2023. She experienced a sudden loss of consciousness 30 min after the ingestion of Epsom salts. The attending physician suspected a severe magnesium poisoning. She was promptly administered calcium gluconate, underwent tracheal intubation with ambu bag ventilation, and received early continuous renal replacement therapy (CRRT). Swift diagnosis and CRRT contributed to a reduction in her serum magnesium levels from an initial 8.71 mmol/L to 1.35 mmol/L, leading to a remarkable improvement in the toxic symptoms associated with hypermagnesemia. Subsequently, she was managed in the gastroenterology department, with gastroscopy revealing bleeding from the gastrointestinal anastomotic ulcer. Following conservative treatments including acid suppression, stomach protection, and hemostasis, her symptoms improved, and she was successfully discharged. This study aims to alert clinicians to the possibility of hypermagnesemia in individuals with normal renal function. Physicians should exercise caution when prescribing Epsom salts to patients with underlying gastrointestinal conditions. If necessary, alternative drug therapies may be considered to mitigate the risk of hypermagnesemia. Timely intervention is pivotal in averting life-threatening complications linked to hypermagnesemia.

6.
Nat Commun ; 15(1): 5128, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879628

ABSTRACT

Accurately controlling the product selectivity in syngas conversion, especially increasing the olefin selectivity while minimizing C1 byproducts, remains a significant challenge. Epsilon Fe2C is deemed a promising candidate catalyst due to its inherently low CO2 selectivity, but its use is hindered by its poor high-temperature stability. Herein, we report the successful synthesis of highly stable ε-Fe2C through a N-induced strategy utilizing pyrolysis of Prussian blue analogs (PBAs). This catalyst, with precisely controlled Mn promoter, not only achieved an olefin selectivity of up to 70.2% but also minimized the selectivity of C1 byproducts to 19.0%, including 11.9% CO2 and 7.1% CH4. The superior performance of our ε-Fe2C-xMn catalysts, particularly in minimizing CO2 formation, is largely attributed to the interface of dispersed MnO cluster and ε-Fe2C, which crucially limits CO to CO2 conversion. Here, we enhance the carbon efficiency and economic viability of the olefin production process while maintaining high catalytic activity.

7.
J Hum Genet ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38880818

ABSTRACT

Variants in voltage-gated sodium channel (VGSC) genes are implicated in seizures, epilepsy, and neurodevelopmental disorders, constituting a significant aspect of hereditary epilepsy in the Chinese population. Through retrospective analysis utilizing next-generation sequencing (NGS), we examined the genotypes and phenotypes of VGSC-related epilepsy cases from a cohort of 691 epilepsy subjects. Our findings revealed that 5.1% of subjects harbored VGSC variants, specifically 22 with SCN1A, 9 with SCN2A, 1 with SCN8A, and 3 with SCN1B variants; no SCN3A variants were detected. Among these, 14 variants were previously reported, while 21 were newly identified. SCN1A variant carriers predominantly presented with Dravet Syndrome (DS) and Genetic Epilepsy with Febrile Seizures Plus (GEFS + ), featuring a heightened sensitivity to fever-induced seizures. Statistically significant disparities emerged between the SCN1A-DS and SCN1A-GEFS+ groups concerning seizure onset and genetic diagnosis age, incidence of status epilepticus, mental retardation, anti-seizure medication (ASM) responsiveness, and familial history. Notably, subjects with SCN1A variants affecting the protein's pore region experienced more frequent cluster seizures. All SCN2A variants were of de novo origin, and 88.9% of individuals with SCN2A variations exhibited cluster seizures. This research reveals a significant association between variations in VGSC-related genes and the clinical phenotype diversity of epilepsy subjects in China, emphasizing the pivotal role of NGS screening in establishing accurate disease diagnoses and guiding the selection of ASM.

8.
Front Plant Sci ; 15: 1403276, 2024.
Article in English | MEDLINE | ID: mdl-38863531

ABSTRACT

Flax powdery mildew (PM), caused by Oidium lini, is a globally distributed fungal disease of flax, and seriously impairs its yield and quality. To data, only three resistance genes and a few putative quantitative trait loci (QTL) have been reported for flax PM resistance. To dissect the resistance mechanism against PM and identify resistant genetic regions, based on four years of phenotypic datasets (2017, 2019 to 2021), a genome-wide association study (GWAS) was performed on 200 flax core accessions using 674,074 SNPs and 7 models. A total of 434 unique quantitative trait nucleotides (QTNs) associated with 331 QTL were detected. Sixty-four loci shared in at least two datasets were found to be significant in haplotype analyses, and 20 of these sites were shared by multiple models. Simultaneously, a large-effect locus (qDI 11.2) was detected repeatedly, which was present in the mapping study of flax pasmo resistance loci. Oil flax had more QTL with positive-effect or favorable alleles (PQTL) and showed higher PM resistance than fiber flax, indicating that effects of these QTL were mainly additive. Furthermore, an excellent resistant variety C120 was identified and can be used to promote planting. Based on 331 QTLs identified through GWAS and the statistical model GBLUP, a genomic selection (GS) model related to flax PM resistance was constructed, and the prediction accuracy rate was 0.96. Our results provide valuable insights into the genetic basis of resistance and contribute to the advancement of breeding programs.

10.
Ann Hematol ; 103(8): 3229-3233, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38879649

ABSTRACT

Erdheim-Chester disease (ECD) is a rare histiocytosis that tends to co-exist with other myeloid malignancies. Here, we use genetic and transcriptomic sequencing to delineate a case of co-occurring BRAFV600E-mutated ECD and acute myeloid leukemia (AML), followed by AML remission and relapse. The AML relapse involved the extinction of clones with KMT2A-AFDN and FLT3-ITD, and the predominance of PTPN11-mutated subclones with distinct transcriptomic features. This case report has highlighted the screening for other myeloid malignancies at the diagnosis of ECD and the clinical significance of PTPN11-mutated AML subclones that require meticulous monitoring.


Subject(s)
Erdheim-Chester Disease , Leukemia, Myeloid, Acute , Mutation , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , fms-Like Tyrosine Kinase 3 , Humans , Erdheim-Chester Disease/genetics , Erdheim-Chester Disease/complications , Erdheim-Chester Disease/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/diagnosis , fms-Like Tyrosine Kinase 3/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Male , Clonal Evolution/genetics , Female , Proto-Oncogene Proteins B-raf/genetics , Middle Aged
12.
Anim Nutr ; 17: 87-99, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38766518

ABSTRACT

The prevalent practice of substituting fishmeal with plant protein frequently leads to disturbances in bile acid metabolism, subsequently increasing the incidence of metabolic liver diseases. Bile acid nutrients such as cholesterol, taurine and glycine have been shown to enhance bile acid synthesis and confer beneficial effects on growth. Therefore, this study aimed to investigate the effects of cholesterol-taurine-glycine (Ch-Tau-Gly) supplement on bile acid metabolism and liver health in spotted seabass (Lateolabrax maculatus) fed a plant-based diet. Two isonitrogenous and isolipidic diets were formulated: (1) plant protein-based diet (PP); (2) PP supplemented 0.5% cholesterol, 0.5% taurine and 1.3% glycine (CTG). Each experimental diet was randomly fed to quadruplicate groups of 30 feed-trained spotted seabass in each tank. The results revealed that supplementing plant-based diet with Ch-Tau-Gly supplement led to an increase in carcass ratio (meat yield) in spotted seabass (P < 0.05), indirectly contributing positively to their growth. The dietary supplement effectively suppressed endogenous cholesterol synthesis in the liver, promoted the expression of bile acid synthesis enzyme synthesis, and simultaneously the expression of intestinal fxr and its downstream genes, including hnf4α and shp (P < 0.05). The reduction in Lactobacillus_salivarius and bile salt hydrolase (BSH) were observed in CTG group with concurrently increased conjugated chenodeoxycholic acid (CDCA) bile acids (P < 0.05), suggesting the enhancement of the hydrophilicity of the bile acid pool. In CTG group, fatty liver was alleviated with a corresponding increase in lipid metabolism, characterized by a downregulation of genes associated with lipogenesis and lipid droplet deposition, along with an upregulation of genes related to lipolysis. Our study underscored the ability of Ch-Tau-Gly supplement to influence the gut microbiota, leading to an increase in the levels of conjugated CDCA (P < 0.05) in the bile acid pool of spotted seabass. The interplay between the gut microbiota and bile acids might constitute a crucial pathway in the promotion of liver health. These findings offer a promising solution, suggesting that Ch-Tau-Gly supplement have the potential to promote the growth of aquatic species and livestock fed on plant-based diets while addressing issues related to metabolic fatty liver.

13.
J Phys Chem Lett ; 15(21): 5738-5746, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38775294

ABSTRACT

The practical application of lithium-oxygen batteries (LOBs) with ultrahigh theoretical energy density faces the problems of poor kinetics and deficient reversibility. The electrolyte is of vital significance to the electrochemical stability and reaction pathway of LOBs due to the formation of soluble products. Here, a 15-crown-5 ether (15C5) is employed to regulate the solvation structure of Li+ and manipulate the reaction mechanism through regulating the binding ability toward Li+. The promoted dissociation of LiNO3 by 15C5 increases the catalytical active anions in the electrolyte and stabilizes the Li-containing reduced oxygen species to promote the solution pathway of discharge product growth. Besides, 15C5 also facilitates the kinetics of the electrochemical decomposition of Li2O2 and prolongs the cycle life to 178 cycles. This work inspires a novel approach to improve the battery performance through electrolyte component design.

14.
Int J Surg ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38814355

ABSTRACT

BACKGROUND: Some cases of laparoscopic-assisted liver transplantation (LA-LT) with utilization of reduced-size grafts has been reported. We here introduced successful utilization of LA-LT with whole liver grafts and magnetic portal vein anastomosis. METHODS: Eight patients with liver cirrhosis were included for LA-LT using donor organs after cardiac death. The surgical procedures included purely laparoscopic explant hepatectomy and whole-liver graft implantation via the midline incision. After explant removal, the whole-liver graft was then placed in situ, and a side-to-side cavo-caval anastomosis with 4-5 cm oval opening was performed. The magnetic rings were everted on the donor and recipient portal vein, respectively, and the instant attachment of the two magnets at the donor and recipient portal vein allowed fast blood reperfusion, followed by continuous suturing on the surface of the magnets. RESULTS: The median operation time was 495 (range 420-630). The median time of explant hepatectomy and IVC anastomosis was 239 (range 150-300) min and 14.5 (range 10-19) min, respectively. Of note, the median anhepatic time was 25 (range 20-35) min. All the patients were discharged home with no major complications after more than six months follow-up. CONCLUSION: LA-LT with full-size graft is feasible and utilization of magnetic anastomosis would further simplify the procedure.

15.
Food Chem ; 454: 139787, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38795628

ABSTRACT

Cottonseed protein isolate (CPI) is a valuable agro-industrial waste with potential biotechnological applications. However, inadequate stability in water due to its characteristic hinders its widespread use. Therefore, a new sulfonation modification approach was developed to improve the amphiphilicity and structural flexibility of CPI. Structural characterizations confirmed the successful incorporation of sulfonate groups with structural and conformational changes. This significantly unfolded molecular-chain, and improved amphiphilicity, flexibility, and surface-hydrophobicity while reducing pI (5.1-1.7), and molecular-weight (5745-2089 g/mol). The modified samples exhibited improved emulsification with higher amounts of absorbed proteins on the droplet interface, smaller droplet size, and a higher zeta-potential. Additionally, they possessed good emulsification ability under acidic conditions. The nano-emulsions exhibited long-term stability (≥70 days) under different environmental conditions, with excellent fluidity. This study contributes to understanding sulfonation as a viable approach for improving protein properties, thus, opening up new possibilities for their application and maximizing their economic benefits.


Subject(s)
Emulsifying Agents , Hydrophobic and Hydrophilic Interactions , Emulsifying Agents/chemistry , Plant Proteins/chemistry , Emulsions/chemistry , Gossypium/chemistry , Protein Hydrolysates/chemistry , Particle Size , Molecular Weight , Sulfonic Acids/chemistry
16.
Cell ; 187(12): 3024-3038.e14, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38781969

ABSTRACT

Plants frequently encounter wounding and have evolved an extraordinary regenerative capacity to heal the wounds. However, the wound signal that triggers regenerative responses has not been identified. Here, through characterization of a tomato mutant defective in both wound-induced defense and regeneration, we demonstrate that in tomato, a plant elicitor peptide (Pep), REGENERATION FACTOR1 (REF1), acts as a systemin-independent local wound signal that primarily regulates local defense responses and regenerative responses in response to wounding. We further identified PEPR1/2 ORTHOLOG RECEPTOR-LIKE KINASE1 (PORK1) as the receptor perceiving REF1 signal for plant regeneration. REF1-PORK1-mediated signaling promotes regeneration via activating WOUND-INDUCED DEDIFFERENTIATION 1 (WIND1), a master regulator of wound-induced cellular reprogramming in plants. Thus, REF1-PORK1 signaling represents a conserved phytocytokine pathway to initiate, amplify, and stabilize a signaling cascade that orchestrates wound-triggered organ regeneration. Application of REF1 provides a simple method to boost the regeneration and transformation efficiency of recalcitrant crops.


Subject(s)
Plant Proteins , Regeneration , Signal Transduction , Solanum lycopersicum , Plant Proteins/metabolism , Plant Proteins/genetics , Solanum lycopersicum/metabolism , Gene Expression Regulation, Plant , Peptides/metabolism
17.
Inorg Chem ; 63(17): 7937-7945, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38629190

ABSTRACT

The urea-assisted water splitting not only enables a reduction in energy consumption during hydrogen production but also addresses the issue of environmental pollution caused by urea. Doping heterogeneous atoms in Ni-based electrocatalysts is considered an efficient means for regulating the electronic structure of Ni sites in catalytic processes. However, the current methodologies for synthesizing heteroatom-doped Ni-based electrocatalysts exhibit certain limitations, including intricate experimental procedures, prolonged reaction durations, and low product yield. Herein, Fe-doped NiO electrocatalysts were successfully synthesized using a rapid and facile solution combustion method, enabling the synthesis of 1.1107 g within a mere 5 min. The incorporation of iron atoms facilitates the modulation of the electronic environment around Ni atoms, generating a substantial decrease in the Gibbs free energy of intermediate species for the Fe-NiO catalyst. This modification promotes efficient cleavage of C-N bonds and consequently enhances the catalytic performance of UOR. Benefiting from the tunability of the electronic environment around the active sites and its efficient electron transfer, Fe-NiO electrocatalysts only needs 1.334 V to achieve 50 mA cm-2 during UOR. Moreover, Fe-NiO catalysts were integrated into a dual electrode urea electrolytic system, requiring only 1.43 V of cell voltage at 10 mA cm-2.

18.
Antioxidants (Basel) ; 13(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38671897

ABSTRACT

Peroxiredoxin 6 (Prdx6), a unique 1-Cys member of the peroxiredoxin family, exhibits peroxidase activity, phospholipase activity, and lysophosphatidylcholine acyltransferase (LPCAT) activity. Prdx6 has been known to be an important enzyme for the maintenance of lipid peroxidation repair, cellular metabolism, inflammatory signaling, and antioxidant damage. Growing research has demonstrated that the altered activity of this enzyme is linked with various pathological processes including central nervous system (CNS) disorders. This review discusses the distinctive structure, enzyme activity, and function of Prdx6 in different CNS disorders, as well as emphasizing the significance of Prdx6 in neurological disorders.

19.
Ecotoxicol Environ Saf ; 277: 116380, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38677068

ABSTRACT

The interaction between microplastics (MPs) and cadmium (Cd) poses a threat to agricultural soil environments, and their effects on plant growth and rhizosphere microbial community functions are not yet clear. In this study, energy sorghum was used as a test plant to investigate the effects of two types of MPs, polystyrene (PS) and polyethylene (PE), at different particle sizes (13 µm, 550 µm) and concentrations (0.1%, 1% w/w), and Cd, as well as their interactions, on the growth of sorghum in a soil-cultivation pot experiment. The results showed that the combined effects of MP and Cd pollution on the dry weight and Cd accumulation rate in sorghum varied depending on the type, concentration, and particle size of the MPs, with an overall trend of increasing stress from combined pollution with increasing Cd content and accumulation. High-throughput sequencing analysis revealed that combined MP and Cd pollution increased bacterial diversity, and the most significant increase was observed in the abundance-based coverage estimator (ACE), Shannon, and Sobs indices in the 13 µm 1% PS+Cd treatment group. Metagenomic analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways revealed that 19 groups of metabolic pathways, including microbial metabolism and methane metabolism, differed significantly under combined MP and Cd pollution. Hierarchical clustering results indicated that Cd treatment and combined MP and Cd treatment affected the abundances of sorghum rhizosphere soil nitrogen (N) and phosphorus (P) cycling genes and that the type of MP present was an important factor affecting N and P cycling genes. The results of this study provide a basis for exploring the toxic effects of combined MP and Cd pollution and for conducting soil environmental risk assessments.


Subject(s)
Cadmium , Microplastics , Rhizosphere , Soil Microbiology , Soil Pollutants , Sorghum , Sorghum/drug effects , Sorghum/microbiology , Cadmium/toxicity , Soil Pollutants/toxicity , Microplastics/toxicity , Soil/chemistry , Particle Size , Bacteria/drug effects
20.
Front Oncol ; 14: 1339955, 2024.
Article in English | MEDLINE | ID: mdl-38634045

ABSTRACT

We report a case of recurrent retroperitoneal leiomyosarcoma in a male who achieved a rapid and robust but transient clinical response to low-dose iodine-125 brachytherapy. A FANCD2 frameshift mutation was detected by gene sequencing in the cancerous tissue.

SELECTION OF CITATIONS
SEARCH DETAIL