Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
J Chemother ; 34(7): 446-458, 2022 Nov.
Article En | MEDLINE | ID: mdl-35773225

In vancomycin treatment, the rates of correct blood sampling and initial trough concentrations within the target range are very low. Studies of interventions by clinical pharmacists based on population pharmacokinetics (PPK) models are limited. This study aimed to evaluate the intervention effect of clinical pharmacist-mediated optimization of the vancomycin administration regimen based on a PPK model. Retrospectively enrolled patients constituted the control group, and prospectively enrolled patients constituted the intervention group. The vancomycin administration regimen, trough concentration, pharmacokinetic parameters, and clinical outcomes of the two groups were compared. The control and intervention groups comprised 236 and 138 patients, respectively. Compared with those in the control group, the therapeutic drug monitoring (TDM) and correct TDM sampling time rates in the intervention group were significantly higher (76.92% vs. 43.59%; 63.9% vs. 39.0%, both p < 0.001). The rates of an initial trough concentration within 10-20 mg/L and an adjusted regimen were also significantly higher in the intervention group (55.80% vs. 30.51%, 71.95% vs. 39.18%, both p < 0.001). The rate of an area under the curve (AUC) within 400-650 mg·h/L was higher in the intervention group than in the control group (52.7% vs. 36.6%, p < 0.001). The eradication rates of Gram-positive bacteria were 91.4% in the intervention group and 81.3% in the control group (p = 0.049). Eight patients developed acute kidney injury (AKI) in the control group; however, no AKI occurred in the intervention group (p = 0.029). Intervention by clinical pharmacists can increase the rate of correct sampling time. Using the PPK model combined with Bayesian estimation, clinical pharmacists can greatly increase the trough concentration and AUCs within the target range, especially for adjusted regimens. Higher PK/PD target rates resulted in better Gram-positive bacterial eradication and reduced renal toxicity of vancomycin.


Pharmacists , Vancomycin , Humans , Vancomycin/therapeutic use , Vancomycin/pharmacokinetics , Prospective Studies , Retrospective Studies , Bayes Theorem , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacokinetics , Area Under Curve , Drug Monitoring/methods
2.
Front Pharmacol ; 13: 832078, 2022.
Article En | MEDLINE | ID: mdl-35295325

Objective: The objective of the study was to assess the impact of multifaceted clinical pharmacist-led antimicrobial stewardship (AMS) program on the rational use of antibiotics for patients who receive vascular and interventional radiology therapies. Methods: A quasi-experimental retrospective intervention design with a comparison group was applied to the practice of antibiotic use in the department of vascular and interventional radiology in a Chinese tertiary hospital. We used difference-in-differences (DID) analysis to compare outcomes before and after the AMS intervention between the intervention group and control group, to determine whether intervention would lead to changes in irrationality of antibiotic prescribing, antibiotic utilization, cost of antibiotics, and length of hospital stay. Results: The DID results showed that the intervention group was associated with a reduction in the average consumption of antibiotics (p = 0.017) and cost of antibiotics (p = 0.006) and cost per defined daily dose (DDD) (p = 0.000). There were no significant differences in the mean change of total costs and length of stay between the two groups (p > 0.05). The average inappropriate score of perioperative antimicrobial prophylaxis in the intervention group declined by 0.23, while it decreased by 0.02 in the control group [0.21 (95% CI, -0.271 to -0.143); p = 0.000]. The average inappropriate score of non-surgical antimicrobial prophylaxis in the intervention group declined by 0.14, while it increased by 0.02 in the control group [0.16 (95% CI, -0.288 to -0.035); p = 0.010]. The average inappropriate score of the therapeutic use of antibiotics in the intervention group declined by 0.07, while it decreased by 0.01 in the control group [0.06 (95% CI, -0.115 to -0.022); p = 0.003]. Conclusions: This study provides evidence that implementation of AMS interventions was associated with a marked reduction of antibiotic use, cost of antibiotics, and irrationality of antibiotic prescribing in China.

3.
Eur J Hosp Pharm ; 29(e1): e6-e14, 2022 03.
Article En | MEDLINE | ID: mdl-33414258

BACKGROUND: There is a significant correlation between augmented renal clearance (ARC) and lower serum trough concentrations of vancomycin (VCM) during therapy. There is a need to evaluate the predictive performance of the population pharmacokinetic (PPK) model used for individual calculation of dosage regimens in ARC patients. OBJECTIVE: Our study aimed to estimate the predictive performance differences of the reported VCM PPK software JPKD-vancomycin and SmartDose in patients with varying renal function status, especially those with ARC. METHODS: Patients receiving VCM treatment from May 2014 to December 2019 were enrolled, and divided into the ARC group, the normal renal function (NRF) group, and the impaired renal function (IRF) group. VCM dosage, trough concentration, area under the curve (AUC) and pharmacokinetic parameters were compared among the three groups. The predictive performance of PPK software was expressed using absolute prediction error (APE), sensitivity, specificity, and regression coefficient (r2) of linear regression analysis between the measured VCM trough concentration and the predicted trough concentration. RESULTS: A total of 388 patients were included: 86 patients in the ARC group, 241 patients in the NRF group, and 61 patients in the IRF group. The daily dose of the adjusted regimen in the ARC group was higher than in the NRF group, but the trough concentration was significantly lower than in the NRF group (2.8±0.6 g vs 1.9±0.6 g, p<0.001; 10.5±5.1 mg/L vs 12.9±6.8 mg/L, p=0.030). The percentage of trough concentrations lower than 10 mg/L was 84.9% in the ARC group. Compared with the APE of the initial dosage regimen, the APE of the adjusted regimen calculated by JPKD was lower in the ARC group (p=0.041) and the NRF group (p<0.001). Specificity of JPKD and SmartDose in the ARC group was higher than in the NRF group (p<0.001; p<0.001). According to the linear regression analysis, the coefficients of determination (r2) were all >0.6 for the initial regimen and adjusted regimen of VCM in the ARC and NRF groups, and the r2 of the adjusted regimen of JPKD was >0.8 in the ARC and NRF groups. In the IRF group, 31.1% of patients had a change in serum creatinine (Scr) level of >50%. The r2 increased from 0.527 to 0.7347 in SmartDose and from 0.55 to 0.7802 in JPKD when using Scr at the sampling time. The ARC group showed a significant decrease in AUC (p<0.001) and an increase in clearance rate (p<0.001) when compared to the NRF group. CONCLUSION: ARC was significantly associated with subtherapeutic serum VCM concentration. The pharmacokinetic parameters of VCM were diverse in patients with different renal function status. The PPK model JPKD and SmartDose had a good predictive performance for predicting VCM trough concentrations of the ARC and NRF patients, especially using JPKD for prediction of the adjusted regimen. The change of Scr is a main factor affecting the accuracy of software prediction.


Anti-Bacterial Agents , Vancomycin , Creatinine/metabolism , Humans , Kidney/metabolism , Metabolic Clearance Rate
4.
An Acad Bras Cienc ; 92(4): e20200241, 2020.
Article En | MEDLINE | ID: mdl-33237143

Microglia are the resident immune cells in the central nervous system (CNS), which play important roles in the repair of neuroinflammatory injury. The present study investigated the anti-neuroinflammatory effects of vinpocetine induced by lipopolysaccharide (LPS) in BV2 microglia. BV2 microglia were pretreated with vinpocetine, and then stimulated with LPS (100 ng/mL). The cytotoxicity of BV2 microglia was assessed by MTT assay. The expression levels of nitrite oxide were measured by Griess assay. Proinflammatory cytokines and mediators were determined by Western blot, ELISA, or quantitative real-time PCR. Vinpocetine significantly decreased the generation of nitric oxide-inducible nitric oxide synthase (iNOS), cyclooxygenase- (COX-) 2 in a dose-dependent manner. In addition, vinpocetine decreased the production of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin (IL)-6 and IL-1ß. Furthermore, it was observed that phosphorylation levels of AMPK (Thr-172) decreased in LPS-stimulated BV2 microglia. Vinpocetine treatment increased AMPK phosphorylation in LPS-stimulated BV2 microglia. AMPK inhibition by siRNA blocked the anti-inflammatory effects of vinpocetine induced by LPS in BV2 microglia. The overall results demonstrate that vinpocetine has anti-inflammatory effects on LPS-stimulated BV2 microglia via inducing phosphorylation of AMPK, suggesting that vinpocetine is a potential therapeutic agent in neuroinflammatory injury.


Lipopolysaccharides , Microglia , AMP-Activated Protein Kinases , Anti-Inflammatory Agents/pharmacology , Cyclooxygenase 2 , Lipopolysaccharides/pharmacology , Nitric Oxide , Vinca Alkaloids
6.
Theranostics ; 10(13): 6048-6060, 2020.
Article En | MEDLINE | ID: mdl-32483437

Rationale: Resistance to pemetrexed (PEM)-based chemotherapy is a major cause of progression in non-small cell lung cancer (NSCLC) patients. The deubiquitinating enzyme UCHL1 was recently found to play important roles in chemoresistance and tumor progression. However, the potential roles and mechanisms of UCHL1 in PEM resistance remain unclear. Methods: Bioinformatics analyses and immunohistochemistry were used to evaluate UCHL1 expression in NSCLC specimens. Kaplan-Meier analysis with the log-rank test was used for survival analyses. We established PEM-resistant NSCLC cell lines by exposing them to step-wise increases in PEM concentrations, and in vitro and in vivo assays were used to explore the roles and mechanisms of UCHL1 in PEM resistance using the NSCLC cells. Results: In chemoresistant tumors from NSCLC patients, UCHL1 was highly expressed and elevated UCHL1 expression was strongly associated with poor outcomes. Furthermore, UCHL1 expression was significantly upregulated in PEM-resistant NSCLC cells, while genetic silencing or inhibiting UCHL1 suppressed resistance to PEM and other drugs in NSCLC cells. Mechanistically, UCHL1 promoted PEM resistance in NSCLC by upregulating the expression of thymidylate synthase (TS), based on reduced TS expression after UCHL1 inhibition and re-emergence of PEM resistance upon TS restoration. Furthermore, UCHL1 upregulated TS expression, which mitigated PEM-induced DNA damage and cell cycle arrest in NSCLC cells, and also conferred resistance to PEM and other drugs. Conclusions: It appears that UCHL1 promotes PEM resistance by upregulating TS in NSCLC cells, which mitigated DNA damage and cell cycle arrest. Thus, UCHL1 may be a therapeutic target for overcoming PEM resistance in NSCLC patients.


Carcinoma, Non-Small-Cell Lung/metabolism , Deubiquitinating Enzymes/metabolism , Lung Neoplasms/metabolism , Thymidylate Synthase/metabolism , Ubiquitin Thiolesterase/metabolism , A549 Cells , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/physiology , Cell Line, Tumor , DNA Damage/drug effects , DNA Damage/physiology , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/physiology , HEK293 Cells , Humans , Immunohistochemistry/methods , Lung Neoplasms/drug therapy , Male , Mice, Inbred BALB C , Middle Aged , Pemetrexed/pharmacology , Up-Regulation/drug effects , Up-Regulation/physiology
7.
Front Pharmacol ; 11: 668, 2020.
Article En | MEDLINE | ID: mdl-32477134

Ubiquitin-specific protease 5 (USP5) is a deubiquitinating enzyme that functions as an oncoprotein in a variety of human cancers. However, the expression and role of USP5 in the metastasis of non-small cell lung cancer (NSCLC) have not been addressed. In this study, we examined the expression and prognostic significance of USP5 in NSCLC. The results revealed that USP5 was overexpressed and correlated with metastasis and overall survival in NSCLC tissues. A further in vitro study revealed that the levels of USP5 protein in NSCLC cells were associated with epithelial-mesenchymal transition (EMT) markers. Furthermore, USP5 overexpression significantly enhanced, whereas USP5 silencing significantly decreased the expression of EMT proteins and migration and invasion of NSCLC cells. In addition, the results from western blotting demonstrated that USP5 regulated EMT via the Wnt/ß-catenin signaling pathway. Further immunohistochemical analysis revealed that USP5 was significantly associated with the expression of ß-catenin and EMT markers in NSCLC tissues. Overall, USP5 upregulation is associated with tumor metastasis and poor prognosis in patients with NSCLC. USP5 promotes EMT and the invasion and migration of NSCLC cells. Therefore, USP5 may serve as a novel prognostic biomarker and provide a potential target for the treatment of metastasis in NSCLC.

8.
Int J Clin Pharmacol Ther ; 58(7): 408-414, 2020 Jul.
Article En | MEDLINE | ID: mdl-32352368

OBJECTIVE: The objective of this study was to use LC-MS/MS to compare the pharmacodynamic properties and bioequivalence of two 200-mg formulations of racecadotril: suspension formulation (test) and granule formulation (reference) in healthy Chinese subjects. MATERIALS AND METHODS: A single-dose, randomized, two-period crossover study was conducted in fasted healthy Chinese subjects, who received a single oral dose of the test or reference formulation, followed by a 7-day washout period and administration of the alternate formulation. RESULTS: The rapid and highly sensitive LC-MS/MS method exhibited a reasonable linearity range (2.324 - 952.000 ng/mL) and high sensitivity (LLOQ of 2.324 ng/mL). The within- and between-run precision, accuracy, and stability results were within the acceptable limits, and no matrix effect was observed. The 90% CI of the ratio of geometric means for AUC0-t, AUC0-∞, and Cmax were 88.1 - 102.3%, 87.9 - 101.5% and 99.5 - 113%, respectively, which met the regulatory criteria for bioequivalence. CONCLUSION: The method is suitable for quantification of thiorphan in human plasma. In addition, the results indicated that the test and reference formulations were bioequivalent in terms of both rate and extent of absorption.


Protease Inhibitors , Tandem Mass Spectrometry , Thiorphan/analogs & derivatives , Area Under Curve , Biological Availability , Chromatography, Liquid , Cross-Over Studies , Humans , Protease Inhibitors/blood , Tablets , Therapeutic Equivalency , Thiorphan/blood
9.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 32(1): 50-55, 2020 Jan.
Article Zh | MEDLINE | ID: mdl-32148231

OBJECTIVE: To estimate the predictive performance of the population pharmacokinetics software JPKD-vancomycin on predicting the vancomycin steady-state trough concentration, and to analyze the related factors affecting the predictive performance. METHODS: The clinical data of patients who were treated with vancomycin and received therapeutic drug monitoring (TDM) admitted to Suzhou Hospital Affiliated to Nanjing Medical University from July 2013 to December 2018 were enrolled. All patients were designed an empirical vancomycin regimen (initial regimen) according to vancomycin medication guidelines. Steady-state trough concentrations of vancomycin were determined at 48 hours after the first dose and 0.5 hour before the next dose. Dosage regimen was adjusted when steady-state trough concentration was not in 10-20 mg/L (adjustment regimen), and then the steady-state trough concentration was determined again 48 hours after adjustment. First, the JPKD-vancomycin software was used to calculate the initial regimen and predict the steady-state trough concentration according to the results calculated by classic pharmacokinetic software Vancomycin Calculator. Second, the JPKD-vancomycin software was used to adjust the vancomycin dosage regime and predict the steady-state trough concentration of adjustment regimen. The weight residual (WRES) between the predicted steady-state trough concentration (Cpre) and the measured steady-state trough concentration (Creal) was used to evaluate the ability of the JPKD-vancomycin software for predicting the vancomycin steady-state trough concentration. The TDM results of initial regimen were divided into accurate prediction group (WRES < 30%) and the inaccurate prediction group (WRES ≥ 30%) according to the WRES value. Patient and disease characteristics including gender, age, weight, height, the length of hospital stay, comorbidities, vasoactive agent, mechanical ventilation, smoking history, postoperative, obstetric patients, trauma, laboratory indicators, vancomycin therapy and TDM results were collected from electronic medical records. Univariate and multivariate Logistic regression analysis was used to screen the related factors that influence the predictive performance of JPKD-vancomycin software, and the receiver operating characteristic (ROC) curve was drawn to evaluate its predictive value. RESULTS: A total of 310 patients were enrolled, and 467 steady-state trough concentrations of vancomycin were collected, including 310 concentrations of initial regimen and 157 concentrations of adjustment regimen. Compared with the initial regimen, the WRES of adjusted regimen was significantly reduced [14.84 (6.05,22.89)% vs. 20.41 (11.06,45.76)%, P < 0.01], and the proportion of WRES < 30% increased significantly [82.80% (130/157) vs. 63.87% (198/310), P < 0.01]. These results indicated that JPKD-vancomycin software had a better accuracy prediction for steady-state trough concentration of the adjusted regimen than the initial regimen. There were 198 concentrations in the accurate prediction group and 112 in the inaccurate prediction group. Univariate Logistic regression analysis showed that women [odds ratio (OR) = 0.466, 95% confidence interval (95%CI) was 0.290-0.746, P = 0.002], low body weight (OR = 0.974, 95%CI was 0.953-0.996, P = 0.022), short height (OR = 0.963, 95%CI was 0.935-0.992, P = 0.014), low vancomycin clearance (CLVan; OR < 0.001, 95%CI was 0.000-0.231, P = 0.023) and postoperative patients (OR = 1.695, 95%CI was 1.063-2.702, P = 0.027) were related factors affecting the predictive performance of JPKD-vancomycin software. Multivariate Logistic regression analysis indicated that women (OR = 0.449, 95%CI was 0.205-0.986, P = 0.046), low CLVan (OR < 0.001, 95%CI was 0.000-0.081, P = 0.015) and postoperative patients (OR = 2.493, 95%CI was 1.455-4.272, P = 0.001) were independent risk factors for inaccurate prediction of JPKD-vancomycin software. The ROC analysis indicated that the area under ROC curve (AUC) of the CLVan for evaluating the accuracy of JPKD-vancomycin software in predicting vancomycin steady-state trough concentration was 0.571, the sensitivity was 56.3%, and the specificity was 57.1%. The predictive performance of JPKD-vancomycin software was decreased when CLVan was lower than 0.065 L×h-1×kg-1. CONCLUSIONS: JPKD-vancomycin software had a better predictive performance for the vancomycin steady-state trough concentrations of adjustment regimen than initial regimen. JPKD-vancomycin software had a poor predictive performance when the patient was female, having low CLVan, and was postoperative. The predictive performance of JPKD-vancomycin software was decreased when CLVan was lower than 0.065 L×h-1×kg-1.


Anti-Bacterial Agents/pharmacokinetics , Drug Monitoring , Software , Vancomycin/pharmacokinetics , Female , Humans , Male , Retrospective Studies
...