Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 367
Filter
1.
Int Immunopharmacol ; 143(Pt 1): 113334, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39383784

ABSTRACT

Myocardial ischemia-reperfusion injury (MIRI) is a complex pathological process that results from the restoration of blood flow to ischemic myocardium, leading to a series of detrimental effects including oxidative stress and inflammation. Stachyose, a naturally occurring oligosaccharide found in traditional Chinese medicinal herbs, has been suggested to possess therapeutic properties against various pathological conditions. However, its impact on MIRI and the underlying mechanisms have not been fully elucidated. In this study, we aimed to investigate the therapeutic effects of stachyose on MIRI and to uncover the molecular mechanisms involved. Using both in vivo and in vitro models of MIRI, we evaluated the effects of stachyose on cardiac function and cell death pathways. Our results indicate that stachyose significantly improves cardiac function and reduces infarct size in MIRI mice. Mechanistically, stachyose modulates the ferroptotic pathway in cardiomyocytes by upregulating the expression of glutathione peroxidase 4 (GPX4) and reducing lipid peroxides and iron levels. Additionally, stachyose inhibits the pyroptotic pathway in macrophages by downregulating the expression of NLRP3, gasdermin D (GSMD-N), and cleaved-caspase-1, leading to decreased levels of proinflammatory cytokines interleukin (IL)-1ß and IL-18. This study demonstrates that stachyose exerts a protective effect against MIRI by targeting both ferroptosis and pyroptosis pathways, suggesting its potential as a novel therapeutic agent for the treatment of MIRI. Further research is warranted to explore the detailed mechanisms and therapeutic potential of stachyose in clinical settings.

2.
J Inflamm Res ; 17: 7017-7036, 2024.
Article in English | MEDLINE | ID: mdl-39377045

ABSTRACT

Introduction: This study aims to explore the role of cuproptosis-related genes in ACC, utilizing data from TCGA and GEO repositories, and to develop a predictive model for patient stratification. Methods: A cohort of 123 ACC patients with survival data was analyzed. RNA-seq data of 17 CRGs were examined, and univariate Cox regression identified prognostic CRGs. A cuproptosis-related network was constructed to show interactions between CRGs. Consensus clustering classified ACC into three subtypes, with transcriptional and survival differences assessed by PCA and survival analysis. Gene set variation analysis (GSVA) and ssGSEA evaluated functional and immune infiltration characteristics across subtypes. Differentially expressed genes (DEGs) were identified, and gene clusters were established. A risk score (CRG_score) was generated using LASSO and multivariate Cox regression, validated across datasets. Tumor microenvironment, stem cell index, mutation status, drug sensitivity, and hormone synthesis were examined in relation to the CRG_score. Protein expression of key genes was validated, and functional studies on ASF1B and NDRG4 were performed. Results: Three ACC subtypes were identified with distinct survival outcomes. Subtype B showed the worst prognosis, while subtype C had the best. We identified 214 DEGs linked to cell proliferation and classified patients into three gene clusters, confirming their prognostic value. The CRG_score predicted patient outcomes, with high-risk patients demonstrating worse survival and possible resistance to immunotherapy. Drug sensitivity analysis suggested higher responsiveness to doxorubicin and etoposide in high-risk patients. Conclusion: This study suggests the potential prognostic value of CRGs in ACC. The CRG_score model provides a robust tool for risk stratification, with implications for treatment strategies.

3.
Redox Biol ; 77: 103373, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39357422

ABSTRACT

The role of gut microbiome in acute kidney injury (AKI) is increasing recognized. Caloric restriction (CR) has been shown to enhance the resistance to ischemia/reperfusion injury to the kidneys in rodents. Nonetheless, it is unknown whether intestinal microbiota mediated CR protection against ischemic/reperfusion-induced injury (IRI) in the kidneys. Herein, we showed that CR ameliorated IRI-elicited renal dysfunction, oxidative stress, apoptosis, and inflammation, along with enhanced intestinal barrier function. In addition, gut microbiota depletion blocked the favorable effects of CR in AKI mice. 16S rRNA and metabolomics analysis showed that CR enriched the gut commensal Parabacteroides goldsteinii (P. goldsteinii) and upregulated the level of serum metabolite dodecafluorpentan. Intestinal colonization of P. goldsteinii and oral administration of dodecafluorpentan showed the similar beneficial effects as CR in AKI mice. RNA sequencing and experimental data revealed that dodecafluorpentan protected against AKI-induced renal injury by antagonizing oxidative burst and NFκB-induced NLRP3 inflammasome activation. In addition, we screened and found that Hamaudol improved renal insufficiency by boosting the growth of P. goldsteinii. Our results shed light on the role of intestinal microbiota P. goldsteinii and serum metabolites dodecafluorpentan in CR benefits to AKI.

4.
ISA Trans ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39358098

ABSTRACT

Power circuit breakers (CBs) are vital for the control and protection of power systems, yet diagnosing their faults accurately remains a challenge due to the diversity of fault types and the complexity of their structures. Traditional data-driven methods, although effective, require extensive labeled data for each fault class, limiting their applicability in real-world scenarios where many faults are unseen. This paper addresses these limitations by introducing symptom description transfer-based zero-shot fault diagnosis (SDT-ZSFD), a method that leverages zero-shot learning for fault diagnosis. Our approach constructs a fault symptom description (FSD) framework, which embeds a fault symptom layer between the feature layer and the label layer to facilitate knowledge transfer from seen to unseen fault classes. The method utilizes current and acceleration signals collected during CB operation to extract features. By applying sparse principal component analysis to these signals, we derive high-quality features that are mapped to the FSD framework, enabling effective zero-shot learning. Our method achieves a satisfactory recognition rate by accurately diagnosing unseen faults based on these symptoms. This approach not only overcomes the data scarcity problem but also holds potential for practical applications in power system maintenance. The SDT-ZSFD method offers a reliable solution for CB fault diagnosis and provides a foundation for future improvements in symptom-based zero-shot diagnostic mechanisms and algorithmic robustness.

5.
J Cardiovasc Dev Dis ; 11(9)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39330326

ABSTRACT

Many people with diagnosed hypertension, high cholesterol, and/or diabetes are not receiving drug treatment, partly because they perceive their cardiovascular disease (CVD) risk as low. This study aimed to quantify the risk for future CVD events, either first or recurrent, in people with diagnosed hypertension, high cholesterol, and/or diabetes but not on medications for any of these conditions. Participants aged 40-79 years who had been diagnosed with hypertension, high cholesterol, and/or diabetes but were not on medications were identified from National Health and Nutrition Examination Surveys cycles 1999 to 2018. Among them, those with known CVD and those without known CVD but with complete data for estimating their 10-year CVD risk were included in this study. The participants were classified as (1) "high-risk" if they had known CVD or a 10-year predicted CVD risk ≥ 7.5% or (2) "low-risk" if they had a 10-year predicted CVD risk < 7.5%. Of the 5187 participants included, 2201 had known major CVD (n = 490, 9.45%) or a 10-year predicted CVD risk ≥ 7.5% (n = 1711, 32.99%), corresponding to a weighted proportion of 34.83% (95% CI: 33.15 to 36.51%) in the US general population. The proportions of high-risk participants were much higher in the elderly (65.50% for 60-69 years and 97.86% for 70-79 years), males (45.13%), and non-Hispanic Blacks (42.15%) than in others (all p < 0.001). These patterns were consistent across survey cycles during 1999-2018. Additional analyses that classified the participants into groups above or below the treatment threshold (rather than high- or low-risk groups) according to current guidelines yielded similar results. A comparison of the 2201 untreated high-risk participants with other participants who had been diagnosed with hypertension, high cholesterol, and/or diabetes and were on medications for these conditions showed that "lower BMI", "smaller waist circumference", and a "non-diabetic" status, among others, were associated with a higher likelihood of "not taking medications". In conclusion, approximately one-third of the US adults aged 40 to 79 years with diagnosed hypertension, high cholesterol, and/or diabetes but not on medications had known CVD or a 10-year predicted CVD risk ≥ 7.5%, and this proportion was little changed over the past two decades. Interventions targeted at the subgroups with particular characteristics identified in this study may help improve the management of CVD and its risk factors.

6.
Clin Transl Oncol ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39269596

ABSTRACT

OBJECTIVE: This study aimed to explore the Liquid-liquid phase separation (LLPS)-related genes associated with the prognosis of bladder cancer (BCa) and assess the potential application of LLPS-related prognostic signature for predicting prognosis in BCa patients. METHODS: Clinical information and transcriptome data of BCa patients were extracted from the Cancer Genome Atlas-BLCA (TCGA-BLCA) database and the GSE13507 database. Furthermore, 108 BCa patients who received treatment at our institution were subjected to a retrospective analysis. The least absolute shrinkage and selection operator (LASSO) analysis was performed to develop an LLPS-related prognostic signature for BCa. The CCK8, wound healing and Transwell assays were performed. RESULTS: Based on 62 differentially expressed LLPS-related genes (DELRGs), three DELRGs were screened by LASSO analysis including kallikrein-related peptidase 5 (KLK5), monoacylglycerol O-acyltransferase 2 (MOGAT2) and S100 calcium-binding protein A7 (S100A7). Based on three DELRGs, a novel LLPS-related prognostic signature was constructed for individualized prognosis assessment. Kaplan-Meier curve analyses showed that LLPS-related prognostic signature was significantly correlated with overall survival (OS) of BCa. ROC analyses demonstrated the LLPS-related prognostic signature performed well in predicting the prognosis of BCa patients in the training group (the area under the curve (AUC) = 0.733), which was externally verified in the validation cohort 1 (AUC = 0.794) and validation cohort 2 (AUC = 0.766). Further experiments demonstrated that inhibiting KLK5 could affect the proliferation, migration, and invasion of BCa cells. CONCLUSIONS: In this study, a novel LLPS-related prognostic signature was successfully developed and validated, demonstrating strong performance in predicting the prognosis of BCa patients.

7.
Sci Rep ; 14(1): 17969, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39095413

ABSTRACT

The coronavirus disease-2019 (COVID-19) pandemic has impaired the quality of life (QoL) for many due to its extensive impacts. However, few studies have addressed the specific impact of COVID-19 on the mental health of adolescents, particularly post-traumatic stress disorder (PTSD). This study considered the impact of COVID-19-related PTSD on the QoL of adolescents in China, the mediating effects of insomnia, and the moderating effects of resilience. Participants included 50,666 adolescents aged 12-18 years selected using a comprehensive sampling method. We performed data collection from January 8th to January 18th, 2023, using the Children's Revised Impact of Event Scale, Pittsburgh Sleep Quality Index, Ten-item Connor-Davidson Resilience Scale, and Screening for and Promotion of Health-related QoL in Children and Adolescents Questionnaire for data collection. Male adolescents exhibited significantly lower levels of PTSD and insomnia compared to females and scored significantly higher in psychological resilience and overall QoL. Insomnia played a mediating role between PTSD and QoL. Psychological resilience moderated the impact of COVID-19-related stress on adolescents' QoL through its influence on insomnia. PTSD resulting from the COVID-19 pandemic affects the QoL of adolescents through the presence of insomnia. Psychological resilience plays a moderating role in this process. Cultivating psychological resilience in adolescents can effectively enhance their ability to cope with the impacts of sudden public events.


Subject(s)
COVID-19 , Quality of Life , Resilience, Psychological , Sleep Initiation and Maintenance Disorders , Stress Disorders, Post-Traumatic , Humans , Adolescent , COVID-19/psychology , COVID-19/epidemiology , Stress Disorders, Post-Traumatic/psychology , Stress Disorders, Post-Traumatic/epidemiology , Sleep Initiation and Maintenance Disorders/psychology , Male , Female , Child , China/epidemiology , Surveys and Questionnaires , SARS-CoV-2 , Pandemics
8.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39204119

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a metabolic syndrome characterized by chronic inflammation, insulin resistance, and islet cell damage. The prevention of T2DM and its associated complications is an urgent public health issue that affects hundreds of millions of people globally. Numerous studies suggest that disturbances in gut metabolites are important driving forces for the pathogenesis of diabetes. However, the functions and mechanisms of action of most commensal bacteria in T2DM remain largely unknown. METHODS: The quantification of bile acids (BAs) in fecal samples was performed using ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS). The anti-diabetic effects of Bacteroides uniformis (B. uniformis) and its metabolites cholic acid (CA) and chenodeoxycholic acid (CDCA) were assessed in T2DM mice induced by streptozocin (STZ) plus high-fat diet (HFD). RESULTS: We found that the abundance of B. uniformis in the feces and the contents of CA and CDCA were significantly downregulated in T2DM mice. B. uniformis was diminished in diabetic individuals and this bacterium was sufficient to promote the production of BAs. Colonization of B. uniformis and intragastric gavage of CA and CDCA effectively improved the disorder of glucose and lipid metabolism in T2DM mice by inhibiting gluconeogenesis and lipolysis in the liver. CA and CDCA improved hepatic glucose and lipid metabolism by acting on the Takeda G protein-coupled receptor 5 (TGR5)/adenosine monophosphate-activated protein kinase (AMPK) signaling pathway since knockdown of TGR5 minimized the benefit of CA and CDCA. Furthermore, we screened a natural product-vaccarin (VAC)-that exhibited anti-diabetic effects by promoting the growth of B. uniformis in vitro and in vivo. Gut microbiota pre-depletion abolished the favorable effects of VAC in diabetic mice. CONCLUSIONS: These data suggest that supplementation of B. uniformis may be a promising avenue to ameliorate T2DM by linking the gut and liver.

10.
CNS Neurosci Ther ; 30(7): e14831, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961317

ABSTRACT

AIMS: Comorbid anxiodepressive-like symptoms (CADS) in chronic pain are closely related to the overactivation of the lateral habenula (LHb). Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have been implicated to play a key role in regulating neuronal excitability. However, the role of HCN channels in the LHb during CADS has not yet been characterized. This study aimed to investigate the effect of HCN channels in the LHb on CADS during chronic pain. METHODS: After chronic neuropathic pain induction by spared nerve injury (SNI), mice underwent a sucrose preference test, forced swimming test, tail suspension test, open-field test, and elevated plus maze test to evaluate their anxiodepressive-like behaviors. Electrophysiological recordings, immunohistochemistry, Western blotting, pharmacological experiments, and virus knockdown strategies were used to investigate the underlying mechanisms. RESULTS: Evident anxiodepressive-like behaviors were observed 6w after the SNI surgery, accompanied by increased neuronal excitability, enhanced HCN channel function, and increased expression of HCN2 isoforms in the LHb. Either pharmacological inhibition or virus knockdown of HCN2 channels significantly reduced LHb neuronal excitability and ameliorated both pain and depressive-like behaviors. CONCLUSION: Our results indicated that the LHb neurons were hyperactive under CADS in chronic pain, and this hyperactivation possibly resulted from the enhanced function of HCN channels and up-regulation of HCN2 isoforms.


Subject(s)
Depression , Habenula , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Animals , Habenula/metabolism , Habenula/drug effects , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Mice , Male , Depression/metabolism , Neuralgia/metabolism , Neuralgia/psychology , Mice, Inbred C57BL , Chronic Pain/metabolism , Chronic Pain/psychology , Potassium Channels
11.
Int Immunopharmacol ; 138: 112623, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38991630

ABSTRACT

OBJECTIVE: Bladder cancer (BCa) is a highly lethal urological malignancy characterized by its notable histological heterogeneity. Autophagy has swiftly emerged as a diagnostic and prognostic biomarker in diverse cancer types. Nonetheless, the currently accessible autophagy-related signature specific to BCa remains limited. METHODS: A refined autophagy-related signature was developed through a 10-fold cross-validation framework, incorporating 101 combinations of machine learning algorithms. The performance of this signature in predicting prognosis and response to immunotherapy was thoroughly evaluated, along with an exploration of potential drug targets and compounds. In vitro and in vivo experiments were conducted to verify the regulatory mechanism of hub gene. RESULTS: The autophagy-related prognostic signature (ARPS) has exhibited superior performance in predicting the prognosis of BCa compared to the majority of clinical features and other developed markers. Higher ARPS is associated with poorer prognosis and reduced sensitivity to immunotherapy. Four potential targets and five therapeutic agents were screened for patients in the high-ARPS group. In vitro and vivo experiments have confirmed that FKBP9 promotes the proliferation, invasion, and metastasis of BCa. CONCLUSIONS: Overall, our study developed a valuable tool to optimize risk stratification and decision-making for BCa patients.


Subject(s)
Autophagy , Machine Learning , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/therapy , Urinary Bladder Neoplasms/pathology , Humans , Prognosis , Animals , Biomarkers, Tumor/genetics , Cell Line, Tumor , Precision Medicine , Immunotherapy/methods , Gene Expression Regulation, Neoplastic , Mice , Risk Assessment
12.
Sci Total Environ ; 948: 174870, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39029755

ABSTRACT

OBJECTIVE: Polychlorinated biphenyls (PCBs) have caused great environmental concerns. The study aims to investigate underlying molecular mechanisms between PCBs exposure and prostate cancer (PCa). METHODS: To investigate the association between PCBs exposure and prostate cancer by using CTD, TCGA, and GEO datasets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to explore pathways associated with PCBs-related genes (PRGs). Using Lasso regression analysis, a novel PCBs-related prognostic model was developed. Both internal and external validations were conducted to assess the model's validity. Molecular docking was utilized to assess the binding capacity of PCBs to crucial genes. At last, preliminary experimental validations were conducted to confirm the biological roles of Aroclor 1254 in PCa cells. RESULTS: The GO enrichment analysis of PRGs revealed that the biological processes were most enriched in the regulation of transcription from the RNA polymerase II promoter and signal transduction. The KEGG enrichment analysis showed that of the pathways in cancer is the most significantly enriched. Next, a PCBs-related model was constructed. In the training, test, GSE70770, and GSE116918 cohorts, the biochemical recurrences free survival of the patients with high-risk scores was considerably lower. The AUCs at 5 years were 0.691, 0.718, 0.714, and 0.672 in the four cohorts, demonstrating the modest predictive ability. A nomogram that incorporated clinical characteristics was constructed. The results of the anti-cancer drug sensitivity analysis show chemotherapy might be more beneficial for patients at low risk. The molecular docking analysis demonstrated PCBs' ability to bind to crucial genes. PCa cells exposed to Aroclor 1254 at a concentration of 1 µM showed increased proliferation and invasion capabilities. CONCLUSIONS: This study provides new insights into the function of PCBs in PCa and accentuates the need for deeper exploration into the mechanistic links between PCBs exposure and PCa progression.


Subject(s)
Environmental Pollutants , Molecular Docking Simulation , Polychlorinated Biphenyls , Prostatic Neoplasms , Prostatic Neoplasms/chemically induced , Prostatic Neoplasms/genetics , Humans , Male , Polychlorinated Biphenyls/toxicity , Environmental Pollutants/toxicity , Disease Progression , Environmental Exposure
13.
Cancer Med ; 13(14): e70001, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39031016

ABSTRACT

PURPOSE: The aim of this study was to assess the potential application of a radiomics features-based nomogram for predicting therapeutic responses to neoadjuvant chemohormonal therapy (NCHT) in patients with high-risk non-metastatic prostate cancer (PCa). METHODS: Clinicopathologic information was retrospectively collected from 162 patients with high-risk non-metastatic PCa receiving NCHT and radical prostatectomy at our center. The postoperative pathological findings were used as the gold standard for evaluating the efficacy of NCHT. The least absolute shrinkage and selection operator (LASSO) was conducted to develop radiomics signature. Multivariate logistic regression analyses were conducted to identify the predictors of a positive pathological response to NCHT, and a nomogram was constructed based on these predictors. RESULTS: Sixty-three patients (38.89%) experienced positive pathological response to NCHT. Receiver operating characteristic analyses showed that the area under the curve (AUC) of periprostatic fat (PPF) radiomics signature was 0.835 (95% CI, 0.754-0.898), while the AUC of intratumoral radiomics signature was 0.822 (95% CI, 0.739-0.888). Multivariate logistic regression analysis revealed that PSA level, PPF radiomics signature and intratumoral radiomics signature were independent predictors of positive pathological response. A nomogram based on these three predictors was constructed. The AUC was 0.908 (95% CI, 0.839-0.954). The Hosmer-Lemeshow goodness-of-fit test showed that the nomogram was well calibrated. Decision curve analysis revealed the favorable clinical practicability of the nomogram. The nomogram was successfully validated in the validation cohort. Kaplan-Meier analyses showed that nomogram and positive pathological response were significantly related with survival of PCa. CONCLUSION: The radiomics-clinical nomogram based on mpMRI radiomics features exhibited superior predictive ability for positive pathological response to NCHT in high-risk non-metastatic PCa.


Subject(s)
Magnetic Resonance Imaging , Neoadjuvant Therapy , Nomograms , Prostatectomy , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Prostatic Neoplasms/drug therapy , Neoadjuvant Therapy/methods , Middle Aged , Aged , Retrospective Studies , Magnetic Resonance Imaging/methods , Treatment Outcome , ROC Curve , Radiomics
15.
J Gastrointestin Liver Dis ; 33(2): 269-277, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38944855

ABSTRACT

Colorectal cancer is a prevalent malignancy, with advanced and metastatic forms exhibiting poor treatment outcomes and high relapse rates. To enhance patient outcomes, a comprehensive understanding of the pathophysiological processes and the development of targeted therapies are imperative. The high heterogeneity of colorectal cancer demands precise and personalized treatment strategies. Colorectal cancer organoids, a three-dimensional in vitro model, have emerged as a valuable tool for replicating tumor biology and exhibit promise in scientific research, disease modeling, drug screening, and personalized medicine. In this review, we present an overview of colorectal cancer organoids and explore their applications in research and personalized medicine, while also discussing potential future developments in this field.


Subject(s)
Colorectal Neoplasms , Organoids , Precision Medicine , Humans , Organoids/pathology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Animals
16.
Front Bioeng Biotechnol ; 12: 1367929, 2024.
Article in English | MEDLINE | ID: mdl-38832128

ABSTRACT

Introduction: Surface electromyogram (sEMG) signals have been widely used in human upper limb force estimation and motion intention recognition. However, the electrocardiogram(ECG) artifact generated by the beating of the heart is a major factor that reduces the quality of the EMG signal when recording the sEMG signal from the muscle close to the heart. sEMG signals contaminated by ECG artifacts are difficult to be understood correctly. The objective of this paper is to effectively remove ECG artifacts from sEMG signals by a novel method. Methods: In this paper, sEMG and ECG signals of the biceps brachii, brachialis, and triceps muscle of the human upper limb will be collected respectively. Firstly, an improved multi-layer wavelet transform algorithm is used to preprocess the raw sEMG signal to remove the background noise and power frequency interference in the raw signal. Then, based on the theory of blind source separation analysis, an improved Fast-ICA algorithm was constructed to separate the denoising signals. Finally, an ECG discrimination algorithm was used to find and eliminate ECG signals in sEMG signals. This method consists of the following steps: 1) Acquisition of raw sEMG and ECG signals; 2) Decoupling the raw sEMG signal; 3) Fast-ICA-based signal component separation; 4) ECG artifact recognition and elimination. Results and discussion: The experimental results show that our method has a good effect on removing ECG artifacts from contaminated EMG signals. It can further improve the quality of EMG signals, which is of great significance for improving the accuracy of force estimation and motion intention recognition tasks. Compared with other state-of-the-art methods, our method can also provide the guiding significance for other biological signals.

17.
Int J Clin Pharmacol Ther ; 62(9): 395-401, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38920082

ABSTRACT

OBJECTIVES: To investigate the expression of P-glycoprotein in T-cell subpopulations of lymphocytes from adult patients with refractory glomerulonephritis (GN). MATERIALS AND METHODS: Flow cytometry was used to analyze the T-cell subpopulations of lymphocytes from adult patients with refractory GN and healthy individuals. The CD243 antibody marked the membrane P-glycoprotein of immune cells. RESULTS: The mean ± standard deviation (SD) values of percentages of CD3+, CD3+CD4+, CD3+CD8+ cells in lymphocytes from patients with refractory GN were 63.94 ± 26.98, 55.16 ± 4.78, and 37.79 ± 6.01%, respectively. These values in healthy individuals were 74.88 ± 3.75, 56.60 ± 9.22, and 34.20 ± 5.21%, respectively. No significant differences were observed between the patients with refractory GN and healthy individuals. The mean ± SD values of percentages of CD3+CD4+CD243+ and CD3+CD8+CD243+ cells in the lymphocytes of patients with refractory GN were 0.14 ± 0.11 and 0.11 ± 0.07%, respectively. These values in healthy individuals were 0.05 ± 0.02 and 0.04 ± 0.02%, respectively. The difference in CD3+CD8+CD243+ percentage between patients with refractory GN and healthy individuals was significant (p = 0.0216). CONCLUSION: These findings suggest that P-glycoprotein expression on CD3+CD8+ T cells is a promising marker and a suitable target of drug resistance in patients with refractory GN.


Subject(s)
Glomerulonephritis , Humans , Male , Female , Adult , Middle Aged , Glomerulonephritis/immunology , Glomerulonephritis/metabolism , Flow Cytometry , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , Case-Control Studies , Young Adult , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
18.
Pharmacol Rev ; 76(5): 846-895, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38866561

ABSTRACT

Cardiometabolic diseases (CMDs) are major contributors to global mortality, emphasizing the critical need for novel therapeutic interventions. Hydrogen sulfide (H2S) has garnered enormous attention as a significant gasotransmitter with various physiological, pathophysiological, and pharmacological impacts within mammalian cardiometabolic systems. In addition to its roles in attenuating oxidative stress and inflammatory response, burgeoning research emphasizes the significance of H2S in regulating proteins via persulfidation, a well known modification intricately associated with the pathogenesis of CMDs. This review seeks to investigate recent updates on the physiological actions of endogenous H2S and the pharmacological roles of various H2S donors in addressing diverse aspects of CMDs across cellular, animal, and clinical studies. Of note, advanced methodologies, including multiomics, intestinal microflora analysis, organoid, and single-cell sequencing techniques, are gaining traction due to their ability to offer comprehensive insights into biomedical research. These emerging approaches hold promise in characterizing the pharmacological roles of H2S in health and diseases. We will critically assess the current literature to clarify the roles of H2S in diseases while also delineating the opportunities and challenges they present in H2S-based pharmacotherapy for CMDs. SIGNIFICANCE STATEMENT: This comprehensive review covers recent developments in H2S biology and pharmacology in cardiometabolic diseases CMDs. Endogenous H2S and its donors show great promise for the management of CMDs by regulating numerous proteins and signaling pathways. The emergence of new technologies will considerably advance the pharmacological research and clinical translation of H2S.


Subject(s)
Cardiovascular Diseases , Hydrogen Sulfide , Hydrogen Sulfide/metabolism , Humans , Animals , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Gasotransmitters/metabolism
19.
Ann Surg Oncol ; 31(9): 5794-5803, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38824192

ABSTRACT

BACKGROUND: This study was designed to develop an innovative classification and guidance system for renal hilar tumors and to assess the safety and effectiveness of robot-assisted partial nephrectomy (RAPN) for managing such tumors. METHODS: A total of 179 patients undergoing RAPN for renal hilar tumors were retrospectively reviewed. A novel classification system with surgical techniques was introduced and the perioperative features, tumor characteristics, and the efficacy and safety of RAPN were compared within subgroups. RESULTS: We classified the tumors according to our novel system as follows: 131 Type I, 35 Type II, and 13 Type III. However, Type III had higher median R.E.N.A.L., PADUA, and ROADS scores compared with the others (all p < 0.001), indicating increased operative complexity and higher estimated blood loss [180.00 (115.00-215.00) ml]. Operative outcomes revealed significant disparities between Type III and the others, with longer operative times [165.00 (145.00-200.50) min], warm ischemia times [24.00 (21.50-30.50) min], tumor resection times [13.00 (12.00-15.50) min], and incision closure times [22.00 (20.00-23.50) min] (all p < 0.005). Postoperative outcomes also showed significant differences, with longer durations of drain removal (77.08 ± 18.16 h) and hospitalization for Type III [5.00 (5.00-6.00) d] (all p < 0.05). Additionally, Type I had a larger tumor diameter than the others (p = 0.009) and pT stage differed significantly between the subtypes (p = 0.020). CONCLUSIONS: The novel renal hilar tumor classification system is capable of differentiating the surgical difficulty of RAPN and further offers personalized surgical steps tailored to each specific classification. It provides a meaningful tool for clinical practice.


Subject(s)
Kidney Neoplasms , Nephrectomy , Robotic Surgical Procedures , Humans , Kidney Neoplasms/surgery , Kidney Neoplasms/classification , Kidney Neoplasms/pathology , Female , Male , Nephrectomy/methods , Retrospective Studies , Middle Aged , Robotic Surgical Procedures/methods , Follow-Up Studies , Aged , Operative Time , Prognosis , Postoperative Complications/classification , Postoperative Complications/etiology , Length of Stay/statistics & numerical data , Adult , Carcinoma, Renal Cell/surgery , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/classification , Warm Ischemia , Blood Loss, Surgical/statistics & numerical data
20.
Phytomedicine ; 131: 155771, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851101

ABSTRACT

BACKGROUND: Sepsis often leads to significant morbidity and mortality due to severe myocardial injury. As is known, the activation of NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome crucially contributes to septic cardiomyopathy (SCM) by facilitating the secretion of interleukin (IL)-1ß and IL-18. The removal of palmitoyl groups from NLRP3 is a crucial step in the activation of the NLRP3 inflammasome. Thus, the potential inhibitors that regulate the palmitoylation and inactivation of NLRP3 may significantly diminish sepsis-induced cardiac dysfunction. PURPOSE: The present study sought to explore the effects of the prospective flavonoid compounds targeting NLRP3 on SCM and to elucidate the associated underlying mechanisms. STUDY DESIGN: The palmitoylation and activation of NLRP3 were detected in H9c2 cells and C57BL/6 J mice. METHODS/RESULTS: Echocardiography, histological staining, western blotting, co-immunoprecipitation, qPCR, ELISA and network pharmacology were used to assess the impact of vaccarin (VAC) on SCM in mice subjected to lipopolysaccharide (LPS) injection. From the collection of 74 compounds, we identified that VAC had the strongest capability to suppress NLRP3 luciferase report gene activity in cardiomyocytes, and the anti-inflammatory characteristics of VAC were further ascertained by the network pharmacology. Exposure of LPS triggered apoptosis, inflammation, oxidative stress, mitochondrial disorder in cardiomyocytes. The detrimental alterations were significantly reversed upon VAC treatment in both septic mice and H9c2 cells exposed to LPS. In vivo experiments demonstrated that VAC treatment alleviated septic myocardial injury, indicated by enhanced cardiac function parameters, preserved cardiac structure, and reduced inflammation/oxidative response. Mechanistically, VAC induced NLRP3 palmitoylation to inactivate NLRP3 inflammasome by acting on zDHHC12. In support, the NLRP3 agonist ATP and the acylation inhibitor 2-bromopalmitate (2-BP) prevented the effects of VAC. CONCLUSION: Our findings suggest that VAC holds promise in protecting against SCM by mitigating cardiac oxidative stress and inflammation via priming NLRP3 palmitoylation and inactivation. These results lay the solid basis for further assessment of the therapeutic potential of VAC against SCM.


Subject(s)
Cardiomyopathies , Inflammasomes , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Sepsis , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Cardiomyopathies/drug therapy , Sepsis/drug therapy , Sepsis/complications , Mice , Male , Inflammasomes/metabolism , Inflammasomes/drug effects , Lipoylation/drug effects , Rats , Oxidative Stress/drug effects , Cell Line , Lipopolysaccharides , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Interleukin-1beta/metabolism , Interleukin-18/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL