Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
medRxiv ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38766233

The placenta is crucial for fetal development, is affected by PFAS toxicity, and evidence is accumulating that gestational PFAS perturb the epigenetic activity of the placenta. Gestational PFAS exposure is can adversely affect offspring, yet individual and cumulative impacts of PFAS on the placental epigenome remain underexplored. Here, we conducted an epigenome-wide association study (EWAS) to examine the relationships between placental PFAS levels and DNA methylation in a cohort of mother-infant dyads in Arkansas. We measured 17 PFAS in human placental tissues and quantified placental DNA methylation levels via the Illumina EPIC Microarray. We tested for differential DNA methylation with individual PFAS, and with mixtures of multiple PFAS. Our results demonstrated that numerous epigenetic loci were perturbed by PFAS, with PFHxS exhibiting the most abundant effects. Mixture analyses suggested cumulative effects of PFOA and PFOS, while PFHxS may act more independently. We additionally explored whether sex-specific effects may be present and concluded that future large studies should explicitly test for sex-specific effects. The genes that are annotated to our PFAS-associated epigenetic loci are primarily involved in growth processes and cardiometabolic health, while some genes are involved in neurodevelopment. These findings shed light on how prenatal PFAS exposures affect birth outcomes and children's health, emphasizing the importance of understanding PFAS mechanisms in the in-utero environment.

2.
Chemosphere ; 357: 142052, 2024 Jun.
Article En | MEDLINE | ID: mdl-38631500

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are man-made chemicals that are slow to break down in the environment and widely detected in humans. Epidemiological evidence suggests that prenatal exposure to perfluorooctanoic acid (PFOA), a legacy PFAS, is linked to gestational hypertension and preeclampsia. However, the relationship between other PFAS, which are structurally similar, and these outcomes remains largely understudied, despite biologic plausibility. Here, we examined associations between serum PFAS mixtures in relation to hypertensive disorders of pregnancy within a birth cohort of African Americans. METHODS: Participants in the present study were enrolled in the Atlanta African American Maternal-Child cohort between 2014 and 2020 (n = 513). Serum samples collected between 8 and 14 weeks gestation were analyzed for four PFAS. Logistic regression was used to assess associations between individual natural log transformed PFAS and specific hypertensive disorders of pregnancy (preeclampsia, gestational hypertension), while quantile g-computation was used to estimate mixture effects. Preeclampsia and gestational hypertension were treated as separate outcomes in individual models. All models were adjusted for maternal education, maternal age, early pregnancy body mass index, parity, and any alcohol, tobacco, or marijuana use. RESULTS: The geometric mean of PFOS and PFHxS was slightly lower among those with preeclampsia relative to those without a hypertensive disorder (e.g., geometric mean for PFOS was 1.89 and 1.94, respectively). Serum concentrations of PFAS were not strongly associated with gestational hypertension or preeclampsia in single pollutant or mixture models. For example, using quantile g-computation, a simultaneous one quartile increase in all PFAS was not associated with odds of gestational hypertension (odds ratio = 0.86, 95% CI = 0.60, 1.23), relative to those without a hypertensive disorder of pregnancy. CONCLUSIONS: In this birth cohort of African Americans, there was no association between serum PFAS measured in early pregnancy and hypertensive disorders of pregnancy, which may be reflective of the fairly low PFAS levels in our study population.


Black or African American , Environmental Pollutants , Fluorocarbons , Hypertension, Pregnancy-Induced , Maternal Exposure , Humans , Female , Fluorocarbons/blood , Pregnancy , Black or African American/statistics & numerical data , Adult , Hypertension, Pregnancy-Induced/epidemiology , Hypertension, Pregnancy-Induced/blood , Maternal Exposure/statistics & numerical data , Environmental Pollutants/blood , Cohort Studies , Caprylates/blood , Georgia/epidemiology , Young Adult , Prenatal Exposure Delayed Effects , Pre-Eclampsia/blood , Pre-Eclampsia/epidemiology , Alkanesulfonic Acids/blood
3.
Sci Total Environ ; 928: 172316, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38593875

Per- and polyfluoroalkyl substances (PFAS) are fluorinated organic compounds used in a variety of consumer products and industrial applications that persist in the environment, bioaccumulate in biological tissues, and can have adverse effects on human health, especially in vulnerable populations. In this study, we focused on PFAS exposures in residents of senior care facilities. To investigate relationships between indoor, personal, and internal PFAS exposures, we analyzed 19 PFAS in matched samples of dust collected from the residents' bedrooms, and wristbands and serum collected from the residents. The median ∑PFAS concentrations (the sum of all PFAS detected in the samples) measured in dust, wristbands, and serum were 120 ng/g, 0.05 ng/g, and 4.0 ng/mL, respectively. The most abundant compounds in serum were linear- and branched-perfluorooctane sulfonic acid (L-PFOS and B-PFOS, respectively) at medians of 1.7 ng/mL and 0.83 ng/mL, respectively, followed by the linear perfluorooctanoic acid (L-PFOA) found at a median concentration of 0.59 ng/mL. Overall, these three PFAS comprised 80 % of the serum ∑PFAS concentrations. A similar pattern was observed in dust with L-PFOS and L-PFOA found as the most abundant PFAS (median concentrations of 13 and 7.8 ng/g, respectively), with the overall contribution of 50 % to the ∑PFAS concentration. Only L-PFOA was found in wristbands at a median concentration of 0.02 ng/g. Significant correlations were found between the concentrations of several PFAS in dust and serum, and in dust and wristbands, suggesting that the indoor environment could be a significant contributor to the personal and internal PFAS exposures in seniors. Our findings demonstrate that residents of assisted living facilities are widely exposed to PFAS, with several PFAS found in blood of each study participant and in the assisted living environment.


Environmental Exposure , Fluorocarbons , Fluorocarbons/analysis , Fluorocarbons/blood , Humans , Aged , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Dust/analysis , Environmental Pollutants/blood , Environmental Pollutants/analysis , Environmental Monitoring , Female , Male , Alkanesulfonic Acids/blood , Alkanesulfonic Acids/analysis , Aged, 80 and over , Caprylates/blood , Caprylates/analysis , Homes for the Aged/statistics & numerical data
4.
Chemosphere ; 348: 140705, 2024 Jan.
Article En | MEDLINE | ID: mdl-37981014

Waste collection services are uncommon in rural areas of low-resource countries, causing waste accumulation and subsequent dumping and burning of garbage. Air pollution from household garbage burning, including plastics, has been observed in Jalapa, Guatemala in addition to household air pollution (HAP) from cooking. Adolescent girls often help with these cooking and household tasks, but little is known about their exposures. We characterized 24-h exposures to HAP and household garbage burning in adolescent girls by measuring fine particulate matter (PM2.5), black carbon (BC), urinary biomarkers of polycyclic aromatic hydrocarbons (PAHs), bisphenol A (BPA), and phthalates. We recruited 60 girls between 13 and 17 years of age who helped with cooking activities and lived with participants of the Household Air Pollution Intervention Network (HAPIN) trial. We recruited n = 30 girls each from the control (wood-burning stove) and intervention (liquefied petroleum gas stove) arms. We also measured real-time kitchen concentrations of BC in 20 homes (33%). PM2.5 and BC were measured in n = 21 control and n = 20 intervention participants. Median concentrations of personal PM2.5 and BC and kitchen BC were lower (p < 0.05) in the intervention arm by 87%, 80%, and 85%, respectively. PAH metabolite concentrations were lower (p < 0.001) for all nine metabolites in intervention (n = 26) compared to control participants (n = 29). Urinary BPA concentrations were 66% higher in participants who reported using cosmetics (p = 0.02), and phthalate concentrations were 63% higher in participants who had reported using hair products during the sample period (p = 0.05). Our results suggest that gas stoves can reduce HAP exposures among adolescents who are not primary cooks at home. Biomarkers of plastic exposure were not associated with intervention status, but some were elevated compared to age- and sex-matched participants of the National Health and Nutrition Examination Survey (NHANES).


Air Pollution, Indoor , Air Pollution , Female , Humans , Adolescent , Nutrition Surveys , Air Pollution, Indoor/analysis , Guatemala , Air Pollution/analysis , Particulate Matter/analysis , Soot , Cooking , Biomarkers , Rural Population
5.
Environ Sci Technol ; 57(36): 13419-13428, 2023 09 12.
Article En | MEDLINE | ID: mdl-37649345

Per- and polyfluoroalkyl substances (PFAS) have been identified as environmental contributors to adverse birth outcomes. One potential mechanistic pathway could be through PFAS-related inflammation and cytokine production. Here, we examined associations between a PFAS mixture and inflammatory biomarkers during early and late pregnancy from participants enrolled in the Atlanta African American Maternal-Child Cohort (N = 425). Serum concentrations of multiple PFAS were detected in >90% samples at 8-14 weeks gestation. Serum concentrations of interferon-γ (IFN-γ), interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor-α (TNF-α), and C-reactive protein (CRP) were measured at up to two time points (8-14 weeks and 24-30 weeks gestation). The effect of the PFAS mixture on each inflammatory biomarker was examined using quantile g-computation, Bayesian kernel machine regression (BKMR), Bayesian Weighted Sums (BWS), and weighted quantile sum (WQS) regression. Across all models, the PFAS mixture was associated with increased IFN-γ, IL-10, and TNF-α at both time points, with the strongest effects being observed at 24-30 weeks. Using quantile g-computation, increasing concentrations of a PFAS mixture were associated with a 29% (95% confidence interval = 18.0%, 40.7%) increase in TNF-α at 24-30 weeks. Similarly, using BWS, the PFAS mixture was associated with increased TNF-α at 24-30 weeks (summed effect = 0.29, 95% highest posterior density = 0.17, 0.41). The PFAS mixture was also positively associated with TNF-α at 24-30 weeks using BKMR [75th vs 50th percentile: 17.1% (95% credible interval = 7.7%, 27.4%)]. Meanwhile, PFOS was consistently the main drivers of overall mixture effect across four methods. Our findings indicated an increase in prenatal PFAS exposure is associated with an increase in multiple pro-inflammatory cytokines, potentially contributing to adverse pregnancy outcomes.


Biomarkers , Black or African American , Fluorocarbons , Pregnancy Complications , Prenatal Exposure Delayed Effects , Female , Humans , Pregnancy , Bayes Theorem , Biomarkers/blood , Fluorocarbons/blood , Interleukin-10 , Tumor Necrosis Factor-alpha , Pregnancy Outcome , Pregnancy Complications/blood , Pregnancy Complications/immunology , Prenatal Exposure Delayed Effects/blood , Prenatal Exposure Delayed Effects/immunology
6.
Article En | MEDLINE | ID: mdl-36841843

BACKGROUND: African Americans (AAs) experience higher rates of preterm birth and fetal growth restriction relative to other pregnant populations. Differential in utero exposure to environmental chemicals may partially explain these health disparities, as AAs are disproportionately exposed to environmental hazards. OBJECTIVE: We examined the individual and mixture effects of non-persistent chemicals and persistent organic pollutants (POPs) on gestational age at birth and birthweight for gestational age z-scores within a prospective cohort of pregnant AAs. METHODS: First-trimester serum and urine samples obtained from participants within the Atlanta African American Maternal-Child cohort were analyzed for 43 environmental chemicals, including per-and polyfluoroalkyl substances (PFAS), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides, pyrethroid insecticides, phthalates, bisphenol A, nicotine, and the primary metabolite of delta-9-tetrahydrocannabinol. Linear regression was used to estimate individual associations between chemicals and gestational age and birthweight z-scores (N ranging from 107 to 523). Mixture associations were estimated using quantile g-computation, principal component (PC) analyses, and hierarchical Bayesian kernel machine regression among complete cases (N = 86). RESULTS: Using quantile g-computation, increasing all chemical exposures by one quantile was modestly associated with a reduction in gestational age (mean change per quartile increase = -0.47, 95% CI = -1.56, 0.61) and birthweight z-scores (mean change per quartile increase = -0.49, 95% CI = -1.14, 0.15). All PCs were associated with a reduction in birthweight z-scores; associations were greatest in magnitude for the two PCs reflecting exposure to combined tobacco, insecticides, PBDEs, and phthalates. In single pollutant models, we observed inconsistent and largely non-significant associations. SIGNIFANCE: We conducted multiple targeted exposure assessment methods to quantify levels of environmental chemicals and leveraged mixture methods to quantify their joint effects on gestational age and birthweight z-scores. Our findings suggest that prenatal exposure to multiple classes of persistent and non-persistent chemicals is associated with reduced gestational age and birthweight z-scores in AAs. IMPACT: African Americans (AAs) experience higher rates of preterm birth and fetal growth restriction relative to other pregnant populations. Differential in utero exposure to environmental chemicals may partially explain these health disparities, as AAs are disproportionately exposed to environmental hazards. In the present study, we analyzed serum and urine samples for levels of 43 environmental chemicals. We used quantile g-computation, principal component analysis, and BKMR to assess associations between chemical exposure mixtures and adverse birth outcomes. Our findings suggest that prenatal exposure to multiple classes of chemicals is associated with reduced birthweight z-scores, a proxy for fetal growth, in AAs.

7.
Sci Total Environ ; 857(Pt 2): 159450, 2023 Jan 20.
Article En | MEDLINE | ID: mdl-36252672

BACKGROUND: African Americans (AAs) experience high rates of adverse pregnancy outcomes relative to Whites. Differential in utero exposure to environmental chemicals and psychosocial stressors may explain some of the observed health disparities, as exposures to per- and polyfluoroalkyl substances (PFAS) and experiences of discrimination have been linked to adverse birth outcomes. Few studies have examined chemicals and non-chemical stressors together as an exposure mixture, which may better reflect real-life exposure patterns. Here, we adapted methods designed for the analysis of exposure mixtures to examine joint effects of PFAS and psychosocial stress on birth outcomes among AAs. METHODS: 348 participants from the Atlanta African American Maternal-Child cohort were included in this study. Four PFAS were measured in first trimester serum samples. Self-report questionnaires were administered during the first trimester and were used to assess psychosocial stress (perceived stress, depression, anxiety, gendered racial stress). Quantile g-computation and Bayesian kernel machine regression (BKMR) were used to estimate the joint effects between PFAS and psychosocial stressors on gestational age at delivery and birthweight for gestational age z-scores. All models were adjusted for maternal education, maternal age, parity, and any alcohol, tobacco and marijuana use. RESULTS: Our analytic sample included a socioeconomically diverse group of pregnant women, with 79 % receiving public health insurance. In quantile g-computation models, a simultaneous one-quartile increase in all PFAS, perceived stress, depression, anxiety, and gendered racial stress was associated with a reduction in birthweight z-scores (mean %change per quartile increase = -0.24, 95 % confidence interval = -0.43, -0.06). BKMR similarly showed that increasing all exposures in the mixture was associated with a modest decrease in birthweight z-scores, but not a reduced length of gestation. DISCUSSION: Using methods designed for analyzing exposure mixtures, we found that a simultaneous increase in in utero PFAS and psychosocial stressors was associated with reduced birthweight for gestational age z-scores.


Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Humans , Pregnancy , Female , Black or African American , Birth Weight , Pregnancy Outcome/epidemiology , Bayes Theorem , Environmental Pollutants/toxicity
8.
Article En | MEDLINE | ID: mdl-36231706

The Greater New York City area ranks highest in the United States in the number of nail salon technicians, primarily Asian immigrant women. Nail salon technicians are exposed to toxic phthalates and volatile organic compounds daily in nail salons. The purpose of this pilot study was to measure a mixture of phthalates and volatile organic compounds in nail salons in the Greater New York City area, and to characterize work-related determinants of indoor air quality in these nail salons. Working with four Asian nail salon organizations in the Greater New York City area, we measured indoor air phthalates and volatile organic compounds at 20 nail salons from February to May 2021 using silicone wristbands and passive samplers, respectively. Nail salon characteristics were also examined. We measured six phthalates and 31 volatile organic compounds. Di(2-ethylhexyl) phthalate and Diethyl phthalate had the highest concentrations among the six phthalates measured. Concentrations of toluene, d-limonene, methyl methacrylate, and ethyl methacrylate were higher than that of the rest. Manicure/pedicure tables, the number of customers per day, and application of artificial nail (acrylic) services were positively associated with the levels of phthalates and volatile organic compounds. Given the large number of people employed in the nail industry and the even larger number of customers visiting such establishments, exposures to these toxic chemicals are likely to be widespread.


Air Pollution, Indoor , Occupational Exposure , Volatile Organic Compounds , Air Pollution, Indoor/analysis , Female , Humans , Limonene , Methacrylates , New York City , Occupational Exposure/analysis , Phthalic Acids , Pilot Projects , Silicones , Toluene/analysis , Volatile Organic Compounds/analysis
9.
Environ Res ; 215(Pt 2): 114319, 2022 12.
Article En | MEDLINE | ID: mdl-36108722

INTRODUCTION: Organophosphate (OP) insecticides, including chlorpyrifos, have been linked with numerous harmful health effects on maternal and child health. Limited data are available on the biological mechanisms and endogenous pathways underlying the toxicity of chlorpyrifos exposures on pregnancy and birth outcomes. In this study, we measured a urinary chlorpyrifos metabolite and used high-resolution metabolomics (HRM) to identify biological perturbations associated with chlorpyrifos exposure among pregnant women in Thailand, who are disparately exposed to high levels of OP insecticides. METHODS: This study included 50 participants from the Study of Asian Women and their Offspring's Development and Environmental Exposures (SAWASDEE). We used liquid chromatography-high resolution mass spectrometry to conduct metabolic profiling on first trimester serum samples collected from participants to evaluate metabolic perturbations in relation to chlorpyrifos exposures. We measured 3,5,6-trichloro-2-pyridinol (TCPy), a specific metabolite of chlorpyrifos and chlorpyrifos-methyl, in first trimester urine samples to assess the levels of exposures. Following an untargeted metabolome-wide association study workflow, we used generalized linear models, pathway enrichment analyses, and chemical annotation to identify significant metabolites and pathways associated with urinary TCPy levels. RESULTS: In the 50 SAWASDEE participants, the median urinary TCPy level was 4.36 µg TCPy/g creatinine. In total, 691 unique metabolic features were found significantly associated with TCPy levels (p < 0.05) after controlling for confounding factors. Pathway analysis of metabolic features associated with TCPy indicated perturbations in 24 metabolic pathways, most closely linked to the production of reactive oxygen species and cellular damage. These pathways include tryptophan metabolism, fatty acid oxidation and peroxisome metabolism, cytochromes P450 metabolism, glutathione metabolism, and vitamin B3 metabolism. We confirmed the chemical identities of 25 metabolites associated with TCPy levels, including glutathione, cystine, arachidic acid, itaconate, and nicotinamide adenine dinucleotide. DISCUSSION: The metabolic perturbations associated with TCPy levels were related to oxidative stress, cellular damage and repair, and systemic inflammation, which could ultimately contribute to health outcomes, including neurodevelopmental deficits in the child. These findings support the future development of sensitive biomarkers to investigate the metabolic underpinnings related to pesticide exposure during pregnancy and to understand its link to adverse outcomes in children.


Chlorpyrifos , Insecticides , Pesticides , Biomarkers/urine , Child , Creatinine , Cystine/metabolism , Cytochromes/metabolism , Farmers , Fatty Acids , Female , Glutathione/metabolism , Humans , Insecticides/toxicity , Metabolome , NAD/metabolism , Niacinamide , Organophosphorus Compounds/toxicity , Pesticides/urine , Pregnancy , Pregnancy Trimester, First , Reactive Oxygen Species , Thailand , Tryptophan/metabolism
10.
Article En | MEDLINE | ID: mdl-35908438

Co-exposure to tobacco and marijuana has become common in areas where recreational marijuana use is legal. To assist in the determination of the combined health risks of this co-exposure, an analytical method capable of simultaneously measuring tobacco and marijuana metabolites is needed to reduce laboratory costs and the required sample volume. So far, no such analytical method exists. Thus, we developed and validated a method to simultaneously quantify urinary levels of trans-3'-hydroxycotinine (3OH-COT), cotinine (COT), and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (COOH-THC) to assess co-exposure to tobacco and marijuana. Urine (200 µL) was spiked with labelled internal standards and enzymatically hydrolyzed to liberate the conjugated analytes before extraction using solid-supported liquid-liquid extraction (SLE) with ethyl acetate serving as an eluent. The target analytes were separated on a C18 (4.6 × 100 mm, 5 µm) analytical column with a gradient mobile phase elution and analyzed using tandem mass spectrometry with multiple reaction monitoring of target ion transitions. Positive electrospray ionization (ESI) was used for 3OH-COT and COT, while negative ESI was used for COOH-THC. The total run time was 13 min. The extraction recoveries were 18.4-23.9 % (3OH-COT), 65.1-96.8 % (COT), and 80.6-95.4 % (COOH-THC). The method limits of quantification were 5.0 ng/mL (3OH-COT) and 2.5 ng/mL (COT and COOH-THC). The method showed good accuracy (82.5-98.5 %) and precision (1.22-6.21 % within-day precision and 1.42-6.26 % between-day precision). The target analytes were stable for at least 144 h inside the autosampler (10 °C). The analyses of reference materials and 146 urine samples demonstrated good method performance. The use of a 96-well plate for preparation makes the method useful for the analysis of large numbers of samples.


Cannabis , Hallucinogens , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Dronabinol , Liquid-Liquid Extraction , Tandem Mass Spectrometry/methods , Nicotiana
11.
Environ Int ; 158: 106964, 2022 01.
Article En | MEDLINE | ID: mdl-34735953

BACKGROUND: Prenatal exposures to per- and polyfluoroalkyl substances (PFAS) have been linked to reduced fetal growth. However, the detailed molecular mechanisms remain largely unknown. This study aims to investigate biological pathways and intermediate biomarkers underlying the association between serum PFAS and fetal growth using high-resolution metabolomics in a cohort of pregnant African American women in the Atlanta area, Georgia. METHODS: Serum perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) measurements and untargeted serum metabolomics profiling were conducted in 313 pregnant African American women at 8-14 weeks gestation. Multiple linear regression models were applied to assess the associations of PFAS with birth weight and small-for-gestational age (SGA) birth. A high-resolution metabolomics workflow including metabolome-wide association study, pathway enrichment analysis, and chemical annotation and confirmation with a meet-in-the-middle approach was performed to characterize the biological pathways and intermediate biomarkers of the PFAS-fetal growth relationship. RESULTS: Each log2-unit increase in serum PFNA concentration was significantly associated with higher odds of SGA birth (OR = 1.32, 95% CI 1.07, 1.63); similar but borderline significant associations were found in PFOA (OR = 1.20, 95% CI 0.94, 1.49) with SGA. Among 25,516 metabolic features extracted from the serum samples, we successfully annotated and confirmed 10 overlapping metabolites associated with both PFAS and fetal growth endpoints, including glycine, taurine, uric acid, ferulic acid, 2-hexyl-3-phenyl-2-propenal, unsaturated fatty acid C18:1, androgenic hormone conjugate, parent bile acid, and bile acid-glycine conjugate. Also, we identified 21 overlapping metabolic pathways from pathway enrichment analyses. These overlapping metabolites and pathways were closely related to amino acid, lipid and fatty acid, bile acid, and androgenic hormone metabolism perturbations. CONCLUSION: In this cohort of pregnant African American women, higher serum concentrations of PFOA and PFNA were associated with reduced fetal growth. Perturbations of biological pathways involved in amino acid, lipid and fatty acid, bile acid, and androgenic hormone metabolism were associated with PFAS exposures and reduced fetal growth, and uric acid was shown to be a potential intermediate biomarker. Our results provide opportunities for future studies to develop early detection and intervention for PFAS-induced fetal growth restriction.


Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Black or African American , Environmental Pollutants/toxicity , Female , Fetal Development , Fluorocarbons/toxicity , Humans , Maternal Exposure , Metabolomics , Pregnancy
12.
J Anal Toxicol ; 44(5): 470-481, 2020 Apr 02.
Article En | MEDLINE | ID: mdl-31897465

We developed a robust analytical method for quantification of malondialdehyde (MDA) in urine and serum samples using dansylhydrazine (DH) as a derivatizing reagent. The derivatization procedure was partially carried out using an autosampler injection program to minimize errors associated with the low-volume addition of reagents and was optimized to yield a stable hydrazone derivative of MDA and its labeled d2-MDA analogue. The target MDA-DH derivatives were separated on an Agilent Zorbax Eclipse Plus Phenyl-Hexyl (3.0 × 100 mm, 3.5 µm) column. The mass-to-charge ratios of the target derivatives [(M+H)+ of 302 and 304 for MDA-DH and d2-MDA-DH, respectively] were analyzed in single ion monitoring mode using a single quadrupole mass spectrometer operated under positive electrospray ionization. The method limits of quantification were 5.63 nM (or 0.405 ng/mL) for urine analysis and 5.68 nM (or 0.409 ng/mL) for serum analysis. The quantification range for urine analysis was 5.63-500 nM (0.405-36.0 ng/mL) while the quantification range for serum analysis was 5.68-341 nM (0.409-24.6 ng/mL). The method showed good relative recoveries (98-103%), good accuracies (92-98%), and acceptable precisions (relative standard deviations 1.8-7.3% for inter-day precision; 1.8-6.1% for intra-day precision) as observed from the repeat analysis of quality control samples prepared at different concentrations. The method was used to measure MDA in individual urine samples (n = 287) and de-identified archived serum samples (n = 22) to assess the overall performance of the method. The results demonstrated that our method is capable of measuring urinary and serum levels of MDA, allowing its future application in epidemiologic investigations.


Dansyl Compounds/metabolism , Hydrazines/metabolism , Malondialdehyde/metabolism , Body Fluids , Chromatography, High Pressure Liquid , Chromatography, Liquid , Humans , Hydrazines/blood , Hydrazines/urine , Limit of Detection , Malondialdehyde/blood , Malondialdehyde/urine , Tandem Mass Spectrometry
...