Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
J Biol Chem ; 300(1): 105508, 2024 Jan.
Article En | MEDLINE | ID: mdl-38029967

Para-hydroxybenzoate hydroxylase (PHBH) is a group A flavoprotein monooxygenase that hydroxylates p-hydroxybenzoate to protocatechuate (PCA). Despite intensive studies of Pseudomonas aeruginosa p-hydroxybenzoate hydroxylase (PaPobA), the catalytic reactions of extremely diverse putative PHBH isozymes remain unresolved. We analyzed the phylogenetic relationships of known and predicted PHBHs and identified eight divergent clades. Clade F contains a protein that lacks the critical amino acid residues required for PaPobA to generate PHBH activity. Among proteins in this clade, Xylophilus ampelinus PobA (XaPobA) preferred PCA as a substrate and is the first known natural PCA 5-hydroxylase (PCAH). Crystal structures and kinetic properties revealed similar mechanisms of substrate carboxy group recognition between XaPobA and PaPobA. The unique Ile75, Met72, Val199, Trp201, and Phe385 residues of XaPobA form the bottom of a hydrophobic cavity with a shape that complements the 3-and 4-hydroxy groups of PCA and its binding site configuration. An interaction between the δ-sulfur atom of Met210 and the aromatic ring of PCA is likely to stabilize XaPobA-PCA complexes. The 4-hydroxy group of PCA forms a hydrogen bond with the main chain carbonyl of Thr294. These modes of binding constitute a novel substrate recognition mechanism that PaPobA lacks. This mechanism characterizes XaPobA and sheds light on the diversity of catalytic mechanisms of PobA-type PHBHs and group A flavoprotein monooxygenases.


4-Hydroxybenzoate-3-Monooxygenase , Pseudomonas , 4-Hydroxybenzoate-3-Monooxygenase/metabolism , Binding Sites , Flavoproteins/genetics , Flavoproteins/metabolism , Kinetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Phylogeny , Pseudomonas/enzymology , Pseudomonas/metabolism , Xylophilus/enzymology
3.
Nat Commun ; 14(1): 5803, 2023 09 19.
Article En | MEDLINE | ID: mdl-37726269

The cell walls of pathogenic and acidophilic bacteria, such as Mycobacterium tuberculosis and Mycobacterium leprae, contain lipoarabinomannan and arabinogalactan. These components are composed of D-arabinose, the enantiomer of the typical L-arabinose found in plants. The unique glycan structures of mycobacteria contribute to their ability to evade mammalian immune responses. In this study, we identified four enzymes (two GH183 endo-D-arabinanases, GH172 exo-α-D-arabinofuranosidase, and GH116 exo-ß-D-arabinofuranosidase) from Microbacterium arabinogalactanolyticum. These enzymes completely degraded the complex D-arabinan core structure of lipoarabinomannan and arabinogalactan in a concerted manner. Furthermore, through biochemical characterization using synthetic substrates and X-ray crystallography, we elucidated the mechanisms of substrate recognition and anomer-retaining hydrolysis for the α- and ß-D-arabinofuranosidic bonds in both endo- and exo-mode reactions. The discovery of these D-arabinan-degrading enzymes, along with the understanding of their structural basis for substrate specificity, provides valuable resources for investigating the intricate glycan architecture of mycobacterial cell wall polysaccharides and their contribution to pathogenicity.


Endometriosis , Mycobacterium tuberculosis , Animals , Female , Humans , Galactans , Lipopolysaccharides , Mammals
4.
Nat Chem Biol ; 19(6): 778-789, 2023 06.
Article En | MEDLINE | ID: mdl-36864192

Mucinolytic bacteria modulate host-microbiota symbiosis and dysbiosis through their ability to degrade mucin O-glycans. However, how and to what extent bacterial enzymes are involved in the breakdown process remains poorly understood. Here we focus on a glycoside hydrolase family 20 sulfoglycosidase (BbhII) from Bifidobacterium bifidum, which releases N-acetylglucosamine-6-sulfate from sulfated mucins. Glycomic analysis showed that, in addition to sulfatases, sulfoglycosidases are involved in mucin O-glycan breakdown in vivo and that the released N-acetylglucosamine-6-sulfate potentially affects gut microbial metabolism, both of which were also supported by a metagenomic data mining analysis. Enzymatic and structural analysis of BbhII reveals the architecture underlying its specificity and the presence of a GlcNAc-6S-specific carbohydrate-binding module (CBM) 32 with a distinct sugar recognition mode that B. bifidum takes advantage of to degrade mucin O-glycans. Comparative analysis of the genomes of prominent mucinolytic bacteria also highlights a CBM-dependent O-glycan breakdown strategy used by B. bifidum.


Ecosystem , Mucins , Mucins/metabolism , Polysaccharides/metabolism , Bacteria/metabolism
5.
Biosci Biotechnol Biochem ; 86(4): 464-475, 2022 Mar 21.
Article En | MEDLINE | ID: mdl-35092420

Glycoside hydrolase family 136 (GH136) was established after the discovery and structural analysis of lacto-N-biosidase (LNBase) from the infant gut bacterium Bifidobacterium longum subsp. longum JCM1217 (BlLnbX). Homologous genes of BlLnbX are widely distributed in the genomes of human gut bacteria and monkey Bifidobacterium spp., although only 2 crystal structures were reported in the GH136 family. Cell suspensions of Bifidobacterium saguini, Tyzzerella nexilis, and Ruminococcus lactaris exhibited the LNBase activity. Recombinant LNBases of these 3 species were functionally expressed with their specific chaperones in Escherichia coli, and their kinetic parameters against p-nitrophenol substrates were determined. The crystal structures of the LNBases from B. saguini and T. nexilis in complex with lacto-N-biose I were determined at 2.51 and 1.92 Å resolutions, respectively. These structures conserve a ß-helix fold characteristic of GH136 and the catalytic residues, but they lack the metal ions that were present in BlLnbX.


Bacterial Proteins , Oligosaccharides , Animals , Bacterial Proteins/chemistry , Glycoside Hydrolases/chemistry , Haplorhini , Humans , Milk, Human , Oligosaccharides/chemistry
6.
Glycobiology ; 32(2): 171-180, 2022 03 19.
Article En | MEDLINE | ID: mdl-34735571

ß-l-Arabinofuranosidase HypBA1 from Bifidobacterium longum belongs to the glycoside hydrolase family 127. At the active site of HypBA1, a cysteine residue (Cys417) coordinates with a Zn2+ atom and functions as the catalytic nucleophile for the anomer-retaining hydrolytic reaction. In this study, the role of Zn2+ ion and cysteine in catalysis as well as the substrate-bound structure were studied based on biochemical and crystallographic approaches. The enzymatic activity of HypBA1 decreased after dialysis in the presence of EDTA and guanidine hydrochloride and was then recovered by the addition of Zn2+. The Michaelis complex structure was determined using a crystal of a mutant at the acid/base catalyst residue (E322Q) soaked in a solution containing the substrate p-nitrophenyl-ß-l-arabinofuranoside. To investigate the covalent thioglycosyl enzyme intermediate structure, synthetic inhibitors of l-arabinofuranosyl haloacetamide derivatives with different anomer configurations were used to target the nucleophilic cysteine. In the crystal structure of HypBA1, ß-configured l-arabinofuranosylamide formed a covalent link with Cys417, whereas α-configured l-arabinofuranosylamide was linked to a noncatalytic residue Cys415. Mass spectrometric analysis indicated that Cys415 was also reactive with the probe molecule. With the ß-configured inhibitor, the arabinofuranoside moiety was correctly positioned at the subsite and the active site integrity was retained to successfully mimic the covalent intermediate state.


Cysteine , Zinc , Catalysis , Catalytic Domain , Crystallography, X-Ray , Cysteine/chemistry , Glycoside Hydrolases/chemistry , Substrate Specificity
7.
J Biol Chem ; 297(5): 101324, 2021 11.
Article En | MEDLINE | ID: mdl-34688653

Fructooligosaccharides and their anhydrides are widely used as health-promoting foods and prebiotics. Various enzymes acting on ß-D-fructofuranosyl linkages of natural fructan polymers have been used to produce functional compounds. However, enzymes that hydrolyze and form α-D-fructofuranosyl linkages have been less studied. Here, we identified the BBDE_2040 gene product from Bifidobacterium dentium (α-D-fructofuranosidase and difructose dianhydride I synthase/hydrolase from Bifidobacterium dentium [αFFase1]) as an enzyme with α-D-fructofuranosidase and α-D-arabinofuranosidase activities and an anomer-retaining manner. αFFase1 is not homologous with any known enzymes, suggesting that it is a member of a novel glycoside hydrolase family. When caramelized fructose sugar was incubated with αFFase1, conversions of ß-D-Frup-(2→1)-α-D-Fruf to α-D-Fruf-1,2':2,1'-ß-D-Frup (diheterolevulosan II) and ß-D-Fruf-(2→1)-α-D-Fruf (inulobiose) to α-D-Fruf-1,2':2,1'-ß-D-Fruf (difructose dianhydride I [DFA I]) were observed. The reaction equilibrium between inulobiose and DFA I was biased toward the latter (1:9) to promote the intramolecular dehydrating condensation reaction. Thus, we named this enzyme DFA I synthase/hydrolase. The crystal structures of αFFase1 in complex with ß-D-Fruf and ß-D-Araf were determined at the resolutions of up to 1.76 Å. Modeling of a DFA I molecule in the active site and mutational analysis also identified critical residues for catalysis and substrate binding. The hexameric structure of αFFase1 revealed the connection of the catalytic pocket to a large internal cavity via a channel. Molecular dynamics analysis implied stable binding of DFA I and inulobiose to the active site with surrounding water molecules. Taken together, these results establish DFA I synthase/hydrolase as a member of a new glycoside hydrolase family (GH172).


Bacterial Proteins/chemistry , Bifidobacterium/enzymology , Glycoside Hydrolases/chemistry , Models, Molecular , Oligosaccharides/chemistry , Crystallography, X-Ray , Glycoside Hydrolases/classification
8.
Angew Chem Int Ed Engl ; 60(11): 5754-5758, 2021 03 08.
Article En | MEDLINE | ID: mdl-33528085

The recent discovery of zinc-dependent retaining glycoside hydrolases (GHs), with active sites built around a Zn(Cys)3 (Glu) coordination complex, has presented unresolved mechanistic questions. In particular, the proposed mechanism, depending on a Zn-coordinated cysteine nucleophile and passing through a thioglycosyl enzyme intermediate, remains controversial. This is primarily due to the expected stability of the intermediate C-S bond. To facilitate the study of this atypical mechanism, we report the synthesis of a cyclophellitol-derived ß-l-arabinofuranosidase inhibitor, hypothesised to react with the catalytic nucleophile to form a non-hydrolysable adduct analogous to the mechanistic covalent intermediate. This ß-l-arabinofuranosidase inhibitor reacts exclusively with the proposed cysteine thiol catalytic nucleophiles of representatives of GH families 127 and 146. X-ray crystal structures determined for the resulting adducts enable MD and QM/MM simulations, which provide insight into the mechanism of thioglycosyl enzyme intermediate breakdown. Leveraging the unique chemistry of cyclophellitol derivatives, the structures and simulations presented here support the assignment of a zinc-coordinated cysteine as the catalytic nucleophile and illuminate the finely tuned energetics of this remarkable metalloenzyme clan.


Cyclohexanols/metabolism , Cysteine/metabolism , Enzyme Inhibitors/metabolism , Glycoside Hydrolases/metabolism , Biocatalysis , Crystallography, X-Ray , Cyclohexanols/chemistry , Cyclohexanols/pharmacology , Cysteine/chemistry , Density Functional Theory , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glycoside Hydrolases/antagonists & inhibitors , Glycoside Hydrolases/chemistry , Molecular Dynamics Simulation , Molecular Structure
9.
J Struct Biol X ; 4: 100030, 2020.
Article En | MEDLINE | ID: mdl-32775998

Sulfur oxygenase reductases (SORs) are present in thermophilic and mesophilic archaea and bacteria, and catalyze oxygen-dependent oxygenation and disproportionation of elemental sulfur. SOR has a hollow, spherical homo-24-mer structure and reactions take place at active sites inside the chamber. The crystal structures of SORs from Acidianus species have been reported. However, the states of the active site components (mononuclear iron and cysteines) and the entry and exit paths of the substrate and products are still in dispute. Here, we report the biochemical and structural characterizations of SORs from the thermoacidophilic archaeon Sulfurisphaera tokodaii (StSOR) and present high-resolution structures determined by X-ray crystallography and cryogenic electron microscopy (cryo-EM). The crystal structure of StSOR was determined at 1.73 Å resolution. At the catalytic center, iron is ligated to His86, His90, Glu114, and two water molecules. Three conserved cysteines in the cavity are located 9.5-13 Å from the iron and were observed as free thiol forms. A mutational analysis indicated that the iron and one of the cysteines (Cys31) were essential for both activities. The cryo-EM structure was determined at 2.24 Å resolution using an instrument operating at 200 kV. The two structures determined by different methodologies showed similar main chain traces, but the maps exhibited different features at catalytically important components. A possible role of StSOR in the sulfur metabolism of S. tokodaii (an obligate aerobe) is discussed based on this study. Given the high resolution achieved in this study, StSOR was shown to be a good benchmark sample for cryo-EM.

10.
Nat Commun ; 11(1): 3285, 2020 07 03.
Article En | MEDLINE | ID: mdl-32620774

The early life human gut microbiota exerts life-long health effects on the host, but the mechanisms underpinning its assembly remain elusive. Particularly, the early colonization of Clostridiales from the Roseburia-Eubacterium group, associated with protection from colorectal cancer, immune- and metabolic disorders is enigmatic. Here, we describe catabolic pathways that support the growth of Roseburia and Eubacterium members on distinct human milk oligosaccharides (HMOs). The HMO pathways, which include enzymes with a previously unknown structural fold and specificity, were upregulated together with additional glycan-utilization loci during growth on selected HMOs and in co-cultures with Akkermansia muciniphila on mucin, suggesting an additional role in enabling cross-feeding and access to mucin O-glycans. Analyses of 4599 Roseburia genomes underscored the preponderance and diversity of the HMO utilization loci within the genus. The catabolism of HMOs by butyrate-producing Clostridiales may contribute to the competitiveness of this group during the weaning-triggered maturation of the microbiota.


Butyrates/metabolism , Clostridiales/metabolism , Milk, Human/metabolism , Mucins/metabolism , Oligosaccharides/metabolism , Akkermansia , Bifidobacterium/metabolism , Clostridiales/genetics , Colon/microbiology , Eubacterium/metabolism , Gastrointestinal Microbiome/physiology , Humans , Infant , Infant, Newborn , Metabolism/physiology , Milk, Human/chemistry , Polysaccharides/metabolism , Verrucomicrobia/metabolism , Weaning
11.
PLoS One ; 15(6): e0231513, 2020.
Article En | MEDLINE | ID: mdl-32479540

Enzymes acting on α-L-arabinofuranosides have been extensively studied; however, the structures and functions of ß-L-arabinofuranosidases are not fully understood. Three enzymes and an ABC transporter in a gene cluster of Bifidobacterium longum JCM 1217 constitute a degradation and import system of ß-L-arabinooligosaccharides on plant hydroxyproline-rich glycoproteins. An extracellular ß-L-arabinobiosidase (HypBA2) belonging to the glycoside hydrolase (GH) family 121 plays a key role in the degradation pathway by releasing ß-1,2-linked arabinofuranose disaccharide (ß-Ara2) for the specific sugar importer. Here, we present the crystal structure of the catalytic region of HypBA2 as the first three-dimensional structure of GH121 at 1.85 Å resolution. The HypBA2 structure consists of a central catalytic (α/α)6 barrel domain and two flanking (N- and C-terminal) ß-sandwich domains. A pocket in the catalytic domain appears to be suitable for accommodating the ß-Ara2 disaccharide. Three acidic residues Glu383, Asp515, and Glu713, located in this pocket, are completely conserved among all members of GH121; site-directed mutagenesis analysis showed that they are essential for catalytic activity. The active site of HypBA2 was compared with those of structural homologs in other GH families: GH63 α-glycosidase, GH94 chitobiose phosphorylase, GH142 ß-L-arabinofuranosidase, GH78 α-L-rhamnosidase, and GH37 α,α-trehalase. Based on these analyses, we concluded that the three conserved residues are essential for catalysis and substrate binding. ß-L-Arabinobiosidase genes in GH121 are mainly found in the genomes of bifidobacteria and Xanthomonas species, suggesting that the cleavage and specific import system for the ß-Ara2 disaccharide on plant hydroxyproline-rich glycoproteins are shared in animal gut symbionts and plant pathogens.


Glycoside Hydrolases/chemistry , Amino Acid Sequence , Bifidobacterium longum/enzymology , Catalytic Domain , Crystallography, X-Ray , Glycoside Hydrolases/genetics , Models, Molecular , Mutagenesis, Site-Directed , Sequence Alignment
13.
Biochemistry ; 58(45): 4543-4558, 2019 11 12.
Article En | MEDLINE | ID: mdl-31639299

p-Hydroxybenzoate hydroxylase (PHBH) is a flavoprotein monooxygenase that catalyzes the hydroxylation of p-hydroxybenzoate (p-OHB) to 3,4-dihydroxybenzoate (3,4-DOHB). PHBH can bind to other benzoate derivatives in addition to p-OHB; however, hydroxylation does not occur on 3,4-DOHB. Replacement of Tyr385 with Phe forms a mutant, which enables the production of 3,4,5-trihydroxybenzonate (gallic acid) from 3,4-DOHB, although the catalytic activity of the mutant is quite low. In this study, we report how the L199V/Y385F double mutant exhibits activity for producing gallic acid 4.3-fold higher than that of the Y385F single mutant. This improvement in catalytic activity is primarily due to the suppression of a shunt reaction that wastes reduced nicotinamide adenine dinucleotide phosphate by producing H2O2. To further elucidate the molecular mechanism underlying this higher catalytic activity, we performed molecular dynamics simulations and quantum mechanics/molecular mechanics calculations, in addition to determining the crystal structure of the Y385F·3,4-DOHB complex. The simulations showed that the Y385F mutation facilitates the deprotonation of the 4-hydroxy group of 3,4-DOHB, which is necessary for initiating hydroxylation. Moreover, the L199V mutation in addition to the Y385F mutation allows the OH moiety in the peroxide group of C-(4a)-flavin hydroperoxide to come into the proximity of the C5 atom of 3,4-DOHB. Overall, this study provides a consistent explanation for the change in the catalytic activity of PHBH caused by mutations, which will enable us to better design an enzyme with different activities.


4-Hydroxybenzoate-3-Monooxygenase/metabolism , Bacterial Proteins/metabolism , Gallic Acid/metabolism , Pseudomonas aeruginosa/metabolism , 4-Hydroxybenzoate-3-Monooxygenase/chemistry , 4-Hydroxybenzoate-3-Monooxygenase/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Crystallography, X-Ray , Hydroxylation , Molecular Dynamics Simulation , Point Mutation , Protein Conformation , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/genetics , Thermodynamics
14.
J Biol Chem ; 294(45): 17143-17154, 2019 11 08.
Article En | MEDLINE | ID: mdl-31548313

N-Linked glycans play important roles in various cellular and immunological events. Endo-ß-N-acetylglucosaminidase (ENGase) can release or transglycosylate N-glycans and is a promising tool for the chemoenzymatic synthesis of glycoproteins with homogeneously modified glycans. The ability of ENGases to act on core-fucosylated glycans is a key factor determining their therapeutic utility because mammalian N-glycans are frequently α-1,6-fucosylated. Although the biochemistries and structures of various ENGases have been studied extensively, the structural basis for the recognition of the core fucose and the asparagine-linked GlcNAc is unclear. Herein, we determined the crystal structures of a core fucose-specific ENGase from the caterpillar fungus Cordyceps militaris (Endo-CoM), which belongs to glycoside hydrolase family 18. Structures complexed with fucose-containing ligands were determined at 1.75-2.35 Å resolutions. The fucose moiety linked to GlcNAc is extensively recognized by protein residues in a round-shaped pocket, whereas the asparagine moiety linked to the GlcNAc is exposed to the solvent. The N-glycan-binding cleft of Endo-CoM is Y-shaped, and several lysine and arginine residues are present at its terminal regions. These structural features were consistent with the activity of Endo-CoM on fucose-containing glycans on rituximab (IgG) and its preference for a sialobiantennary substrate. Comparisons with other ENGases provided structural insights into their core fucose tolerance and specificity. In particular, Endo-F3, a known core fucose-specific ENGase, has a similar fucose-binding pocket, but the surrounding residues are not shared with Endo-CoM. Our study provides a foothold for protein engineering to develop enzymatic tools for the preparation of more effective therapeutic antibodies.


Acetylglucosaminidase/chemistry , Acetylglucosaminidase/metabolism , Cordyceps/enzymology , Fucose/metabolism , Polysaccharides/metabolism , Amino Acid Sequence , Binding Sites , Catalytic Domain , Glycosylation , Models, Molecular , Substrate Specificity
15.
J Biol Chem ; 293(45): 17375-17386, 2018 11 09.
Article En | MEDLINE | ID: mdl-30224354

Levoglucosan is the 1,6-anhydrosugar of d-glucose formed by pyrolysis of glucans and is found in the environment and industrial waste. Two types of microbial levoglucosan metabolic pathways are known. Although the eukaryotic pathway involving levoglucosan kinase has been well-studied, the bacterial pathway involving levoglucosan dehydrogenase (LGDH) has not been well-investigated. Here, we identified and cloned the lgdh gene from the bacterium Pseudarthrobacter phenanthrenivorans and characterized the recombinant protein. The enzyme exhibited high substrate specificity toward levoglucosan and NAD+ for the oxidative reaction and was confirmed to be LGDH. LGDH also showed weak activities (∼4%) toward l-sorbose and 1,5-anhydro-d-glucitol. The reverse (reductive) reaction using 3-keto-levoglucosan and NADH exhibited significantly lower Km and higher kcat values than those of the forward reaction. The crystal structures of LGDH in the apo and complex forms with NADH, NADH + levoglucosan, and NADH + l-sorbose revealed that LGDH has a typical fold of Gfo/Idh/MocA family proteins, similar to those of scyllo-inositol dehydrogenase, aldose-aldose oxidoreductase, 1,5-anhydro-d-fructose reductase, and glucose-fructose oxidoreductase. The crystal structures also disclosed that the active site of LGDH is distinct from those of these enzymes. The LGDH active site extensively recognized the levoglucosan molecule with six hydrogen bonds, and the C3 atom of levoglucosan was closely located to the C4 atom of NADH nicotinamide. Our study is the first molecular characterization of LGDH, providing evidence for C3-specific oxidation and representing a starting point for future biotechnological use of LGDH and levoglucosan-metabolizing bacteria.


Actinobacteria/enzymology , Glucose/analogs & derivatives , NAD/chemistry , Sugar Alcohol Dehydrogenases/chemistry , Actinobacteria/genetics , Catalytic Domain , Crystallography, X-Ray , Glucose/chemistry , Glucose/metabolism , Hydrogen Bonding , NAD/metabolism , Oxidation-Reduction , Substrate Specificity , Sugar Alcohol Dehydrogenases/genetics , Sugar Alcohol Dehydrogenases/metabolism
16.
Sci Rep ; 8(1): 13958, 2018 09 18.
Article En | MEDLINE | ID: mdl-30228375

Gut microbiota of breast-fed infants are generally rich in bifidobacteria. Recent studies show that infant gut-associated bifidobacteria can assimilate human milk oligosaccharides (HMOs) specifically among the gut microbes. Nonetheless, little is known about how bifidobacterial-rich communities are shaped in the gut. Interestingly, HMOs assimilation ability is not related to the dominance of each species. Bifidobacterium longum susbp. longum and Bifidobacterium breve are commonly found as the dominant species in infant stools; however, they show limited HMOs assimilation ability in vitro. In contrast, avid in vitro HMOs consumers, Bifidobacterium bifidum and Bifidobacterium longum subsp. infantis, are less abundant in infant stools. In this study, we observed altruistic behaviour by B. bifidum when incubated in HMOs-containing faecal cultures. Four B. bifidum strains, all of which contained complete sets of HMO-degrading genes, commonly left HMOs degradants unconsumed during in vitro growth. These strains stimulated the growth of other Bifidobacterium species when added to faecal cultures supplemented with HMOs, thereby increasing the prevalence of bifidobacteria in faecal communities. Enhanced HMOs consumption by B. bifidum-supplemented cultures was also observed. We also determined the complete genome sequences of B. bifidum strains JCM7004 and TMC3115. Our results suggest B. bifidum-mediated cross-feeding of HMOs degradants within bifidobacterial communities.


Bacterial Proteins/metabolism , Bifidobacteriales Infections/metabolism , Bifidobacterium/metabolism , Feces/microbiology , Milk, Human/metabolism , Oligosaccharides/metabolism , Adult , Bacterial Proteins/genetics , Bifidobacteriales Infections/microbiology , Bifidobacterium/classification , Bifidobacterium/genetics , Cells, Cultured , Child, Preschool , Dietary Supplements , Female , Gastrointestinal Microbiome , Genome, Bacterial , Humans , Infant , Male
17.
Sci Rep ; 8(1): 12013, 2018 08 13.
Article En | MEDLINE | ID: mdl-30104607

Pyruvyl modification of oligosaccharides is widely seen in both prokaryotes and eukaryotes. Although the biosynthetic mechanisms of pyruvylation have been investigated, enzymes that metabolize and degrade pyruvylated oligosaccharides are not well known. Here, we searched for a pyruvylated galactose (PvGal)-releasing enzyme by screening soil samples. We identified a Bacillus strain, as confirmed by the 16S ribosomal RNA gene analysis, that exhibited PvGal-ase activity toward p-nitrophenyl-ß-D-pyruvylated galactopyranose (pNP-ß-D-PvGal). Draft genome sequencing of this strain, named HMA207, identified three candidate genes encoding potential PvGal-ases, among which only the recombinant protein encoded by ORF1119 exhibited PvGal-ase activity. Although ORF1119 protein displayed broad substrate specificity for pNP sugars, pNP-ß-D-PvGal was the most favorable substrate. The optimum pH for the ORF1119 PvGal-ase was determined as 7.5. A BLAST search suggested that ORF1119 homologs exist widely in bacteria. Among two homologs tested, BglC from Clostridium but not BglH from Bacillus showed PvGal-ase activity. Crystal structural analysis together with point mutation analysis revealed crucial amino acids for PvGal-ase activity. Moreover, ORF1119 protein catalyzed the hydrolysis of PvGal from galactomannan of Schizosaccharomyces pombe, suggesting that natural polysaccharides might be substrates of the PvGal-ase. This novel PvGal-catalyzing enzyme might be useful for glycoengineering projects to produce new oligosaccharide structures.


Bacillus/enzymology , Bacterial Proteins/metabolism , Galactose/metabolism , beta-Galactosidase/metabolism , Bacillus/genetics , Bacillus/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Cloning, Molecular , Enzyme Assays , Galactose/analogs & derivatives , Mannans/metabolism , Metabolic Engineering/methods , RNA, Ribosomal, 16S/genetics , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Schizosaccharomyces/metabolism , Soil Microbiology , Substrate Specificity , beta-Galactosidase/genetics , beta-Galactosidase/isolation & purification
18.
Cell Chem Biol ; 24(4): 515-524.e5, 2017 Apr 20.
Article En | MEDLINE | ID: mdl-28392148

Breast-fed infants generally have a bifidobacteria-rich microbiota with recent studies indicating that human milk oligosaccharides (HMOs) selectively promote bifidobacterial growth. Bifidobacterium bifidum possesses a glycoside hydrolase family 20 lacto-N-biosidase for liberating lacto-N-biose I from lacto-N-tetraose, an abundant HMO unique to human milk, while Bifidobacterium longum subsp. longum has a non-classified enzyme (LnbX). Here, we determined the crystal structure of the catalytic domain of LnbX and provide evidence for creation of a novel glycoside hydrolase family, GH136. The structure, in combination with inhibition and mutation studies, provides insight into the molecular mechanism and broader substrate specificity of this enzyme. Moreover, through genetic studies, we show that lnbX is indispensable for B. longum growth on lacto-N-tetraose and is a key genetic factor for persistence in the gut of breast-fed infants. Overall, this study reveals possible evolutionary routes for the emergence of symbiosis between humans and bifidobacterial species in the infant gut.


Bifidobacterium longum/growth & development , Evolution, Molecular , Gastrointestinal Microbiome , Milk, Human/metabolism , Bifidobacterium longum/drug effects , Bifidobacterium longum/enzymology , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Feces/microbiology , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Humans , Infant , Kinetics , Molecular Docking Simulation , Mutagenesis, Site-Directed , Oligosaccharides/pharmacology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Substrate Specificity , Symbiosis
19.
J Gen Appl Microbiol ; 62(6): 313-319, 2017 Jan 25.
Article En | MEDLINE | ID: mdl-27885194

Two thermophilic bacterial strains, Bacillus thermoamylovorans NB501 and NB502, were isolated from a high-temperature aerobic fermentation reactor system that processes tofu refuse (okara) in the presence of used soybean oil. We cloned a lipase gene from strain NB501, which secretes a thermophilic lipase. The biochemical characteristics of the recombinant enzyme (Lip501r) were elucidated. Lip501r is monomeric in solution with an apparent molecular mass of 38 kDa on SDS-PAGE. The optimal pH and apparent optimal temperature of Lip501r were 8 and 60°C, respectively. Supplementation of 5 mM Ca2+ enhanced the thermostability, and the enzyme retained 56% of its activity for 30 min at 50°C. Lip501r was active on a wide range of substrates with different lengths of p-nitrophenyl (pNP) esters, and showed a remarkably higher activity with pNP-myristate. The Km and Vmax values for pNP-butyrate in the presence of 5 mM CaCl2 were 1.8 mM and 220 units/mg, respectively. The possible industrial use of the thermophilic lipase in modifying edible oil was explored by examining the degradation of soybean oil. A TLC analysis of the degraded products indicated that Lip501r is an 1,3-position specific lipase. A homology modeling study revealed that helix α6 in the lid domain of NB501 lipase was shorter than that of lipases from the Geobacillus group.


Bacillus/enzymology , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Lipase/isolation & purification , Lipase/metabolism , Soybean Oil/metabolism , Amino Acid Sequence , Bacillus/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bioreactors/microbiology , Cloning, Molecular , Electrophoresis, Polyacrylamide Gel , Enzyme Stability , Geobacillus/enzymology , Hydrogen-Ion Concentration , Industrial Microbiology , Kinetics , Lipase/chemistry , Lipase/genetics , Models, Molecular , Molecular Weight , Phylogeny , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Alignment , Substrate Specificity , Temperature
20.
J Biosci Bioeng ; 119(6): 678-82, 2015 Jun.
Article En | MEDLINE | ID: mdl-25488041

Anaerobic digester is one of the attractive technologies for treatment of organic wastes and wastewater, while continuous development and improvements on their stable operation with efficient organic removal are required. Particles of conductive iron oxides (e.g., magnetite) are known to facilitate microbial interspecies electron transfer (termed as electric syntrophy). Electric syntrophy has been reported to enhance methanogenic degradation of organic acids by mesophilic communities in soil and anaerobic digester. Here we investigated the effects of supplementation of conductive iron oxides (magnetite) on thermophilic methanogenic microbial communities derived from a thermophilic anaerobic digester. Supplementation of magnetite accelerated methanogenesis from acetate and propionate under thermophilic conditions, while supplementation of ferrihydrite also accelerated methanogenesis from propionate. Microbial community analysis revealed that supplementation of magnetite drastically changed bacterial populations in the methanogenic acetate-degrading cultures, in which Tepidoanaerobacter sp. and Coprothermobacter sp. dominated. These results suggest that supplementation of magnetite induce electric syntrophy between organic acid-oxidizing bacteria and methanogenic archaea and accelerate methanogenesis even under thermophilic conditions. Findings from this study would provide a possibility for the achievement of stably operating thermophilic anaerobic digestion systems with high efficiency for removal of organics and generation of CH4.


Acetic Acid/metabolism , Archaea/metabolism , Bacteria/metabolism , Ferrosoferric Oxide/metabolism , Methane/metabolism , Propionates/metabolism , Temperature , Anaerobiosis , Electron Transport , Fermentation , Ferric Compounds/metabolism
...