Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Atheroscler Thromb ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38538338

ABSTRACT

AIM: This study aimed to analyze two cases of marked hypo-high-density lipoprotein (HDL) cholesterolemia to identify mutations in ATP-binding cassette transporter A1 (ABCA1) and elucidate the molecular mechanism by which these novel pathological mutations contribute to hypo-HDL cholesterolemia in Tangier disease. METHODS: Wild type and mutant expression plasmids containing a FLAG tag inserted at the C-terminus of the human ABCA1 gene were generated and transfected into HEK293T cells. ABCA1 protein expression and cholesterol efflux were evaluated via Western blotting and efflux assay. The difference in the rate of change in protein expression was evaluated when proteolytic and protein-producing systems were inhibited. RESULTS: In case 1, a 20-year-old woman presented with a chief complaint of gait disturbance. Her HDL-C level was only 6.2 mg/dL. Tangier disease was suspected because of muscle weakness, decreased nerve conduction velocity, and splenomegaly. Whole-exome analysis showed compound heterozygosity for a W484* nonsense mutation and S1343I missense mutation, which confirmed Tangier disease. Cholesterol efflux decreased by a mixture of W484* and S1343I mutations. The S1343I mutation decreased the protein production rate but increased the degradation rate, decreasing the protein levels. This patient also had Krabbe disease. The endogenous ABCA1 protein level of macrophage cell decreased by knocking down its internal galactocerebrosidase.Case 2, a 51-year-old woman who underwent tonsillectomy presented with peripheral neuropathy, corneal opacity, and HDL-C of 3.4 mg/dL. Whole-exome analysis revealed compound heterozygosity for R579* and R1572* nonsense mutations, which confirmed Tangier disease. CONCLUSION: Case 1 is a new ABCA1 mutation with complex pathogenicity, namely, a W484*/S1343I compound heterozygote with marked hypo-HDL cholesterolemia. Analyses of the compound heterozygous mutations indicated that decreases in ABCA1 protein levels and cholesterol efflux activity caused by the novel S1343I mutation combined with loss of W484* protein activity could lead to marked hypo-HDL cholesterolemia. Galactocerebrosidase dysfunction could also be a potential confounding factor for ABCA1 protein function.

2.
J Atheroscler Thromb ; 31(2): 109-116, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37793810

ABSTRACT

Metabolism is one of the vital functions of cells and living organisms, and the systems to sense and respond to the metabolic alterations play pivotal roles in a plethora of biological processes, including cell proliferative activities, immune cell functions, aging processes, and neuronal functions. Recently, we have reported that a transcriptional cofactor, C-terminal binding protein 2 (CtBP2), serves as a critical metabolite sensor in this context. CtBP2 has a structural pocket called Rossmann fold to accommodate metabolites, and it has been reported to be activated upon binding to NADH/NAD+. Owing to its preferential binding affinity for NADH compared with NAD+, increased glycolysis activates CtBP2 by regenerating NADH from NAD+. Furthermore, we recently reported that fatty acyl-CoAs, metabolites accumulated under the condition of lipid overload, as represented by obesity, can inactivate CtBP2. These observations suggest that CtBP2 monitors not only redox state but also energy substrate preference in the maintenance of metabolic homeostasis. In line with these metabolite-sensing capabilities, CtBP2 is activated in healthy subjects to protect against metabolic disturbances, whereas inactivation of CtBP2 in obesity contributes to the pathogeneses of obesity.This metabolic system orchestrated by CtBP2 can provide a novel framework for understanding how cells maintain their homeostasis through coordination of metabolism, and CtBP2 incapacitation can be a critical point of the obesogenic cascade.


Subject(s)
Alcohol Oxidoreductases , DNA-Binding Proteins , NAD , Transcription Factors , Humans , NAD/metabolism , Co-Repressor Proteins/metabolism , Transcription Factors/metabolism , Obesity , Protein Binding
3.
Cell Rep ; 42(8): 112914, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37557182

ABSTRACT

The adaptive increase in insulin secretion in early stages of obesity serves as a safeguard mechanism to maintain glucose homeostasis that cannot be sustained, and the eventual decompensation of ß cells is a key event in the pathogenesis of diabetes. Here we describe a crucial system orchestrated by a transcriptional cofactor CtBP2. In cultured ß cells, insulin gene expression is coactivated by CtBP2. Global genomic mapping of CtBP2 binding sites identifies a key interaction between CtBP2 and NEUROD1 through which CtBP2 decompacts chromatin in the insulin gene promoter. CtBP2 expression is diminished in pancreatic islets in multiple mouse models of obesity, as well as human obesity. Pancreatic ß cell-specific CtBP2-deficient mice manifest glucose intolerance with impaired insulin secretion. Our transcriptome analysis highlights an essential role of CtBP2 in the maintenance of ß cell integrity. This system provides clues to the molecular basis in obesity and may be targetable to develop therapeutic approaches.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , Obesity , Animals , Humans , Mice , Glucose/metabolism , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Obesity/metabolism
4.
J Biol Chem ; 299(7): 104890, 2023 07.
Article in English | MEDLINE | ID: mdl-37286039

ABSTRACT

Maintenance of metabolic homeostasis is secured by metabolite-sensing systems, which can be overwhelmed by constant macronutrient surplus in obesity. Not only the uptake processes but also the consumption of energy substrates determine the cellular metabolic burden. We herein describe a novel transcriptional system in this context comprised of peroxisome proliferator-activated receptor alpha (PPARα), a master regulator for fatty acid oxidation, and C-terminal binding protein 2 (CtBP2), a metabolite-sensing transcriptional corepressor. CtBP2 interacts with PPARα to repress its activity, and the interaction is enhanced upon binding to malonyl-CoA, a metabolic intermediate increased in tissues in obesity and reported to suppress fatty acid oxidation through inhibition of carnitine palmitoyltransferase 1. In line with our preceding observations that CtBP2 adopts a monomeric configuration upon binding to acyl-CoAs, we determined that mutations in CtBP2 that shift the conformational equilibrium toward monomers increase the interaction between CtBP2 and PPARα. In contrast, metabolic manipulations that reduce malonyl-CoA decreased the formation of the CtBP2-PPARα complex. Consistent with these in vitro findings, we found that the CtBP2-PPARα interaction is accelerated in obese livers while genetic deletion of CtBP2 in the liver causes derepression of PPARα target genes. These findings support our model where CtBP2 exists primarily as a monomer in the metabolic milieu of obesity to repress PPARα, representing a liability in metabolic diseases that can be exploited to develop therapeutic approaches.


Subject(s)
Alcohol Oxidoreductases , Co-Repressor Proteins , Obesity , PPAR alpha , Humans , Fatty Acids/metabolism , Liver/metabolism , Obesity/genetics , Obesity/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , Alcohol Oxidoreductases/metabolism , Co-Repressor Proteins/metabolism , Allosteric Regulation
5.
BMJ Case Rep ; 16(3)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36918211

ABSTRACT

We report a rare case of takotsubo cardiomyopathy caused by subacute thyroiditis in a man in his 50s. He went to the doctor with complaints of loss of appetite, diarrhoea, chills and general malaise. He had consciousness disturbance, thyrotoxicosis and thyroid-stimulating hormone (TSH) suppression. Thyroglobulin and C reactive protein levels in the blood were elevated, but TSH receptor antibody, thyroid-stimulating antibody, antithyroglobulin antibody and antithyroid peroxidase antibody were not. We began treatment with prednisolone and propranolol after he was diagnosed with thyroid storm caused by subacute thyroiditis. The ECG revealed inverted T waves on the fifth day after admission. He was newly diagnosed with takotsubo cardiomyopathy on the day. A large thrombus was detected in the left ventricle, requiring anticoagulation therapy. Thus, even if there are no findings of takotsubo cardiomyopathy or thrombus at the onset of thyroid storm, appropriate monitoring is required because they can develop during the treatment course.


Subject(s)
Takotsubo Cardiomyopathy , Thrombosis , Thyroid Crisis , Thyroiditis, Subacute , Thyroiditis , Thyrotoxicosis , Humans , Male , Heart Ventricles/diagnostic imaging , Takotsubo Cardiomyopathy/diagnosis , Takotsubo Cardiomyopathy/drug therapy , Takotsubo Cardiomyopathy/etiology , Thrombosis/diagnostic imaging , Thrombosis/drug therapy , Thyroid Crisis/complications , Thyroiditis/complications , Thyroiditis/diagnosis , Thyroiditis, Subacute/diagnosis , Thyrotoxicosis/complications , Thyrotropin , Middle Aged
6.
Article in English | MEDLINE | ID: mdl-36571472

ABSTRACT

Summary: In this study, we herein describe a 47-year-old Japanese woman who manifested inheritable non-alcoholic steatohepatitis (NASH) and severe dyslipidemia. Interestingly, her NASH progression was ameliorated by treatment with a sodium-glucose co-transporter 2 (SGLT2) inhibitor. This inheritability prompted us to comprehensively decode her genomic information using whole-exome sequencing. We found the well-established I148M mutation in PNPLA3 as well as mutations in LGALS3 and PEMT for her NASH. Mutations in GCKR may contribute to both NASH and dyslipidemia. We further mined gene mutations potentially responsible for her manifestations that led to the identification of a novel M188fs mutation in MUL1 that may be causally associated with her mitochondrial dysfunction. Our case may provide some clues to better understand this spectrum of disease as well as the rationale for selecting medications. Learning points: While the PNPLA3 I148M mutation is well-established, accumulation of other mutations may accelerate susceptibility to non-alcoholic steatohepatitis (NASH). NASH and dyslipidemia may be intertwined biochemically and genetically through several key genes. SGLT2 inhibitors emerge as promising treatment for NASH albeit with interindividual variation in efficacy. Genetic background may explain the mechanisms behind the variation. A novel dysfunctional mutation in MUL1 may lead to metabolic inflexibilities through impaired mitochondrial dynamics and function.

7.
Article in English | MEDLINE | ID: mdl-35979842

ABSTRACT

Summary: A paired homeodomain transcription factor, PAX6 (paired-box 6), is essential for the development and differentiation of pancreatic endocrine cells as well as ocular cells. Despite the impairment of insulin secretion observed in PAX6-deficient mice, evidence implicating causal association between PAX6 gene mutations and monogenic forms of human diabetes is limited. We herein describe a 33-year-old Japanese woman with congenital aniridia who was referred to our hospital because of her uncontrolled diabetes with elevated hemoglobin A1c (13.1%) and blood glucose (32.5 mmol/L) levels. Our biochemical analysis revealed that her insulin secretory capacity was modestly impaired as represented by decreased 24-h urinary C-peptide levels (38.0 µg/day), primarily explaining her diabetes. Intriguingly, there was a trend toward a reduction in her serum glucagon levels as well. Based on the well-recognized association of PAX6 gene mutations with congenital aniridia, we screened the whole PAX6 coding sequence, leading to an identification of a heterozygous Gln135* mutation. We tested our idea that this mutation may at least in part explain the impaired insulin secretion observed in this patient. In cultured pancreatic ß-cells, exogenous expression of the PAX6 Gln135* mutant produced a truncated protein that lacked the transcriptional activity to induce insulin gene expression. Our observation together with preceding reports support the recent attempt to include PAX6 in the growing list of genes causally responsible for monogenic diabetes. In addition, since most cases of congenital aniridia carry PAX6 mutations, we may need to pay more attention to blood glucose levels in these patients. Learning points: PAX6 Gln135* mutation may be causally associated not only with congenital aniridia but also with diabetes. Blood glucose levels may deserve more attention in cases of congenital aniridia with PAX6 mutations. Our case supports the recent attempt to include PAX6 in the list of MODY genes, and Gln135* may be pathogenic.

8.
J Phys Chem A ; 114(9): 3080-6, 2010 Mar 11.
Article in English | MEDLINE | ID: mdl-19957981

ABSTRACT

We report results of a study on steric effects appearing in the scattering of an oriented CH(3)Cl molecular beam from Si(111) at surface temperatures > or = 300 K. Data presented here show that the scattered CH(3)Cl beam intensity measured at fixed scattering angles clearly depends on the initial molecular (CH(3)Cl) orientation toward the Si surface. The scattered CH(3)Cl beam intensity for the CH(3)-end collision is larger than that for the Cl-end collision, suggesting that strong anisotropy of the interaction potential induces the molecular-orientation-dependent energy dissipation during transient trapping into a shallow potential well.


Subject(s)
Methyl Chloride/chemistry , Silicon/chemistry , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...