Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phytochemistry ; 224: 114143, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38762153

ABSTRACT

Cassava (Manihot esculenta Crantz), a crucial global tuber crop, encounters significant economic losses attributed to postharvest physiological deterioration (PPD). The PPD phenomenon in cassava is closely related to the accumulation of reactive oxygen species (ROS), and amino acids play a pivotal role in regulating signaling pathways and eliminating ROS. In this study, the storage performance of eight cassava varieties were conducted. Cassava cultivar SC5 showed the best storage performance among the eight cassava varieties, but the edible cassava cultivar SC9 performed much worse. Comparative analysis of free amino acids was conducted in eight cassava varieties, revealing changes in proline, aspartic acid, histidine, glutamic acid, threonine, and serine. Exogenous supplementation of these six amino acids was performed to inhibit PPD of SC9. Proline was confirmed as the key amino acid for inhibiting PPD. Treatment with optimal exogenous proline of 5 g/L resulted in a 17.9% decrease in the deterioration rate compared to untreated cassava. Accompanied by a decrease in H2O2 content and an increase in catalase, superoxide dismutase and ascorbate peroxidase activity. Proline treatment proved to be an effective approach to alleviate cell oxidative damage, inhibit PPD in cassava, and prolong shelf life.


Subject(s)
Antioxidants , Manihot , Proline , Manihot/chemistry , Proline/pharmacology , Proline/metabolism , Proline/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology
2.
Environ Res ; 223: 115470, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36775088

ABSTRACT

Even in the vertical dimension, soil bacterial communities are spatially distributed in a distance-decay relationship (DDR). However, whether this pattern is universal among all soil microbial taxonomic groups, and how body size influences this distribution, remains elusive. Our study consisted of obtaining 140 soil samples from two adjacent ecosystems in the Yellow River Delta (YRD), both nontidal and tidal, and measuring the DDR between topsoil and subsoil for bacteria, archaea, fungi and protists (rhizaria). Our results showed that the entire community generally fitted the DDR patterns (P < 0.001), this was also true at the kingdom level (P < 0.001, with the exception of the fungal community), and for most individual phyla (47/75) in both ecosystems and with soil depth. Meanwhile, these results presented a general trend that the community turnover rate of nontidal soils was higher than tidal soils (P < 0.05), and that the rate of topsoil was also higher than that of subsoil (P < 0.05). Additionally, microbial spatial turnover rates displayed a negative relationship with body sizes in nontidal topsoil (R2 = 0.29, P = 0.009), suggesting that the smaller the body size of microorganisms, the stronger the spatial limitation was in this environment. However, in tidal soils, the body size effect was negligible, probably owing to the water's fluidity. Moreover, community assembly was judged to be deterministic, and heterogeneous selection played a dominant role in the different environments. Specifically, the spatial distance was much more influential, while the soil salinity in these ecosystems was the major environmental factor in selecting the distributions of microbial communities. Overall, this study revealed that microbial community compositions at different taxonomic levels followed relatively consistent distribution patterns and mechanisms in this coastal area.


Subject(s)
Bacteria , Microbiota , Bacteria/genetics , Soil , Soil Microbiology
3.
J Microbiol ; 58(7): 614-623, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32424579

ABSTRACT

Endophytes colonize tissues of healthy host plants and play a crucial role in plant growth and development. However, little attention has been paid to the endophytes of tuber crops such as cassava, which is used as a staple food by approximately 800 million people worldwide. This study aimed to elucidate the diversity and composition of endophytic bacterial and fungal communities in different cassava cultivars using high-throughput sequencing. Although no significant differences in richness or diversity were observed among the different cassava cultivars, the community compositions were diverse. Two cultivars (SC124 and SC205) tolerant to root rot exhibited similar community compositions, while two other cultivars (SC10 and SC5), which are moderately and highly susceptible to root rot, respectively, harboured similar community compositions. Proteobacteria, Firmicutes, and Ascomycota dominated the endophyte assemblages, with Weissella, Serratia, Lasiodiplodia, Fusarium, and Diaporthe being the predominant genera. The differentially abundant taxonomic clades between the tolerant and susceptible cultivars were mainly rare taxa, such as Lachnoclostridium_5, Rhizobium, Lampropedia, and Stenotrophomonas. These seemed to be key genera that affected the susceptibility of cassava to root rot. Moreover, the comparison of KEGG functional profiles revealed that 'Environmental adaptation' category was significantly enriched in the tolerant cultivars, while 'Infectious diseases: Parasitic' category was significantly enriched in the susceptible cultivars. The present findings open opportunities for further studies on the roles of endophytes in the susceptibility of plants to diseases.


Subject(s)
Ascomycota/isolation & purification , Endophytes/classification , Firmicutes/isolation & purification , Manihot/microbiology , Proteobacteria/isolation & purification , Ascomycota/classification , Ascomycota/genetics , Endophytes/isolation & purification , Firmicutes/classification , Firmicutes/genetics , High-Throughput Nucleotide Sequencing , Microbiota/genetics , Plant Roots/microbiology , Proteobacteria/classification , Proteobacteria/genetics
4.
Front Microbiol ; 9: 1771, 2018.
Article in English | MEDLINE | ID: mdl-30116233

ABSTRACT

Previously, several genes, including LRA1-LRA4 and LRAR, involved in rhamnose utilization pathway, were discovered in Pichia pastoris GS115; among them, LRA3 and LRA4 were considered as key rate-determining step enzymes. A P. pastoris expression platform based on the strong rhamnose-inducible promoter P LRA3 did not meet the demands of industrial application due to poor production of recombinant proteins. To enhance recombinant protein production of this expression platform, a genetically engineered strain, P. pastoris GS115m, with decreased rhamnose metabolic flux was developed from P. pastoris GS115 by replacement of the rhamnose-inducible promoter P LRA4 with another much weaker rhamnose-inducible promoter, P LRA2 . Grown in MRH and YPR media using rhamnose as the main carbon source, the engineered strain showed decreased growth rate and maximal biomass compared with the parental strain. More importantly, grown in rhamnose-containing MRH and YPR media, the recombinant engineered strain harboring a ß-galactosidase gene lacB, whose expression was regulated by rhamnose-inducible P LRA3 , yielded substantial increases, of 2.5- and 1.5-fold, respectively, in target protein production over the parental strain. Additionally, grown in MRH and YPR media, the engineered strain had remarkable cell flocculation and rapid sedimentation with the increasing of cell density, providing an effective and convenient separation of the fermentation supernatant from strain cells. The engineered strain is a promising expression host for industrial production of target proteins due to its advantages over the parental strain as follows: (i) improved production of recombinant proteins, and (ii) remarkable cell flocculation and rapid sedimentation.

5.
Sci Rep ; 6: 27352, 2016 06 03.
Article in English | MEDLINE | ID: mdl-27256707

ABSTRACT

The rhamnose utilization pathway in Pichia pastoris has not been clarified although this strain can grow well on rhamnose as a sole carbon source. In this study, four genes, PAS_chr4_0338, PAS_chr4_0339, PAS_chr4_0340, and PAS_chr4_0341, were, for the first time, predicted to be involved in rhamnose metabolism along with the previously identified gene PAS_chr1_4-0075. Moreover, expression of these genes, especially PAS_chr4_0341 and PAS_chr1_4-0075 designated as LRA4 and LRA3, was confirmed to significantly increase and clearly decrease in the presences of rhamnose and glucose, respectively. LRA4 encoding a putative L-2-keto-3-deoxyrhamnonate aldolase, was further confirmed via gene disruption and gene complementation to participate in rhamnose metabolism. Using ß-galactosidase and green fluorescent protein as reporters, the promoters of LRA4 and LRA3 performed well in driving efficient production of heterologous proteins. By using food grade rhamnose instead of the toxic compound methanol as the inducer, the two promoters would be excellent candidates for driving the production of food-grade and therapeutically important recombinant proteins.


Subject(s)
Metabolic Networks and Pathways , Pichia/genetics , Pichia/metabolism , Promoter Regions, Genetic , Rhamnose/metabolism , Artificial Gene Fusion , Biotechnology/methods , Gene Expression Profiling , Gene Knockout Techniques , Genes, Fungal , Genes, Reporter , Genetic Complementation Test , Glucose/metabolism , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Pichia/growth & development , Technology, Pharmaceutical/methods , beta-Galactosidase/analysis , beta-Galactosidase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...