Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6889, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37898599

ABSTRACT

Noble metals supported on reducible oxides, like CoOx and TiOx, exhibit superior activity in many chemical reactions, but the origin of the increased activity is not well understood. To answer this question we studied thin films of CoOx supported on an Au(111) single crystal surface as a model for the CO oxidation reaction. We show that three reaction regimes exist in response to chemical and topographic restructuring of the CoOx catalyst as a function of reactant gas phase CO/O2 stoichiometry and temperature. Under oxygen-lean conditions and moderate temperatures (≤150 °C), partially oxidized films (CoOx<1) containing Co0 were found to be efficient catalysts. In contrast, stoichiometric CoO films containing only Co2+ form carbonates in the presence of CO that poison the reaction below 300 °C. Under oxygen-rich conditions a more oxidized catalyst phase (CoOx>1) forms containing Co3+ species that are effective in a wide temperature range. Resonant photoemission spectroscopy (ResPES) revealed the unique role of Co3+ sites in catalyzing the CO oxidation. Density function theory (DFT) calculations provided deeper insights into the pathway and free energy barriers for the reactions on these oxide phases. These findings in this work highlight the versatility of catalysts and their evolution to form different active phases, both topological and chemically, in response to reaction conditions exposing a new paradigm in the catalyst structure during operation.

2.
J Chem Phys ; 159(5)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37548306

ABSTRACT

Despite the wide applications, the ab initio modeling of the ceria based catalyst is challenging. The partial occupation in the 4f orbitals creates a fundamental challenge for commonly used density functional theory (DFT) methods, including semilocal functionals with Hubbard U correction to force localization and hybrid functionals. In this work, we benchmark the random phase approximation (RPA) for ceria surface properties, including surface energy and hydrogenation energy, compared to the results utilizing the DFT + U approach or hybrid functionals. We show that, for the latter approaches, different surface properties require opposite directions of parameter tuning. This forms a dilemma for the parameter based DFT methods, as the improvement of a certain property by tuning parameters will inevitably lead to the worsening of other properties. Our results suggest that the parameter-free many-body perturbation theory methods exemplified by RPA are a promising strategy to escape the dilemma and provide highly accurate descriptions, which will allow us to better understand the catalytic reactions in ceria related systems.

3.
Nat Commun ; 13(1): 832, 2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35149699

ABSTRACT

Rational catalyst design is crucial toward achieving more energy-efficient and sustainable catalytic processes. Understanding and modeling catalytic reaction pathways and kinetics require atomic level knowledge of the active sites. These structures often change dynamically during reactions and are difficult to decipher. A prototypical example is the hydrogen-deuterium exchange reaction catalyzed by dilute Pd-in-Au alloy nanoparticles. From a combination of catalytic activity measurements, machine learning-enabled spectroscopic analysis, and first-principles based kinetic modeling, we demonstrate that the active species are surface Pd ensembles containing only a few (from 1 to 3) Pd atoms. These species simultaneously explain the observed X-ray spectra and equate the experimental and theoretical values of the apparent activation energy. Remarkably, we find that the catalytic activity can be tuned on demand by controlling the size of the Pd ensembles through catalyst pretreatment. Our data-driven multimodal approach enables decoding of reactive structures in complex and dynamic alloy catalysts.

4.
J Am Chem Soc ; 143(51): 21567-21579, 2021 Dec 29.
Article in English | MEDLINE | ID: mdl-34908398

ABSTRACT

Elucidation of reaction mechanisms and the geometric and electronic structure of the active sites themselves is a challenging, yet essential task in the design of new heterogeneous catalysts. Such investigations are best implemented via a multipronged approach that comprises ambient pressure catalysis, surface science, and theory. Herein, we employ this strategy to understand the workings of NiAu single-atom alloy (SAA) catalysts for the selective nonoxidative dehydrogenation of ethanol to acetaldehyde and hydrogen. The atomic dispersion of Ni is paramount for selective ethanol to acetaldehyde conversion, and we show that even the presence of small Ni ensembles in the Au surface results in the formation of undesirable byproducts via C-C scission. Spectroscopic, kinetic, and theoretical investigations of the reaction mechanism reveal that both C-H and O-H bond cleavage steps are kinetically relevant and single Ni atoms are confirmed as the active sites. X-ray absorption spectroscopy studies allow us to follow the charge of the Ni atoms in the Au host before, under, and after a reaction cycle. Specifically, in the pristine state the Ni atoms carry a partial positive charge that increases upon coordination to the electronegative oxygen in ethanol and decreases upon desorption. This type of oxidation state cycling during reaction is similar to the behavior of single-site homogeneous catalysts. Given the unique electronic structure of many single-site catalysts, such a combined approach in which the atomic-scale catalyst structure and charge state of the single atom dopant can be monitored as a function of its reactive environment is a key step toward developing structure-function relationships that inform the design of new catalysts.

5.
J Am Chem Soc ; 142(18): 8312-8322, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32281380

ABSTRACT

The reaction of CO and O2 with submonolayer and multilayer CoOx films on Pt(111), to produce CO2, was investigated at room temperature in the mTorr pressure regime. Using operando ambient pressure X-ray photoelectron spectroscopy and high pressure scanning tunneling microscopy, as well as density functional theory calculations, we found that the presence of oxygen vacancies in partially oxidized CoOx films significantly enhances the CO oxidation activity to form CO2 upon exposure to mTorr pressures of CO at room temperature. In contrast, CoO films without O-vacancies are much less active for CO2 formation at RT, and CO only adsorbed in the form of carbonate species that are stable up to 260 °C. On submonolayer CoOx islands, the carbonates form preferentially at island edges, deactivating the edge sites for CO2 formation, even while the reaction proceeds inside the islands. These results provide a detailed understanding of CO oxidation pathways on systems where noble metals such as Pt interact with reducible oxides.

6.
J Am Chem Soc ; 141(14): 5623-5627, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30896177

ABSTRACT

The interaction of water with metal oxides controls their activity and stability in heterogeneous catalysis and electrocatalysis. In this work, we combine density functional theory calculations and infrared reflection absorption spectroscopy (IRAS) to identify the structural motifs formed upon interaction of water with an atomically defined Co3O4(111) surface. Three principal structures are observed: (i) strongly bound isolated OD, (ii) extended hydrogen-bonded OD/D2O structures, and (iii) a third structure which has not been reported to our knowledge. In this structure, surface Co2+ ions bind to three D2O molecules to form an octahedrally coordinated Co2+ with a "half hydration shell". We propose that this hydration structure represents an important intermediate in reorganization and dissolution on oxide surfaces which expose highly unsaturated surface cations.

7.
Sci Rep ; 7: 41520, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28139668

ABSTRACT

Six Hakea species varying greatly in seed size were selected for cotyledon damage experiments. The growth of seedlings with cotyledons partially or completely removed was monitored over 90 days. All seedlings perished by the fifth week when both cotyledons were removed irrespective of seed size. Partial removal of cotyledons caused a significant delay in the emergence of the first leaf, and reduction in root and shoot growth of the large-seeded species. The growth of seedlings of small-seeded species was less impacted by cotyledon damage. The rate of survival, root and shoot lengths and dry biomass of the seedlings were determined after 90 days. When seedlings were treated with balanced nutrient solutions following removal of the cotyledons, survival was 95-98%, but 0% when supplied with nutrient solutions lacking N or P or with water only. The addition of a balanced nutrient solution failed to restore complete growth of any species, but the rate of root elongation for the small-seeded species was maintained. Cotyledons provide nutrients to support early growth of Hakea seedlings, but other physiological roles for the cotyledons are also implicated. In conclusion, small-seeded Hakea species can tolerate cotyledons loss better than large-seeded species.


Subject(s)
Cotyledon/physiology , Proteaceae/anatomy & histology , Proteaceae/physiology , Seeds/anatomy & histology , Adaptation, Physiological , Biomass , Germination , Plant Roots/anatomy & histology , Plant Shoots/anatomy & histology , Species Specificity , Time Factors
8.
BMC Plant Biol ; 17(1): 11, 2017 01 13.
Article in English | MEDLINE | ID: mdl-28086794

ABSTRACT

BACKGROUND: The dwarfing gene sdw1 has been widely used throughout the world to develop commercial barley varieties. There are at least four different alleles at the sdw1 locus. RESULTS: Mutations in the gibberellin 20-oxidase gene (HvGA20ox2) resulted in multiple alleles at the sdw1 locus. The sdw1.d allele from Diamant is due to a 7-bp deletion in exon 1, while the sdw1.c allele from Abed Denso has 1-bp deletion and a 4-bp insertion in the 5' untranslated region. The sdw1.a allele from Jotun resulted from a total deletion of the HvGA20ox2 gene. The structural changes result in lower gene expression in sdw1.d and lack of expression in sdw1.a. There are three HvGA20ox genes in the barley genome. The partial or total loss of function of the HvGA20ox2 gene could be compensated by enhanced expression of its homolog HvGA20ox1and HvGA20ox3. A diagnostic molecular marker was developed to differentiate between the wild-type, sdw1.d and sdw1.a alleles and another molecular marker for differentiation of sdw1.c and sdw1.a. The markers were further tested in 197 barley varieties, out of which 28 had the sdw1.d allele and two varieties the sdw1.a allele. To date, the sdw1.d and sdw1.a alleles have only been detected in the modern barley varieties and lines. CONCLUSIONS: The results provided further proof that the gibberellin 20-oxidase gene (HvGA20ox2) is the functional gene of the barley sdw1 mutants. Different deletions resulted in different functional alleles for different breeding purposes. Truncated protein could maintain partial function. Partial or total loss of function of the HvGA20ox2 gene could be compensated by enhanced expression of its homolog HvGA20ox1 and HvGA20ox3.


Subject(s)
Genes, Plant , Hordeum/genetics , Alleles , Cloning, Molecular , Genetic Markers , Genetic Variation , Genome, Plant , Hordeum/enzymology , Mixed Function Oxygenases/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...