Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Neuro Oncol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853689

ABSTRACT

BACKGROUND: The FDA approval of oncolytic herpes simplex-1 virus (oHSV) therapy underscores its therapeutic promise and safety as a cancer immunotherapy. Despite this promise, the current efficacy of oHSV is significantly limited to a small subset of patients largely due to the resistance in tumor and tumor microenvironment (TME). METHODS: RNA sequencing (RNA-Seq) was used to identify molecular targets of oHSV resistance. Intracranial human and murine glioma or breast cancer brain metastasis (BCBM) tumor-bearing mouse models were employed to elucidate the mechanism underlying oHSV therapy-induced resistance. RESULTS: Transcriptome analysis identified IGF2 as one of the top secreted proteins following oHSV treatment. Moreover, IGF2 expression was significantly upregulated in 10 out of 14 recurrent GBM patients after treatment with oHSV, rQNestin34.5v.2 (71.4%) (p=0.0020) (ClinicalTrials.gov, NCT03152318). Depletion of IGF2 substantially enhanced oHSV-mediated tumor cell killing in vitro and improved survival of mice bearing BCBM tumors in vivo. To mitigate the oHSV-induced IGF2 in the TME, we constructed a novel oHSV, oHSV-D11mt, secreting a modified IGF2R domain 11 (IGF2RD11mt) that acts as IGF2 decoy receptor. Selective blocking of IGF2 by IGF2RD11mt significantly increased cytotoxicity, reduced oHSV-induced neutrophils/PMN-MDSCs infiltration, and reduced secretion of immune suppressive/proangiogenic cytokines, while increased CD8+cytotoxic T lymphocytes (CTLs) infiltration, leading to enhanced survival in GBM or BCBM tumor-bearing mice. CONCLUSION: This is the first study reporting that oHSV-induced secreted IGF2 exerts a critical role in resistance to oHSV therapy, which can be overcome by oHSV-D11mt as a promising therapeutic advance for enhanced viro-immunotherapy.

2.
Nat Commun ; 14(1): 4124, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37433798

ABSTRACT

Single-cell nanopore sequencing of full-length mRNAs transforms single-cell multi-omics studies. However, challenges include high sequencing errors and dependence on short-reads and/or barcode whitelists. To address these, we develop scNanoGPS to calculate same-cell genotypes (mutations) and phenotypes (gene/isoform expressions) without short-read nor whitelist guidance. We apply scNanoGPS onto 23,587 long-read transcriptomes from 4 tumors and 2 cell-lines. Standalone, scNanoGPS deconvolutes error-prone long-reads into single-cells and single-molecules, and simultaneously accesses both phenotypes and genotypes of individual cells. Our analyses reveal that tumor and stroma/immune cells express distinct combination of isoforms (DCIs). In a kidney tumor, we identify 924 DCI genes involved in cell-type-specific functions such as PDE10A in tumor cells and CCL3 in lymphocytes. Transcriptome-wide mutation analyses identify many cell-type-specific mutations including VEGFA mutations in tumor cells and HLA-A mutations in immune cells, highlighting the critical roles of different mutant populations in tumors. Together, scNanoGPS facilitates applications of single-cell long-read sequencing technologies.


Subject(s)
Carcinoma, Intraductal, Noninfiltrating , Kidney Neoplasms , Humans , Genotype , High-Throughput Nucleotide Sequencing , Phenotype , Phosphoric Diester Hydrolases
3.
J Clin Invest ; 133(11)2023 06 01.
Article in English | MEDLINE | ID: mdl-37053016

ABSTRACT

The deadliest anaplastic thyroid cancer (ATC) often transforms from indolent differentiated thyroid cancer (DTC); however, the complex intratumor transformation process is poorly understood. We investigated an anaplastic transformation model by dissecting both cell lineage and cell fate transitions using single-cell transcriptomic and genetic alteration data from patients with different subtypes of thyroid cancer. The resulting spectrum of ATC transformation included stress-responsive DTC cells, inflammatory ATC cells (iATCs), and mitotic-defective ATC cells and extended all the way to mesenchymal ATC cells (mATCs). Furthermore, our analysis identified 2 important milestones: (a) a diploid stage, in which iATC cells were diploids with inflammatory phenotypes and (b) an aneuploid stage, in which mATCs gained aneuploid genomes and mesenchymal phenotypes, producing excessive amounts of collagen and collagen-interacting receptors. In parallel, cancer-associated fibroblasts showed strong interactions among mesenchymal cell types, macrophages shifted from M1 to M2 states, and T cells reprogrammed from cytotoxic to exhausted states, highlighting new therapeutic opportunities for the treatment of ATC.


Subject(s)
Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Transcriptome , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Thyroid Carcinoma, Anaplastic/genetics , Gene Expression Profiling , Aneuploidy , Cell Line, Tumor
4.
Neurology ; 100(22): e2224-e2236, 2023 05 30.
Article in English | MEDLINE | ID: mdl-36990725

ABSTRACT

BACKGROUND AND OBJECTIVES: Cluster headache and migraine have circadian features at multiple levels (cellular, systems, and behavioral). A thorough understanding of their circadian features informs their pathophysiologies. METHODS: A librarian created search criteria in MEDLINE Ovid, Embase, PsycINFO, Web of Science, and Cochrane Library. Two physicians independently performed the remainder of the systematic review/meta-analysis using Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines. Separate from the systematic review/meta-analysis, we performed a genetic analysis for genes with a circadian pattern of expression (clock-controlled genes or CCGs) by cross-referencing genome-wide association studies (GWASs) of headache, a nonhuman primate study of CCGs in a variety of tissues, and recent reviews of brain areas relevant in headache disorders. Altogether, this allowed us to catalog circadian features at the behavioral level (circadian timing, time of day, time of year, and chronotype), systems level (relevant brain areas where CCGs are active, melatonin and corticosteroid levels), and cellular level (core circadian genes and CCGs). RESULTS: For the systematic review and meta-analysis, 1,513 studies were found, and 72 met the inclusion criteria; for the genetic analysis, we found 16 GWASs, 1 nonhuman primate study, and 16 imaging reviews. For cluster headache behavior, meta-analyses showed a circadian pattern of attacks in 70.5% (3,490/4,953) of participants across 16 studies, with a clear circadian peak between 21:00 and 03:00 and circannual peaks in spring and autumn. Chronotype was highly variable across studies. At the systems level, lower melatonin and higher cortisol levels were reported in cluster headache participants. At the cellular level, cluster headache was associated with core circadian genes CLOCK and REV-ERBα, and 5 of the 9 cluster headache susceptibility genes were CCGs. For migraine behavior, meta-analyses showed a circadian pattern of attacks in 50.1% (2,698/5,385) of participants across 8 studies, with a clear circadian trough between 23:00 and 07:00 and a broad circannual peak between April and October. Chronotype was highly variable across studies. At the systems level, urinary melatonin levels were lower in participants with migraine and even lower during an attack. At the cellular level, migraine was associated with core circadian genes CK1δ and RORα, and 110 of the 168 migraine susceptibility genes were CCGs. DISCUSSION: Cluster headache and migraine are highly circadian at multiple levels, reinforcing the importance of the hypothalamus. This review provides a pathophysiologic foundation for circadian-targeted research into these disorders. TRIAL REGISTRATION INFORMATION: The study was registered with PROSPERO (registration number CRD42021234238).


Subject(s)
Cluster Headache , Melatonin , Migraine Disorders , Animals , Cluster Headache/genetics , Melatonin/metabolism , Genome-Wide Association Study , Migraine Disorders/genetics , Primates/metabolism
5.
bioRxiv ; 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36778278

ABSTRACT

Single-cell nanopore sequencing of full-length mRNAs (scNanoRNAseq) is transforming singlecell multi-omics studies. However, challenges include computational complexity and dependence on short-read curation. To address this, we developed a comprehensive toolkit, scNanoGPS to calculate same-cell genotypes-phenotypes without short-read guidance. We applied scNanoGPS onto 23,587 long-read transcriptomes from 4 tumors and 2 cell lines. Standalone, scNanoGPS accurately deconvoluted error-prone long-reads into single-cells and single-molecules. Further, scNanoGPS simultaneously accessed both phenotypes (expressions/isoforms) and genotypes (mutations) of individual cells. Our analyses revealed that tumor and stroma/immune cells often expressed significantly distinct combinations of isoforms (DCIs). In a kidney tumor, we identified 924 genes with DCIs involved in cell-type-specific functions such as PDE10A in tumor cells and CCL3 in lymphocytes. Moreover, transcriptome-wide mutation analyses identified many cell-type-specific mutations including VEGFA mutations in tumor cells and HLA-A mutations in immune cells, highlighting critical roles of different populations in tumors. Together, scNanoGPS facilitates applications of single-cell long-read sequencing.

6.
J Immunother Cancer ; 11(2)2023 02.
Article in English | MEDLINE | ID: mdl-36796878

ABSTRACT

BACKGROUND: Mammalian cells have developed multiple intracellular mechanisms to defend against viral infections. These include RNA-activated protein kinase (PKR), cyclic GMP-AMP synthase and stimulation of interferon genes (cGAS-STING) and toll-like receptor-myeloid differentiation primary response 88 (TLR-MyD88). Among these, we identified that PKR presents the most formidable barrier to oncolytic herpes simplex virus (oHSV) replication in vitro. METHODS: To elucidate the impact of PKR on host responses to oncolytic therapy, we generated a novel oncolytic virus (oHSV-shPKR) which disables tumor intrinsic PKR signaling in infected tumor cells. RESULTS: As anticipated, oHSV-shPKR resulted in suppression of innate antiviral immunity and improves virus spread and tumor cell lysis both in vitro and in vivo. Single cell RNA sequencing combined with cell-cell communication analysis uncovered a strong correlation between PKR activation and transforming growth factor beta (TGF-ß) immune suppressive signaling in both human and preclinical models. Using a murine PKR targeting oHSV, we found that in immune-competent mice this virus could rewire the tumor immune microenvironment to increase the activation of antigen presentation and enhance tumor antigen-specific CD8 T cell expansion and activity. Further, a single intratumoral injection of oHSV-shPKR significantly improved the survival of mice bearing orthotopic glioblastoma. To our knowledge, this is the first report to identify dual and opposing roles of PKR wherein PKR activates antivirus innate immunity and induces TGF-ß signaling to inhibit antitumor adaptive immune responses. CONCLUSIONS: Thus, PKR represents the Achilles heel of oHSV therapy, restricting both viral replication and antitumor immunity, and an oncolytic virus that can target this pathway significantly improves response to virotherapy.


Subject(s)
Brain Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Animals , Humans , Mice , Brain Neoplasms/pathology , Oncolytic Virotherapy/methods , Simplexvirus , Transforming Growth Factor beta , Tumor Microenvironment , eIF-2 Kinase/metabolism
7.
Cancer Gene Ther ; 30(1): 85-95, 2023 01.
Article in English | MEDLINE | ID: mdl-36076062

ABSTRACT

Herpes simplex virus thymidine kinase (HSVTK)/ganciclovir (GCV) suicide gene therapy has a long history of treating malignant gliomas. Recently, stem cells from human exfoliated deciduous teeth (SHED), which are collected from deciduous teeth and have excellent harvestability, ethical aspects, and self-renewal, have been attracting attention mainly in the field of gene therapy. In the present study, we assessed SHED as a novel cellular vehicle for suicide gene therapy in malignant gliomas, as we have previously demonstrated with various cell types. SHED was transduced with the HSVTK gene (SHEDTK). In vitro experiments showed a significant bystander effect between SHEDTK and glioma cell lines in coculture. Furthermore, apoptotic changes caused by caspase 3/7 activation were simultaneously observed in SHEDTK and glioma cells. Mice implanted with a mixture of U87 and SHEDTK and treated with intraperitoneal GCV survived for longer than 100 days. Additionally, tumors in treatment model mice were significantly reduced in size during the treatment period. SHEDTK implanted at the contralateral hemisphere migrated toward the tumor crossing the corpus callosum. These results suggested that SHEDTK-based suicide gene therapy has potent tumor tropism and a bystander-killing effect, potentially offering a new promising therapeutic modality for malignant gliomas.


Subject(s)
Ganciclovir , Genetic Therapy , Glioma , Animals , Humans , Mice , Bystander Effect/genetics , Ganciclovir/pharmacology , Genetic Therapy/methods , Glioma/therapy , Glioma/drug therapy , Simplexvirus/genetics , Stem Cells , Thymidine Kinase/genetics , Tooth, Deciduous , Genes, Transgenic, Suicide
8.
Pancreas ; 51(7): 790-799, 2022 08 01.
Article in English | MEDLINE | ID: mdl-36395405

ABSTRACT

OBJECTIVES: Extracellular vesicles (EVs) are lipid bound vesicles secreted by cells into the extracellular environment. Studies have implicated EVs in cell proliferation, epithelial-mesenchymal transition, metastasis, angiogenesis, and mediating the interaction of tumor cells and microenvironment. A systematic characterization of EVs from pancreatic cancer cells and cancer-associated fibroblasts (CAFs) would be valuable for studying the roles of EV proteins in pancreatic tumorigenesis. METHODS: Proteomic and functional analyses were applied to characterize the proteomes of EVs released from 5 pancreatic cancer lines, 2 CAF cell lines, and a normal pancreatic epithelial cell line (HPDE). RESULTS: More than 1400 nonredundant proteins were identified in each EV derived from the cell lines. The majority of the proteins identified in the EVs from the cancer cells, CAFs, and HPDE were detected in all 3 groups, highly enriched in the biological processes of vesicle-mediated transport and exocytosis. Protein networks relevant to pancreatic tumorigenesis, including epithelial-mesenchymal transition, complement, and coagulation components, were significantly enriched in the EVs from cancer cells or CAFs. CONCLUSIONS: These findings support the roles of EVs as a potential mediator in transmitting epithelial-mesenchymal transition signals and complement response in the tumor microenvironment and possibly contributing to coagulation defects related to cancer development.


Subject(s)
Cancer-Associated Fibroblasts , Extracellular Vesicles , Pancreatic Neoplasms , Humans , Proteome/metabolism , Cancer-Associated Fibroblasts/metabolism , Proteomics , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Pancreatic Neoplasms/pathology , Cell Transformation, Neoplastic/metabolism , Tumor Microenvironment , Pancreatic Neoplasms
9.
J Clin Invest ; 132(20)2022 10 17.
Article in English | MEDLINE | ID: mdl-36250462

ABSTRACT

Preexisting lung-restricted autoantibodies (LRAs) are associated with a higher incidence of primary graft dysfunction (PGD), although it remains unclear whether LRAs can drive its pathogenesis. In syngeneic murine left lung transplant recipients, preexisting LRAs worsened graft dysfunction, which was evident by impaired gas exchange, increased pulmonary edema, and activation of damage-associated pathways in lung epithelial cells. LRA-mediated injury was distinct from ischemia-reperfusion injury since deletion of donor nonclassical monocytes and host neutrophils could not prevent graft dysfunction in LRA-pretreated recipients. Whole LRA IgG molecules were necessary for lung injury, which was mediated by the classical and alternative complement pathways and reversed by complement inhibition. However, deletion of Fc receptors in donor macrophages or mannose-binding lectin in recipient mice failed to rescue lung function. LRA-mediated injury was localized to the transplanted lung and dependent on IL-1ß-mediated permeabilization of pulmonary vascular endothelium, which allowed extravasation of antibodies. Genetic deletion or pharmacological inhibition of IL-1R in the donor lungs prevented LRA-induced graft injury. In humans, preexisting LRAs were an independent risk factor for severe PGD and could be treated with plasmapheresis and complement blockade. We conclude that preexisting LRAs can compound ischemia-reperfusion injury to worsen PGD for which complement inhibition may be effective.


Subject(s)
Interleukin-1beta/metabolism , Lung Transplantation , Primary Graft Dysfunction , Reperfusion Injury , Animals , Autoantibodies , Complement System Proteins , Humans , Immunoglobulin G , Lung/pathology , Lung Transplantation/adverse effects , Mannose-Binding Lectins , Mice , Primary Graft Dysfunction/genetics , Primary Graft Dysfunction/metabolism , Receptors, Fc , Reperfusion Injury/pathology
10.
Neurooncol Adv ; 4(1): vdac095, 2022.
Article in English | MEDLINE | ID: mdl-35875691

ABSTRACT

Background: The prognosis of glioblastoma (GBM) remains dismal because therapeutic approaches have limited effectiveness. A new targeted treatment using MEK inhibitors, including trametinib, has been proposed to improve GBM therapy. Trametinib had a promising preclinical effect against several cancers, but its adaptive treatment resistance precluded its clinical translation in GBM. Previously, we have demonstrated that protein arginine methyltransferase 5 (PRMT5) is upregulated in GBM and its inhibition promotes apoptosis and senescence in differentiated and stem-like tumor cells, respectively. We tested whether inhibition of PRMT5 can enhance the efficacy of trametinib against GBM. Methods: Patient-derived primary GBM neurospheres (GBMNS) with transient PRMT5 knockdown were treated with trametinib and cell viability, proliferation, cell cycle progression, ELISA, and western blot were analyzed. In vivo, NSG mice were intracranially implanted with PRMT5-intact and -depleted GBMNS, treated with trametinib by daily oral gavage, and observed for tumor progression and mice survival rate. Results: PRMT5 depletion enhanced trametinib-induced cytotoxicity in GBMNS. PRMT5 knockdown significantly decreased trametinib-induced AKT and ERBB3 escape pathways. However, ERBB3 inhibition alone failed to block trametinib-induced AKT activity suggesting that the enhanced antitumor effect imparted by PRMT5 knockdown in trametinib-treated GBMNS resulted from AKT inhibition and not ERBB3 inhibition. In orthotopic murine xenograft models, PRMT5-depletion extended the survival of tumor-bearing mice, and combination with trametinib further increased survival. Conclusion: Combined PRMT5/MEK inhibition synergistically inhibited GBM in animal models and is a promising strategy for GBM therapy.

11.
Blood ; 140(16): 1753-1763, 2022 10 20.
Article in English | MEDLINE | ID: mdl-35512188

ABSTRACT

There is a growing body of evidence that therapy-related myeloid neoplasms (t-MNs) with driver gene mutations arise in the background of clonal hematopoiesis (CH) under the positive selective pressure of chemo- and radiation therapies. Uncovering the exposure relationships that provide selective advantage to specific CH mutations is critical to understanding the pathogenesis and etiology of t-MNs. In a systematic analysis of 416 patients with t-MN and detailed prior exposure history, we found that TP53 mutations were significantly associated with prior treatment with thalidomide analogs, specifically lenalidomide. We demonstrated experimentally that lenalidomide treatment provides a selective advantage to Trp53-mutant hematopoietic stem and progenitor cells (HSPCs) in vitro and in vivo, the effect of which was specific to Trp53-mutant HSPCs and was not observed in HSPCs with other CH mutations. Because of the differences in CK1α degradation, pomalidomide treatment did not provide an equivalent level of selective advantage to Trp53-mutant HSPCs, providing a biological rationale for its use in patients at high risk for t-MN. These findings highlight the role of lenalidomide treatment in promoting TP53-mutated t-MNs and offer a potential alternative strategy to mitigate the risk of t-MN development.


Subject(s)
Neoplasms, Second Primary , Thalidomide , Humans , Lenalidomide/pharmacology , Thalidomide/adverse effects , Hematopoietic Stem Cells/metabolism , Genes, p53 , Mutation , Neoplasms, Second Primary/etiology , Neoplasms, Second Primary/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
12.
Neurosurgery ; 90(5): 515-522, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35179134

ABSTRACT

BACKGROUND: Reports suggest that phosphatidylinositol 3-kinase pathway alterations confer increased risk of progression and poor prognosis in oligodendroglioma, IDH-mutant, and 1p/19q-codeleted molecular oligodendrogliomas (mODG). However, factors that affect prognosis in mODG have not been thoroughly studied. In addition, the benefits of adjuvant radiation and temozolomide (TMZ) in mODGs remain to be determined. OBJECTIVE: To evaluate the role of PIK3CA mutations in mODGs. METHODS: One hundred seven mODGs (2008-2019) diagnosed at 2 institutions were included. A retrospective review of clinical characteristics, molecular alterations, treatments, and outcomes was performed. RESULTS: The median age was 37 years, and 61 patients (57%) were male. There were 64 (60%) World Health Organization (WHO) grade 2 and 43 (40%) WHO grade 3 tumors. Eighty-two patients (77%) were stratified as high risk (age 40 years or older and/or subtotal resection per Radiation Treatment Oncology Group-9802). Gross-total resection was achieved in 47 patients (45%). Treatment strategies included observation (n = 15), TMZ (n = 11), radiation (n = 13), radiation/TMZ (n = 62), and others (n = 6). Our results show a benefit of TMZ vs observation in progression-free survival (PFS). No difference in PFS or overall survival (OS) was observed between radiation and radiation/TMZ. PIK3CA mutations were detected in 15 (14%) mODG, and shorter OS was observed in PIK3CA-mutant compared with PIK3CA wild-type mODGs (10.7 years vs 15.1 years, P = .009). WHO grade 3 tumors showed a shorter PFS, but no significant difference in OS was observed between WHO grades. CONCLUSION: Our findings suggest that mODGs harboring PIK3CA mutations have worse OS. Except for an advantage in PFS with TMZ treatment, adjuvant TMZ, radiation, or a combination of the two showed no significant improvement in OS.


Subject(s)
Brain Neoplasms , Oligodendroglioma , Adult , Brain Neoplasms/drug therapy , Brain Neoplasms/therapy , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/therapeutic use , Female , Humans , Male , Oligodendroglioma/genetics , Oligodendroglioma/therapy , Retrospective Studies , Temozolomide/therapeutic use
13.
Clin Cancer Res ; 28(7): 1460-1473, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35022322

ABSTRACT

PURPOSE: Oncolytic herpes simplex virus-1 (oHSV) infection of brain tumors activates NOTCH, however the consequences of NOTCH on oHSV-induced immunotherapy is largely unknown. Here we evaluated the impact of NOTCH blockade on virus-induced immunotherapy. EXPERIMENTAL DESIGN: RNA sequencing (RNA-seq), TCGA data analysis, flow cytometry, Luminex- and ELISA-based assays, brain tumor animal models, and serum analysis of patients with recurrent glioblastoma (GBM) treated with oHSV was used to evaluate the effect of NOTCH signaling on virus-induced immunotherapy. RESULTS: TCGA data analysis of patients with grade IV glioma and oHSV treatment of experimental brain tumors in mice showed that NOTCH signaling significantly correlated with a higher myeloid cell infiltration. Immunofluorescence staining and RNA-seq uncovered a significant induction of Jag1 (NOTCH ligand) expression in infiltrating myeloid cells upon oHSV infection. Jag1-expressing macrophages further spread NOTCH activation in the tumor microenvironment (TME). NOTCH-activated macrophages increased the secretion of CCL2, which further amplified myeloid-derived suppressor cells. CCL2 and IL10 induction was also observed in serum of patients with recurrent GBM treated with oHSV (rQnestin34.5; NCT03152318). Pharmacologic blockade of NOTCH signaling rescued the oHSV-induced immunosuppressive TME and activated a CD8-dependent antitumor memory response, resulting in a therapeutic benefit. CONCLUSIONS: NOTCH-induced immunosuppressive myeloid cell recruitment limited antitumor immunity. Translationally, these findings support the use of NOTCH inhibition in conjunction with oHSV therapy.


Subject(s)
Glioblastoma , Myeloid-Derived Suppressor Cells , Oncolytic Virotherapy , Oncolytic Viruses , Animals , Cell Line, Tumor , Glioblastoma/pathology , Humans , Immunotherapy , Mice , Myeloid-Derived Suppressor Cells/metabolism , Neoplasm Recurrence, Local/therapy , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Simplexvirus , Tumor Microenvironment , Xenograft Model Antitumor Assays
14.
Br J Cancer ; 126(4): 615-627, 2022 03.
Article in English | MEDLINE | ID: mdl-34811508

ABSTRACT

BACKGROUND: Metabolic stress resulting from nutrient deficiency is one of the hallmarks of a growing tumour. Here, we tested the hypothesis that metabolic stress induces breast cancer stem-like cell (BCSC) phenotype in triple-negative breast cancer (TNBC). METHODS: Flow cytometry for GD2 expression, mass spectrometry and Ingenuity Pathway Analysis for metabolomics, bioinformatics, in vitro tumorigenesis and in vivo models were used. RESULTS: Serum/glucose deprivation not only increased stress markers but also enhanced GD2+ BCSC phenotype and function in TNBC cells. Global metabolomics profiling identified upregulation of glutathione biosynthesis in GD2high cells, suggesting a role of glutamine in the BCSC phenotype. Cueing from the upregulation of the glutamine transporters in primary breast tumours, inhibition of glutamine uptake using small-molecule inhibitor V9302 reduced GD2+ cells by 70-80% and BCSC characteristics in TNBC cells. Mechanistic studies revealed inhibition of the mTOR pathway and induction of ferroptosis by V9302 in TNBC cells. Finally, inhibition of glutamine uptake significantly reduced in vivo tumour growth in a TNBC patient-derived xenograft model using NSG (non-obese diabetic/severe combined immunodeficiency with a complete null allele of the IL-2 receptor common gamma chain) mice. CONCLUSION: Here, we show metabolic stress results in GD2+ BCSC phenotype in TNBC and glutamine contributes to GD2+ phenotype, and targeting the glutamine transporters could complement conventional chemotherapy in TNBC.


Subject(s)
Blood Glucose/analysis , Gangliosides/metabolism , Glutamine/metabolism , Neoplastic Stem Cells/metabolism , Small Molecule Libraries/administration & dosage , Triple Negative Breast Neoplasms/pathology , Animals , Cell Line, Tumor , Female , Ferroptosis/drug effects , Humans , Metabolomics/methods , Mice , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Phenotype , Small Molecule Libraries/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Xenograft Model Antitumor Assays
15.
Cephalalgia ; 41(13): 1298-1309, 2021 11.
Article in English | MEDLINE | ID: mdl-34148408

ABSTRACT

OBJECTIVE: To use 1) newly generated data, 2) existing evidence, and 3) expert opinion to create and validate a new cluster headache screening tool. METHODS: In phase 1 of the study, we performed a prospective study of an English translation of an Italian screen on 95 participants (45 with cluster headache, 17 with other trigeminal autonomic cephalalgias, 30 with migraine, and 3 with trigeminal neuralgia). In phase 2, we performed a systematic review in PubMed of all studies until September 2019 with diagnostic screening tools for cluster headache. In phase 3, a 6-person panel of cluster headache patients, research coordinators, and headache specialists analyzed the data from the first two phases to generate a new diagnostic screening tool. Finally, in phase 4 this new screen was validated on participants at a single headache center (all diagnoses) and through research recruitment (trigeminal autonomic cephalalgias only, as recruitment was essential but was otherwise low). RESULTS: In total, this study included 319 unique participants including 109 cluster headache participants (95 total participants/45 cluster headache participants in phase 1, and 224 total participants/64 cluster headache participants in phase 4). It also found 123 articles on potential screening tools in our systematic review. In phase 1, analysis of the English translation of an Italian screen generated 7 questions with high sensitivity and specificity against migraine, trigeminal neuralgia, and other trigeminal autonomic cephalalgias, but had grammatical and other limitations as a general screening tool. In phase 2, the systematic review revealed nine studies that met inclusion criteria as diagnostic screening tools for cluster headache, including four where sensitivity and specificity were available for individual questions or small groups of questions. In phase 3, this data was reviewed by the expert panel to generate a brief (6-item), binary (yes/no), written screening test. In phase 4, a total of 224 participants completed the new 6-item screening test (81 migraine, 64 cluster headache, 21 other trigeminal autonomic cephalalgias, 35 secondary headaches, 7 neuralgias, 5 probable migraine, and 11 other headache disorders). Answers to the 6 items were combined in a decision tree algorithm and three items had a sensitivity of 84% (confidence interval or 95% confidence interval 73-92%), specificity of 89% (95% confidence interval 84-94%), positive predictive value of 76% (95% confidence interval 64-85%), and negative predictive value of 93% (95% confidence interval 88-97%) for the diagnosis of cluster headache. These three items focused on headache intensity, duration, and autonomic features. CONCLUSION: The 3-item Erwin Test for Cluster Headache is a promising diagnostic screening tool for cluster headache.


Subject(s)
Cluster Headache , Migraine Disorders , Trigeminal Autonomic Cephalalgias , Cluster Headache/diagnosis , Headache , Humans , Prospective Studies
16.
Mol Genet Genomic Med ; 9(6): e1691, 2021 06.
Article in English | MEDLINE | ID: mdl-33943042

ABSTRACT

BACKGROUND: Pineal cyst is a benign lesion commonly occurring in people of any age. Until now, the underlying molecular alterations have not been explored. METHODS: We performed whole exome sequencing of 93 germline samples and 21 pineal cyst tissue samples to illustrate its genetic architecture and somatic mutations. The dominant and recessive inheritance modes were considered, and a probability was calculated to evaluate the significance of variant overrepresentation. RESULTS: By analyzing pineal cyst as a Mendelian disease with a dominant inheritance pattern, we identified 42,325 rare germline variants, and NM_001004711.1:c.476A>G was highly enriched (FDR<0.2). By analyzing it as a recessive disorder, we identified 753 homozygous rare variants detected in at least one pineal cyst sample each. One STIM2 rare variant, NM_001169117.1:c.1652C>T, was overrepresented (FDR<0.05). Analyzing at a gene-based level, we identified a list of the most commonlymutated germline genes, including POP4, GNGT2 and TMEM254. A somatic mutation analysis of 21 samples identified 16 variants in 15 genes, which mainly participated in the biological processes of gene expression and epigenetic regulation, immune response modulation, and transferase activity. CONCLUSION: These molecular profiles are novel for this condition and provide data for investigators interested in pineal cysts.


Subject(s)
Cysts/genetics , Germ-Line Mutation , Pineal Gland/pathology , Adolescent , Adult , Cysts/pathology , Female , GTP-Binding Protein gamma Subunits/genetics , Heterozygote , Homozygote , Humans , Male , Middle Aged , Phenotype , Ribonucleases/genetics , Ribonucleoproteins/genetics , Stromal Interaction Molecule 2/genetics , Exome Sequencing
17.
Nat Commun ; 12(1): 2607, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33972549

ABSTRACT

Allosteric inhibitors of mutant IDH1 or IDH2 induce terminal differentiation of the mutant leukemic blasts and provide durable clinical responses in approximately 40% of acute myeloid leukemia (AML) patients with the mutations. However, primary resistance and acquired resistance to the drugs are major clinical issues. To understand the molecular underpinnings of clinical resistance to IDH inhibitors (IDHi), we perform multipronged genomic analyses (DNA sequencing, RNA sequencing and cytosine methylation profiling) in longitudinally collected specimens from 60 IDH1- or IDH2-mutant AML patients treated with the inhibitors. The analysis reveals that leukemia stemness is a major driver of primary resistance to IDHi, whereas selection of mutations in RUNX1/CEBPA or RAS-RTK pathway genes is the main driver of acquired resistance to IDHi, along with BCOR, homologous IDH gene, and TET2. These data suggest that targeting stemness and certain high-risk co-occurring mutations may overcome resistance to IDHi in AML.


Subject(s)
Antineoplastic Agents/therapeutic use , DNA Methylation , Drug Resistance, Neoplasm/genetics , Enzyme Inhibitors/therapeutic use , Isocitrate Dehydrogenase/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Neoplasm Recurrence, Local/genetics , Stem Cells/metabolism , Aged , Aminopyridines/therapeutic use , CCAAT-Enhancer-Binding Proteins/genetics , Core Binding Factor Alpha 2 Subunit/genetics , DNA Methylation/drug effects , DNA Methylation/genetics , DNA-Binding Proteins/genetics , Dioxygenases , Epigenomics , Evolution, Molecular , Female , Glycine/analogs & derivatives , Glycine/therapeutic use , High-Throughput Nucleotide Sequencing , Humans , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Multigene Family , Neoplasm Recurrence, Local/drug therapy , Proto-Oncogene Proteins/genetics , Pyridines/therapeutic use , RNA-Seq , Repressor Proteins/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Single-Cell Analysis , Triazines/therapeutic use , ras Proteins/genetics
19.
Neuro Oncol ; 23(9): 1481-1493, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33556161

ABSTRACT

BACKGROUND: Despite multi-model therapy of maximal surgical resection, radiation, chemotherapy, and tumor-treating fields, the median survival of glioblastoma (GBM) patients is less than 15 months. Protein arginine methyltransferase 5 (PRMT5) catalyzes the symmetric dimethylation of arginine residues and is overexpressed in GBM. Inhibition of PRMT5 causes senescence in stem-like GBM tumor cells. LB100, a first-in-class small molecular inhibitor of protein phosphatase 2A (PP2A), can sensitize therapy-resistant tumor cells. Here, we tested the anti-GBM effect of concurrent PRMT5 and PP2A inhibition. METHODS: Patient-derived primary GBM neurospheres (GBMNS), transfected with PRMT5 target-specific siRNA, were treated with LB100 and subjected to in vitro assays including PP2A activity and western blot. The intracranial mouse xenograft model was used to test the in vivo antitumor efficacy of combination treatment. RESULTS: We found that PRMT5 depletion increased PP2A activity in GBMNS. LB100 treatment significantly reduced the viability of PRMT5-depleted GBMNS compared to PRMT5-intact GBMNS. LB100 enhanced G1 cell cycle arrest induced by PRMT5 depletion. Combination therapy also increased the expression of phospho-MLKL. Necrostatin-1 rescued PRMT5-depleted cells from the cytotoxic effects of LB100, indicating that necroptosis caused the enhanced cytotoxicity of combination therapy. In the in vivo mouse tumor xenograft model, LB100 treatment combined with transient depletion of PRMT5 significantly decreased tumor size and prolonged survival, while LB100 treatment alone had no survival benefit. CONCLUSION: Overall, combined PRMT5 and PP2A inhibition had significantly greater antitumor effects than PRMT5 inhibition alone.


Subject(s)
Glioblastoma , Animals , Cell Line, Tumor , Glioblastoma/drug therapy , Humans , Mice , Piperazines , Protein Phosphatase 2 , Protein-Arginine N-Methyltransferases/genetics , Xenograft Model Antitumor Assays
20.
Cancer Imaging ; 21(1): 3, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407861

ABSTRACT

BACKGROUND: The utility of multiparametric MRI (mpMRI) in detecting suspected local recurrence post radical prostatectomy (RP) may be associated with PSA and Gleason grade. The purpose of the study was to evaluate the likelihood of detecting locally recurrent prostate cancer utilizing mpMRI in patients with suspected recurrence following radical prostatectomy (RP) parsed by PSA and Gleason grade. METHODS: One hundred ninety five patients with suspected local recurrence were imaged on a 1.5 T MRI with torso array and endorectal coil in this retrospective study. mpMRI interpretations were stratified by PSA and lower (Gleason < 7) vs. higher grade tumors (Gleason 8-10). Recursive partitioning was used to determine whether mpMRI interpretations could be classified as positive or negative. RESULTS: The majority of mpMRI interpretations in patients with lower Gleason grade tumors and PSA < 0.5 ng/mL were negative (68/78, 87.2%, p = 0.004). The majority of mpMRI interpretations in patients with higher Gleason grade tumors and PSA > 1.5 ng/mL were positive (8/9, 88.9%, p = 0.003). Findings were corroborated by recursive partitioning, which identified a PSA = 0.5 ng/ml in patients with lower grade tumors and a PSA = 1.5 ng/mL in patients with higher grade tumors as differentiating negative and positive mpMRIs. CONCLUSION: In the setting of suspected recurrence after RP, mpMRI results are associated with PSA and Gleason grade, both of which can help guide when mpMRI may find utility. mpMRI is likely to be low diagnostic yield and negative for recurrence (87%) in the setting of lower Gleason grade tumors and PSA < 0.5 ng/mL. mpMRI is likely to be of low diagnostic value and positive for recurrence (89%) in the setting of PSA > 1.5 ng/mL and higher grade tumors; in this case, mpMRI findings may be more useful for directing biopsy and local therapy. Between these extremes, PSA > 0.5 ng/mL and lower grade tumors or PSA < 1.5 ng/mL and higher grade tumors, mpMRI results are less predictable, suggesting greater diagnostic value for detecting recurrence post prostatectomy.


Subject(s)
Kallikreins/blood , Multiparametric Magnetic Resonance Imaging/methods , Neoplasm Recurrence, Local/diagnostic imaging , Prostate-Specific Antigen/blood , Prostatic Neoplasms/diagnostic imaging , Aged , Biopsy , Humans , Male , Middle Aged , Neoplasm Grading , Neoplasm Recurrence, Local/blood , Neoplasm Recurrence, Local/pathology , Prostatectomy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...