Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Br J Radiol ; 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39288312

ABSTRACT

OBJECTIVES: To evaluate the performance of ultrasound-based deep learning (DL) models in distinguishing breast phyllodes tumors (PTs) from fibroadenomas (FAs) and their clinical utility in assisting radiologists with varying diagnostic experiences. METHODS: We retrospectively collected 1180 ultrasound images from 539 patients (247 PTs and 292 FAs). Five DL network models with different structures were trained and validated using nodule regions annotated by radiologists on breast ultrasound images. DL models were trained using the methods of transfer learning and 3-fold cross-validation. The model demonstrated the best evaluation index in the 3-fold cross-validation was selected for comparison with radiologists' diagnostic decisions. Two-round reader studies were conducted to investigate the value of DL model in assisting six radiologists with different levels of experience. RESULTS: Upon testing, Xception model demonstrated the best diagnostic performance (AUC: 0.87, 95%CI: 0.81-0.92), outperforming all radiologists (all p < 0.05). Additionally, the DL model enhanced the diagnostic performance of radiologists. Accuracy demonstrated improvements of 4%, 4%, and 3% for senior, intermediate, and junior radiologists, respectively. CONCLUSIONS: The DL models showed superior predictive abilities compared to experienced radiologists in distinguishing breast PTs from FAs. Utilizing the model led to improved efficiency and diagnostic performance for radiologists with different levels of experience (6-25 years of work). ADVANCES IN KNOWLEDGE: We developed and validated a DL model based on the largest available dataset to assist in diagnosing PTs. This model has the potential to allow radiologists to discriminate two types of breast tumors which are challenging to identify with precision and accuracy, and subsequently to make more informed decisions about surgical plans.

2.
Colloids Surf B Biointerfaces ; 245: 114243, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39288548

ABSTRACT

Osteoarthritis (OA) is a chronic inflammation that gradually leads to cartilage degradation. Prolonged chondrocyte oxidative stress contributes to the development of diseases, including chondrocyte apoptosis, cartilage matrix degradation, and aggravation of articular cartilage damage. Bilirubin (BR) possesses strong antioxidant properties by scavenging reactive oxygen species (ROS) and potent protection effects against inflammation. However, its insolubility and short half-life limit its clinical use. Therefore, we developed a supramolecular system of ε-polylysine (EPL) conjugated by ß-cyclodextrin (ß-CD) on the side chain, and bilirubin was loaded via host-guest interactions, which resulted in the self-assemble of this system into bilirubin-loaded polylysine-ß-cyclodextrin nanoparticle (PB) with improving solubility while reducing toxicity and prolonging medication action time. To explore PB's potential pharmacological mechanisms on OA, we established in vitro and in vivo OA models. PB exerted ROS-scavenging proficiency and anti-apoptotic effects on rat chondrocytes by activating the Nrf2-HO-1/GPX4 signaling pathway. Additionally, PB reprogrammed the cartilage microenvironment by regulating the NF-κB signaling pathway to maintain chondrocyte function. Animal experiments further confirmed that PB had excellent scavenging ability for ROS and inflammatory factors related to charge adsorption with cartilage as well as long retention ability. Together, this work suggests that PB has superior protective abilities with beneficial effects on OA, indicating its great potential for intervention therapy targeting chondrocytes.

3.
J Sep Sci ; 47(17): e2400369, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39252170

ABSTRACT

Epoxy resins, as important thermosetting polymers, exhibit excellent adhesion to various substrates. In view of this, reticulate coating of triglycidyl isocyanate with triethylenetetramine was introduced onto the surface of poly(styrene-divinylbenzene) utilizing amine curing reaction to obtain poly(styrene-divinylbenzene)@triglycidyl isocyanate-triethylenetetramine composite microspheres. The amino groups and epoxy groups of triglycidyl isocyanate-triethylenetetramine endowed poly(styrene-divinylbenzene) with good reactivity, which could be quaternized under mild conditions to obtain an anion exchange chromatographic stationary phase. The quaternized poly(styrene-divinylbenzene)@triglycidyl isocyanate-triethylenetetramine was characterized by scanning electron microscope, Fourier-transform infrared spectroscopy, N2 adsorption-desorption experiment, et al. The chromatographic performance of the customized column was evaluated by separating seven conventional anions, organic weak acids, and carbohydrates. Poly(styrene-divinylbenzene)@triglycidyl isocyanate-triethylenetetramine possesses the uniform size of poly(styrene-divinylbenzene) microspheres and good reactivity of triglycidyl isocyanate-triethylenetetramine, which offers a flexible strategy for the preparation of anion exchange stationary phase. The column exhibits excellent chemical and mechanical stability and chromatographic performance. Finally, the column was successfully applied for the determination of nitrite in pickles.

4.
Int J Pharm X ; 8: 100268, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39070171

ABSTRACT

In assisted reproduction techniques, oocytes encounter elevated levels of reactive oxygen species (ROS) during in vitro maturation (IVM). Oxidative stress adversely affects oocyte quality, hampering their maturation, growth, and subsequent development. Thus, mitigating excessive ROS to safeguard less viable oocytes during IVM stands as a viable strategy. Numerous antioxidants have been explored for oocyte IVM, yielding considerable effects; however, several aspects, including solubility, stability, and safety, demand attention and resolution. In this study, we developed nanoparticles by self-assembling endogenous bilirubin and melatonin hormone coated with bilirubin-conjugated glycol chitosan (MB@GBn) to alleviate oxidative stress and enhance oocyte maturation. The optimized MB@GBn exhibited a uniform spherical shape, measuring 128 nm in particle size, with a PDI value of 0.1807 and a surface potential of +11.35 mV. The positively charged potential facilitated nanoparticle adherence to the oocyte surface through electrostatic interaction, allowing for functional action. In vitro studies demonstrated that MB@GB significantly enhanced the maturation of compromised oocytes. Further investigation revealed MB@GB's effectiveness in scavenging ROS, reducing intracellular calcium levels, and suppressing mitochondrial polarization. This study not only offers a novel perspective on nano drug delivery systems for biomedical applications but also presents an innovative strategy for enhancing oocyte IVM.

5.
J Adolesc ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38867608

ABSTRACT

INTRODUCTION: Adverse childhood experiences have long-lasting effects on the self-esteem of adolescents. However, the extrinsic mechanism linking them to self-esteem, which is more modifiable, has rarely been examined. Therefore, this study examined the mediating roles of family, school, and peer social capital and the moderating role of gender in the association between adverse childhood experiences and adolescent self-esteem. METHODS: This study involved a cross-sectional survey of first- and second-grade students in the only high school in Wusu, Xinjiang Uygur Autonomous Region, China. Data were collected in May 2023. A sample of 2539 students (M = 16.84 years old; 55.65% female) was included. The measurement models of family, school, and peer social capital were constructed using confirmatory factor analysis. The mediating roles of the three types of social capital and the moderating role of gender were examined using mediation analysis and multiple-group analysis, respectively. RESULTS: Family, school, and peer social capital significantly mediated the relationship between adverse childhood experiences and adolescent self-esteem, and family social capital played the strongest role. Gender significantly moderated the direct effect of adverse childhood experiences on self-esteem. The direct effect was significant only among girls. CONCLUSIONS: This study underscores the protective role of social capital for self-esteem among adolescents in Northwestern China and similar areas with relatively limited social services. Comprehensive interventions promoting social capital, especially family social capital, should be conducted to enhance self-esteem among adolescents.

6.
J Neurochem ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705582

ABSTRACT

Fear overgeneralization is widely accepted as a pathogenic marker of post-traumatic stress disorder (PTSD). Recently, GABAergic interneurons have been regarded as key players in the regulation of fear memory. The role of hippocampal GABAergic interneurons in contextual fear generalization of PTSD remains incompletely understood. In the present study, we established a rat model of PTSD with inescapable foot shocks (IFS) and observed the loss of GABAergic interneuron phenotype in the hippocampal cornu ammonis-1 (CA1) subfield. To determine whether the loss of GABAergic interneuron phenotype was associated with fear generalization in PTSD rats, we used adeno-associated virus (AAV) to reduce the expression of GAD67 in CA1 and observed its effect on fear generalization. The results showed that the reduction of GAD67 in CA1 enhanced contextual fear generalization in rats. We investigated whether the PERK pathway was involved in the GABAergic interneuron injury. Increased expression of p-PERK, CHOP, and Caspase12 in GABAergic interneurons of PTSD rats was observed. Then, we used salubrinal, an endoplasmic reticulum stress inhibitor, to modulate the PERK pathway. The salubrinal treatment significantly protected the GABAergic interneurons and relieved fear generalization in PTSD rats. In addition, the results showed that salubrinal down-regulated the expression of CHOP and Caspase12 in GABAergic interneurons of PTSD rats. In conclusion, this study provided evidence that the loss of GABAergic interneuron phenotype in CA1 may contribute to contextual fear generalization in PTSD. The PERK pathway is involved in the GABAergic interneuron injury of PTSD rats and modulating it can protect GABAergic interneurons and constrain contextual fear generalization.

7.
Chem Biol Interact ; 396: 111035, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38703807

ABSTRACT

Early life stress (ELS) can cause long-term changes by epigenetic factors, especially histone acetylation modification, playing a crucial role, affect normal cognition, mood, and behavior, and increase susceptibility to post-traumatic stress disorder (PTSD) in adulthood. It has been found that paeoniflorin (PF) can cross the blood-brain barrier to exert anti-PTSD effects on adult PTSD rats. However, whether PF can alleviate the harmful effects caused by ELS in adulthood has not yet been reported. Therefore, to explore the relationship between ELS and PTSD susceptibility in adulthood and its mechanism, in this study, SPS was used as a stressor of ELS, and the mathematical tool Z-normalization was employed as an evaluation criterion of behavioral resilience susceptibility. To investigate the regulatory mechanism of PF on histone acetylation in the hippocampus and amygdala of ELS rats in adulthood, using changes in HATs/HDACs as the entry point, meanwhile, the epigenetic marks (H3K9 and H4K12) in the key brain regions of ELS (hippocampus and amygdala) were evaluated, and the effects of PF on behavioral representation and PTSD susceptibility were observed. This study found that ELS lead to a series of PTSD-like behaviors in adulthood and caused imbalance of HATs/HDACs ratio in the hippocampus and amygdala, which confirms that ELS is an important risk factor for the development of PTSD in adulthood. In addition, paeoniflorin may improve ELS-induced PTSD-like behaviors and reduce the susceptibility of ELS rats to develop PTSD in adulthood by modulating the HATs/HDACs ratio in the hippocampus and amygdala.


Subject(s)
Amygdala , Glucosides , Hippocampus , Histones , Monoterpenes , Stress Disorders, Post-Traumatic , Stress, Psychological , Animals , Glucosides/pharmacology , Glucosides/therapeutic use , Monoterpenes/pharmacology , Monoterpenes/therapeutic use , Hippocampus/metabolism , Hippocampus/drug effects , Acetylation/drug effects , Amygdala/metabolism , Amygdala/drug effects , Histones/metabolism , Rats , Stress Disorders, Post-Traumatic/drug therapy , Stress Disorders, Post-Traumatic/metabolism , Male , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Rats, Sprague-Dawley , Histone Acetyltransferases/metabolism , Histone Deacetylases/metabolism
8.
Front Pharmacol ; 15: 1362464, 2024.
Article in English | MEDLINE | ID: mdl-38595919

ABSTRACT

Quercetin, an abundant flavonoid compound in plants, is considered a novel antidepressant; however, its mechanisms of action are poorly understood. This study aimed to investigate the therapeutic effects of quercetin on chronic unpredictable mild stress (CUMS)-induced depression-like behaviors in rats and explore the underlying mechanisms by combining untargeted metabolomics and 16S rRNA sequencing analysis of brain tissue metabolites and gut microbiota. Gut microbiota analysis revealed that at the phylum level, quercetin reduced Firmicutes and the Firmicutes/Bacteroidetes (F/B) ratio and enhanced Cyanobacteria. At the genus level, quercetin downregulated 6 and upregulated 14 bacterial species. Metabolomics analysis revealed that quercetin regulated multiple metabolic pathways, including glycolysis/gluconeogenesis, sphingolipid metabolism, the pentose phosphate pathway, and coenzyme A biosynthesis. This modulation leads to improvements in depression-like phenotypes, anxiety-like phenotypes, and cognitive function, highlighting the therapeutic potential of quercetin in treating depression.

9.
bioRxiv ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38659921

ABSTRACT

Synthetic receptors that mediate antigen-dependent cell responses are transforming therapeutics, drug discovery, and basic research. However, established technologies such as chimeric antigen receptors (CARs) can only detect immobilized antigens, have limited output scope, and lack built-in drug control. Here, we engineer synthetic G protein-coupled receptors (GPCRs) capable of driving a wide range of native or nonnative cellular processes in response to user-defined antigen. We achieve modular antigen gating by engineering and fusing a conditional auto-inhibitory domain onto GPCR scaffolds. Antigen binding to a fused nanobody relieves auto-inhibition and enables receptor activation by drug, thus generating Programmable Antigen-gated G protein-coupled Engineered Receptors (PAGERs). We create PAGERs responsive to more than a dozen biologically and therapeutically important soluble and cell surface antigens, in a single step, from corresponding nanobody binders. Different PAGER scaffolds permit antigen binding to drive transgene expression, real-time fluorescence, or endogenous G protein activation, enabling control of cytosolic Ca 2+ , lipid signaling, cAMP, and neuronal activity. Due to its modular design and generalizability, we expect PAGER to have broad utility in discovery and translational science.

10.
BMC Cancer ; 24(1): 510, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654281

ABSTRACT

BACKGROUND: To develop a deep learning(DL) model utilizing ultrasound images, and evaluate its efficacy in distinguishing between benign and malignant parotid tumors (PTs), as well as its practicality in assisting clinicians with accurate diagnosis. METHODS: A total of 2211 ultrasound images of 980 pathologically confirmed PTs (Training set: n = 721; Validation set: n = 82; Internal-test set: n = 89; External-test set: n = 88) from 907 patients were retrospectively included in this study. The optimal model was selected and the diagnostic performance evaluation is conducted by utilizing the area under curve (AUC) of the receiver-operating characteristic(ROC) based on five different DL networks constructed at varying depths. Furthermore, a comparison of different seniority radiologists was made in the presence of the optimal auxiliary diagnosis model. Additionally, the diagnostic confusion matrix of the optimal model was calculated, and an analysis and summary of misjudged cases' characteristics were conducted. RESULTS: The Resnet18 demonstrated superior diagnostic performance, with an AUC value of 0.947, accuracy of 88.5%, sensitivity of 78.2%, and specificity of 92.7% in internal-test set, and with an AUC value of 0.925, accuracy of 89.8%, sensitivity of 83.3%, and specificity of 90.6% in external-test set. The PTs were subjectively assessed twice by six radiologists, both with and without the assisted of the model. With the assisted of the model, both junior and senior radiologists demonstrated enhanced diagnostic performance. In the internal-test set, there was an increase in AUC values by 0.062 and 0.082 for junior radiologists respectively, while senior radiologists experienced an improvement of 0.066 and 0.106 in their respective AUC values. CONCLUSIONS: The DL model based on ultrasound images demonstrates exceptional capability in distinguishing between benign and malignant PTs, thereby assisting radiologists of varying expertise levels to achieve heightened diagnostic performance, and serve as a noninvasive imaging adjunct diagnostic method for clinical purposes.


Subject(s)
Deep Learning , Parotid Neoplasms , Ultrasonography , Humans , Retrospective Studies , Ultrasonography/methods , Parotid Neoplasms/diagnostic imaging , Parotid Neoplasms/pathology , Parotid Neoplasms/diagnosis , Male , Middle Aged , Female , Adult , Aged , Young Adult , ROC Curve , Diagnosis, Differential , Adolescent , Aged, 80 and over , Sensitivity and Specificity , Child
11.
Trends Pharmacol Sci ; 45(5): 395-405, 2024 May.
Article in English | MEDLINE | ID: mdl-38580603

ABSTRACT

Reprogramming of methionine metabolism is a conserved hallmark of tumorigenesis. Recent studies have revealed mechanisms regulating methionine metabolism within the tumor microenvironment (TME) that drive both cancer development and antitumor immunity evasion. In this review article we summarize advancements in our understanding of tumor regulation of methionine metabolism and therapies in development that target tumor methionine metabolism. We also delineate the challenges of methionine blockade therapies in cancer and discuss emerging strategies to address them.


Subject(s)
Methionine , Neoplasms , Tumor Microenvironment , Humans , Methionine/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
12.
Sci Bull (Beijing) ; 69(15): 2405-2419, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38614854

ABSTRACT

Excitatory amino acid transporters (EAATs) are responsible for excitatory amino acid transportation and are associated with auto-immune diseases in the central nervous system and peripheral tissues. However, the subcellular location and function of EAAT2 in macrophages are still obscure. In this study, we demonstrated that LPS stimulation increases expression of EAAT2 (coded by Slc1a2) via NF-κB signaling. EAAT2 is necessary for inflammatory macrophage polarization through sustaining mTORC1 activation. Mechanistically, lysosomal EAAT2 mediates lysosomal glutamate and aspartate efflux to maintain V-ATPase activation, which sustains macropinocytosis and mTORC1. We also found that mice with myeloid depletion of Slc1a2 show alleviated inflammatory responses in LPS-induced systemic inflammation and high-fat diet induced obesity. Notably, patients with type II diabetes (T2D) have a higher level of expression of lysosomal EAAT2 and activation of mTORC1 in blood macrophages. Taken together, our study links the subcellular location of amino acid transporters with the fate decision of immune cells, which provides potential therapeutic targets for the treatment of inflammatory diseases.


Subject(s)
Excitatory Amino Acid Transporter 2 , Inflammation , Lysosomes , Macrophages , Mechanistic Target of Rapamycin Complex 1 , Animals , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Excitatory Amino Acid Transporter 2/metabolism , Excitatory Amino Acid Transporter 2/genetics , Lysosomes/metabolism , Inflammation/metabolism , Inflammation/immunology , Humans , Lipopolysaccharides/pharmacology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/immunology , Glutamic Acid/metabolism , Mice, Inbred C57BL , NF-kappa B/metabolism , Aspartic Acid/metabolism , Male , Obesity/metabolism , Obesity/immunology , Signal Transduction , Diet, High-Fat/adverse effects , Pinocytosis/drug effects
13.
Nat Methods ; 21(4): 692-702, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38443508

ABSTRACT

The serotonergic system plays important roles in both physiological and pathological processes, and is a therapeutic target for many psychiatric disorders. Although several genetically encoded GFP-based serotonin (5-HT) sensors were recently developed, their sensitivities and spectral profiles are relatively limited. To overcome these limitations, we optimized green fluorescent G-protein-coupled receptor (GPCR)-activation-based 5-HT (GRAB5-HT) sensors and developed a red fluorescent GRAB5-HT sensor. These sensors exhibit excellent cell surface trafficking and high specificity, sensitivity and spatiotemporal resolution, making them suitable for monitoring 5-HT dynamics in vivo. Besides recording subcortical 5-HT release in freely moving mice, we observed both uniform and gradient 5-HT release in the mouse dorsal cortex with mesoscopic imaging. Finally, we performed dual-color imaging and observed seizure-induced waves of 5-HT release throughout the cortex following calcium and endocannabinoid waves. In summary, these 5-HT sensors can offer valuable insights regarding the serotonergic system in both health and disease.


Subject(s)
Receptors, G-Protein-Coupled , Serotonin , Humans , Mice , Animals , Serotonin/metabolism , Receptors, G-Protein-Coupled/metabolism , Cerebral Cortex/metabolism
14.
Cell Death Dis ; 15(2): 115, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38326336

ABSTRACT

Gasdermin D (GSDMD) functions as a pivotal executor of pyroptosis, eliciting cytokine secretion following cleavage by inflammatory caspases. However, the role of posttranslational modifications (PTMs) in GSDMD-mediated pyroptosis remains largely unexplored. In this study, we demonstrate that GSDMD can undergo acetylation at the Lysine 248 residue, and this acetylation enhances pyroptosis. We identify histone deacetylase 4 (HDAC4) as the specific deacetylase responsible for mediating GSDMD deacetylation, leading to the inhibition of pyroptosis both in vitro and in vivo. Deacetylation of GSDMD impairs its ubiquitination, resulting in the inhibition of pyroptosis. Intriguingly, phosphorylation of HDAC4 emerges as a critical regulatory mechanism promoting its ability to deacetylate GSDMD and suppress GSDMD-mediated pyroptosis. Additionally, we implicate Protein phosphatase 1 (PP1) catalytic subunits (PP1α and PP1γ) in the dephosphorylation of HDAC4, thereby nullifying its deacetylase activity on GSDMD. This study reveals a complex regulatory network involving HDAC4, PP1, and GSDMD. These findings provide valuable insights into the interplay among acetylation, ubiquitination, and phosphorylation in the regulation of pyroptosis, offering potential targets for further investigation in the field of inflammatory cell death.


Subject(s)
Gasdermins , Histone Deacetylases , Protein Phosphatase 1 , Pyroptosis , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Neoplasm Proteins/metabolism , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism , Protein Processing, Post-Translational , Humans , Animals , Mice , Gasdermins/metabolism
15.
mBio ; 15(3): e0343023, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38323832

ABSTRACT

Campylobacter jejuni is a foodborne pathogen commonly found in the intestinal tracts of animals. This pathogen is a leading cause of gastroenteritis in humans. Besides its highly infectious nature, C. jejuni is increasingly resistant to a number of clinically administrated antibiotics. As a consequence, the Centers for Disease Control and Prevention has designated antibiotic-resistant Campylobacter as a serious antibiotic resistance threat in the United States. The C. jejuni CosR regulator is essential to the viability of this bacterium and is responsible for regulating the expression of a number of oxidative stress defense enzymes. Importantly, it also modulates the expression of the CmeABC multidrug efflux system, the most predominant and clinically important system in C. jejuni that mediates resistance to multiple antimicrobials. Here, we report structures of apo-CosR and CosR bound with a 21 bp DNA sequence located at the cmeABC promotor region using both single-particle cryo-electron microscopy and X-ray crystallography. These structures allow us to propose a novel mechanism for CosR regulation that involves a long-distance conformational coupling and rearrangement of the secondary structural elements of the regulator to bind target DNA. IMPORTANCE: Campylobacter jejuni has emerged as an antibiotic-resistant threat worldwide. CosR is an essential regulator for this bacterium and is important for Campylobacter adaptation to various stresses. Here, we describe the structural basis of CosR binding to target DNA as determined by cryo-electron microscopy and X-ray crystallography. Since CosR is a potential target for intervention, our studies may facilitate the development of novel therapeutics to combat C. jejuni infection.


Subject(s)
Campylobacter jejuni , Campylobacter , Animals , Humans , Campylobacter jejuni/genetics , Cryoelectron Microscopy , Campylobacter/genetics , Anti-Bacterial Agents/metabolism , DNA/metabolism , Bacterial Proteins/metabolism
16.
Gut Microbes ; 16(1): 2313769, 2024.
Article in English | MEDLINE | ID: mdl-38353638

ABSTRACT

Melatonin has various physiological effects, such as the maintenance of circadian rhythms, anti-inflammatory functions, and regulation of intestinal barriers. The regulatory functions of melatonin in gut microbiota remodeling have also been well clarified; however, the role of gut microbiota in regulating host melatonin production remains poorly understood. To address this, we studied the contribution of gut microbiota to host melatonin production using gut microbiota-perturbed models. We demonstrated that antibiotic-treated and germ-free mice possessed diminished melatonin levels in the serum and elevated melatonin levels in the colon. The influence of the intestinal microbiota on host melatonin production was further confirmed by fecal microbiota transplantation. Notably, Lactobacillus reuteri (L. R) and Escherichia coli (E. coli) recapitulated the effects of gut microbiota on host melatonin production. Mechanistically, L. R and E. coli activated the TLR2/4/MyD88/NF-κB signaling pathway to promote expression of arylalkylamine N-acetyltransferase (AANAT, a rate-limiting enzyme for melatonin production), and MyD88 deficiency in colonic epithelial cells abolished the influence of intestinal microbiota on colonic melatonin production. Collectively, we revealed a specific underlying mechanism of gut microbiota to modulate host melatonin production, which might provide novel therapeutic ideas for melatonin-related diseases.


Subject(s)
Gastrointestinal Microbiome , Melatonin , Animals , Mice , Escherichia coli , Myeloid Differentiation Factor 88/genetics , Adaptor Proteins, Signal Transducing , Epithelial Cells
17.
Sci Total Environ ; 916: 170259, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38253096

ABSTRACT

Microbial interactions determine ecosystem carbon (C) and nutrient cycling, yet it remains unclear how interguild fungal interactions modulate microbial residue contribution to soil C pools (SOC) during forest succession. Here, we present a region-wide investigation of the relative dominance of saprophytic versus symbiotic fungi in litter and soil compartments, exploring their linkages to soil microbial residue pools and potential drivers along a chronosequence of secondary Chinese pine (Pinus tabulaeformis) forests on the Loess Plateau. Despite minor changes in C and nitrogen (N) stocks in the litter or soil layers across successional stages, we found significantly lower soil phosphorus (P) stocks, higher ratios of soil C: N, soil N: P and soil C: P but lower ratios of litter C: N and litter C: P in old (>75 years) than young stands (<30 years). Pine stand development altered the saprotroph: symbiotroph ratios of fungal communities to favor the soil symbiotrophs versus the litter saprotrophs. The dominance of saprotrophs in litter is positively related to microbial necromass contribution to SOC, which is negatively related to the dominance of symbiotrophs in soils. Antagonistic interguild fungal competition in litter and soil layers, in conjunction with increased fungal but decreased bacterial necromass contribution to SOC, jointly contribute to unchanged total necromass contribution to SOC with stand development. The saprotroph: symbiotroph ratios in litter and soil layers are mainly driven by soil P stocks and stand parameters (e.g., stand age and slope), respectively, while substrate stoichiometries primarily regulate microbial necromass accumulation and fungal: bacterial necromass ratios. These results provide novel insights into how microbial interactions at local spatial scales modulate temporal changes in SOC pools, with management implications for mitigating regional land degradation.


Subject(s)
Ecosystem , Pinus , Soil/chemistry , Forests , Phosphorus , Carbon/chemistry , Soil Microbiology , Bacteria
18.
Trends Endocrinol Metab ; 35(1): 62-73, 2024 01.
Article in English | MEDLINE | ID: mdl-37778898

ABSTRACT

Carbon metabolism, including one-carbon (1C) metabolism and central carbon metabolism (CCM), provides energy for the cell and generates metabolites with signaling activities. The regulation of macrophage polarization involves complex signals and includes an epigenetic level. Epigenetic modifications through changes in carbon metabolism allow macrophages to respond in a timely manner to their environment and adapt to metabolic demands during macrophage polarization. Here we summarize the current understanding of the crosstalk between carbon metabolism and epigenetic modifications in macrophages under physiological conditions and in the tumor microenvironment (TME) and provide targets and further directions for macrophage-associated diseases.


Subject(s)
Macrophages , Signal Transduction , Humans , Macrophages/metabolism , Epigenesis, Genetic
19.
Aging Ment Health ; 28(4): 675-683, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37811736

ABSTRACT

OBJECTIVES: This study aimed to examine the moderating role of socioeconomic status in the association between community-based social capital-based on individual-level cognitive and structural social capital-and depressive symptoms among older adults in urban China. METHODS: Data were collected in 2020 through a community survey of 800 respondents aged 60 years and older living in Shijiazhuang and Tianjin. Depressive symptoms were assessed using the Center for Epidemiologic Studies Depression Scale. Multiple-group analyses were conducted to analyze the data. RESULTS: Measurement models of cognitive social capital and structural social capital were established. Measurement invariance was established across different socioeconomic groups. Additionally, socioeconomic status significantly moderated the association between social capital and depressive symptoms. The association between cognitive social capital and depressive symptoms was statistically significant among respondents with relatively low incomes and high levels of education, whereas the association between structural social capital and depressive symptoms was significant only among those with relatively high incomes. CONCLUSION: Future social capital policies and interventions should adopt different strategies to provide services to older adults from different socioeconomic backgrounds. Furthermore, educational programs should promote the effects of cognitive social capital on depressive symptoms later in life.


Subject(s)
Depression , Social Capital , Humans , Middle Aged , Aged , Depression/epidemiology , Social Support , Social Class , China/epidemiology
20.
Hippocampus ; 34(3): 156-165, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38100162

ABSTRACT

The excitatory-inhibitory imbalance has been considered an important mechanism underlying stress-related psychiatric disorders. In the present study, rats were exposed to 6 days of inescapable foot shock (IFS) to induce stress. The open field test and elevated plus maze test showed that IFS-exposed rats exhibited increased anxiety-like behavior. Immunofluorescence showed that IFS rats had a decreased density of GAD67-immunoreactive interneurons in the dorsal hippocampal CA1 region, while no significant change in the density of CaMKIIα-immunoreactive glutamatergic neurons was seen. We investigated the expression of different interneuron subtype markers, including parvalbumin (PV), somatostatin (SST), and calretinin (CR), and noted a marked decline in the density of PV-immunoreactive interneurons in the dorsal CA1 region of IFS rats. The perineuronal net (PNN) is a specialized extracellular matrix structure primarily around PV interneurons. We used Wisteria floribunda agglutinin lectin to label the PNNs and observed that IFS rats had an increased proportion of PNN-coated PV-positive interneurons in CA1. The number of PSD95-positive excitatory synaptic puncta on the soma of PNN-free PV-positive interneurons was significantly higher than that of PNN-coated PV-positive interneurons. Our findings suggest that the effect of IFS on the hippocampal GABAergic interneurons could be cell-type-specific. Loss of PV phenotype in the dorsal hippocampal CA1 region may contribute to anxiety in rats. The dysregulated PV-PNN relationship in CA1 after traumatic stress exposure might represent one of the neurobiological correlates of the observed anxiety-like behavior.


Subject(s)
Neurons , Parvalbumins , Humans , Rats , Animals , Parvalbumins/metabolism , Extracellular Matrix/metabolism , Interneurons/metabolism , Hippocampus/metabolism , Anxiety
SELECTION OF CITATIONS
SEARCH DETAIL