Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.348
Filter
1.
Article in English | MEDLINE | ID: mdl-39222412

ABSTRACT

BACKGROUND: This study investigates how metabolic/bariatric surgery (MBS) affects thyroid hormone (TH) levels and TH resistance in obese euthyroid individuals, focusing on their correlation with changes in body composition. METHODS: We included 470 obese individuals and 118 controls for baseline assessment, and 125 obese patients receiving MBS for longitudinal study. Data on body composition and thyroid function were collected. Correlations between baseline and changes in thyroid function and body composition were assessed. RESULTS: In the obese group, thyroid stimulating hormone (TSH), free triiodothyronine (fT3) levels, and thyroid feedback quantile-based index (TFQI) were elevated and significantly decreased post-MBS, along with visceral fat area (VFA) and body fat percentages, while skeletal muscle mass (SMM) percentage increased. Preoperative partial correlation analysis adjusted for age and sex revealed that TSH positively correlated with VFA (r=0.109, P=0.019), body fat percentage (r=0.114, P=0.013), and negatively correlated with SMM percentage (r=-0.104, P=0.024). Similar correlations were observed between central TH resistance indices and body composition, but no significant correlations were found in the control group. Post-MBS, decreased TSH positively correlated with decreased VFA (r=0.251, P=0.006) and increased SMM percentage (r=0.233, P=0.011). While reductions in VFA and body fat percentage were linked to improved central thyroid hormone resistance, a decrease in peripheral TH conversion was noted. CONCLUSIONS: MBS significantly impacts thyroid function and TH resistance, with notable correlations to changes in body composition.

2.
Small ; : e2406397, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223859

ABSTRACT

Silicon heterojunction (SHJ) solar cells have set world-record efficiencies among single-junction silicon solar cells, accelerating their commercial deployment. Despite these clear efficiency advantages, the high costs associated with low-temperature silver pastes (LTSP) for metallization have driven the search for more economical alternatives in mass production. 2D transition metal carbides (MXenes) have attracted significant attention due to their tunable optoelectronic properties and metal-like conductivity, the highest among all solution-processed 2D materials. MXenes have emerged as a cost-effective alternative for rear-side electrodes in SHJ solar cells. However, the use of MXene electrodes has so far been limited to lab-scale SHJ solar cells. The efficiency of these devices has been constrained by a fill factor (FF) of under 73%, primarily due to suboptimal charge transport at the contact layer/MXene interface. Herein, a silver nanowire (AgNW)-assisted Ti3C2Tx MXene electrode contact is introduced and explores the potential of this hybrid electrode in industry-scale solar cells. By incorporating this hybrid electrode into SHJ solar cells, 9.0 cm2 cells are achieved with an efficiency of 24.04% (FF of 81.64%) and 252 cm2 cells with an efficiency of 22.17% (FF of 76.86%), among the top-performing SHJ devices with non-metallic electrodes to date. Additionally, the stability and cost-effectiveness of these solar cells are discussed.

4.
Biomater Sci ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158571

ABSTRACT

Crevice corrosion at the implantation sites cannot be neglected in clinical applications of biodegradable zinc alloys as implants. In this study, a crevice corrosion protocol was designed to investigate the crevice corrosion behavior of the Zn-0.45Mn-0.2Mg (ZMM42) alloy for the first time, by varying crevice thicknesses in simulated body fluid (SBF) through immersion and electrochemical analysis. The results indicated that the ZMM42 alloy was susceptible to crevice corrosion in the range from 0.03 mm to 0.2 mm. When the crevice thickness was 0.05 mm, the crevice corrosion of the specimen became more severe compared to other thicknesses.

5.
Ecotoxicol Environ Saf ; 284: 116876, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39146594

ABSTRACT

The prevalence of environmental problems and the increasing risk of human exposure to environmental pollutants have become a global concern. The increasing environmental pollution is one of the main reasons for the rising incidence of most neurological-related diseases in recent years. However, the ethical constraints of direct human research and the racial limitations of animal models have slowed the progress of research in this area. The purpose of this study is to review the neurotoxicity of different environmental pollutants on the brain using brain organoids as a new model and to conclude that brain organoids may play a key role in assessing the mechanisms by which environmental pollutants affect neurogenesis and cause neurological pathogenesis. To accurately determine the negative effects of environmental pollutants on the nervous system, self-organizing brain organoids that are highly similar to the developing brain have become a new model system for studying the effects of environmental pollutants on human brain development and disease. This study uses brain organoids as a model to summarize the neurotoxicity of different environmental pollutants on the nervous system, including structural changes in brain organoids, inhibition of neuronal differentiation and migration, impairment of mitochondrial function, damage to cellular cilia, and influence on signaling pathways. In conclusion, exposure to environmental pollutants may cause different neurotoxicity to the nervous system. Therefore, it is crucial to understand how to use brain organoids to ameliorate neurological disorders caused by environmental pollution.

6.
Cancer Immunol Immunother ; 73(10): 208, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110249

ABSTRACT

Immunotherapy for pancreatic ductal carcinoma (PDAC) remains disappointing due to the repressive tumor microenvironment and T cell exhaustion, in which the roles of interferon-stimulated genes were largely unknown. Here, we focused on a typical interferon-stimulated gene, GBP4, and investigated its potential diagnostic and therapeutic value in pancreatic cancer. Expression analysis on both local samples and public databases indicated that GBP4 was one of the most dominant GBP family members present in the PDAC microenvironment, and the expression level of GBP4 was negatively associated with patient survival. We then identified DNA hypo-methylation in regulatory regions of GBP4 in PDAC, and validated its regulatory role on GBP4 expression via performing targeted methylation using dCas9-SunTag-DNMAT3A-sgRNA-targeted methylation system on selected DNA locus. After that, we investigated the downstream functions of GBP4, and chemotaxis assays indicated that GBP4 overexpression significantly improved the infiltration of CD8+T cells, but also induced upregulation of immune checkpoint genes and T cell exhaustion. Lastly, in vitro T cell killing assays using primary organoids suggested that the PDAC samples with high level of GBP4 expression displayed significantly higher sensitivity to anti-PD-1 treatment. Taken together, our studies revealed the expression patterns and epigenetic regulatory mechanisms of GBP4 in pancreatic cancer and clarified the effects of GBP4 on T cell exhaustion and antitumor immunology.


Subject(s)
DNA Methylation , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms , Tumor Microenvironment , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Tumor Microenvironment/immunology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice , Animals , T-Cell Exhaustion
7.
Ecotoxicol Environ Saf ; 283: 116802, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39106567

ABSTRACT

Infertility is a global health problem affecting millions of people of reproductive age worldwide, with approximately half caused by males. Chitosan oligosaccharide (COS) has strong antioxidant capacity, but its impact on the male reproductive system has not been effectively evaluated. To address this, we integrated RNA-seq, serum metabolomics and intestinal 16 S rDNA analysis to conduct a comprehensive investigation on the male reproductive system. The results showed that COS has potential targets for the treatment of oligospermia, which can promote the expression of meiotic proteins DDX4, DAZL and SYCP1, benefit germ cell proliferation and testicular development, enhance antioxidant capacity, and increase the expression of testicular steroid proteins STAR and CYP11A1. At the same time, COS can activate PI3K-Akt signaling pathway in testis and TM3 cells. Microbiome and metabolomics analysis suggested that COS alters gut microbial community composition and cooperates with serum metabolites to regulate spermatogenesis. Therefore, COS promotes male reproduction by regulating intestinal microorganisms and serum metabolism, activating PI3K-Akt signaling pathway, improving testicular antioxidant capacity and steroid regulation.

9.
Biomed Mater ; 19(5)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39114907

ABSTRACT

(+)4-cholesten-3-one has been proved to have potential wound healing effect in the process of wound regeneration. This study aimed to evaluate the effect of (+)4-cholesten-3-one/sodium alginate/gelatin on skin injury and reveal its potential molecular mechanism. First, we prepared sodium alginate/gelatin hydrogel (SA/Gel hydrogel) with different ratios and tested their characteristics. Based on these results, different concentrations of (+)4-cholesten-3-one were added into SA/Gel hydrogel. A full-thickness skin injury model was successfully established to evaluate wound healing activityin vivo. HE staining and Masson staining were used to evaluate the thickness of granulation tissue and collagen deposition level. Immunohistochemical staining and immunofluorescence staining were applied to detect the level of revascularization and proliferation in each group of wounds. Western blot, quantitative-PCR and immunofluorescence staining were used to detect the expression of proteins related to Wnt/ß-catenin signaling pathway in each group of wounds.In vitroresults showed that the hydrogel not only created a 3D structure for cell adhesion and growth, but also exhibited good swelling ability, excellent degradability and favorable bio-compatibility. Most importantly,in vivoexperiments further indicated that (+)4-cholesten-3-one/SA/Gel hydrogel effectively enhanced wound healing. The effectiveness is due to its superior abilities in accelerating healing process, granulation tissue regeneration, collagen deposition, promoting angiogenesis, tissue proliferation, as well as fibroblast activation and differentiation. The underlying mechanism was related to the Wnt/ß-catenin signaling pathway. This study highlighted that (+)4-cholesten-3-one/SA/Gel hydrogel holds promise as a wound healing dressing in future clinical applications.


Subject(s)
Alginates , Gelatin , Hydrogels , Regeneration , Skin , Wound Healing , Wound Healing/drug effects , Alginates/chemistry , Animals , Gelatin/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Skin/injuries , Skin/drug effects , Skin/metabolism , Regeneration/drug effects , Cell Proliferation/drug effects , Male , Mice , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Rats , Collagen/chemistry , Wnt Signaling Pathway/drug effects , Humans
10.
Int J Surg ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110573

ABSTRACT

BACKGROUND: This study aimed to use artificial intelligence (AI) to integrate various radiological and clinical pathological data to identify effective predictors of contralateral cervical lymph node metastasis (CCLNM) in patients with papillary thyroid carcinoma (PTC) and to establish a clinically applicable model to guide the extent of surgery. METHODS: This prospective cohort study included 603 patients with PTC from three centers. Clinical, pathological, and ultrasonographic data were collected and utilized to develop a machine learning (ML) model for predicting CCLNM. Model development at the internal center utilized logistic regression along with other ML algorithms. Diagnostic efficacy was compared among these methods, leading to the adoption of the final model (random forest). This model was subject to AI interpretation and externally validated at other centers. RESULTS: CCLNM was associated with multiple pathological factors. The Delphian lymph node metastasis ratio, ipsilateral cervical lymph node metastasis number, and presence of ipsilateral cervical lymph node metastasis were independent risk factors for CCLNM. Following feature selection, a Delphian lymph node-CCLNM (D-CCLNM) model was established using the Random forest algorithm based on five attributes. The D-CCLNM model demonstrated the highest area under the curve (AUC; 0.9273) in the training cohort and exhibited high predictive accuracy, with AUCs of 0.8907 and 0.9247 in the external and validation cohorts, respectively. CONCLUSIONS: We developed a new, effective method that uses ML to predict CCLNM in patients with PTC. This approach integrates data from Delphian lymph nodes and clinical characteristics, offering a foundation for guiding surgical decisions, and is conveniently applicable in clinical settings.

12.
Neuroscience ; 555: 213-221, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39089569

ABSTRACT

Anxiety disorders are prevalent chronic psychological disease with complex pathogenic mechanisms. Current anxiolytics have limited efficacy and numerous side effects in many anxiety patients, highlighting the urgent need for new therapies. Recent research has been focusing on nutritional supplements, particularly amino acids, as potential therapies for anxiety disorders. Among these, L-Cysteine plays a crucial role in various biological processes. L-Cysteine exhibits antioxidant properties that can enhance the antioxidant functions of the central nervous system (CNS). Furthermore, metabolites of L-cysteine, such as glutathione and hydrogen sulfide have been shown to alleviate anxiety through distinct molecular mechanisms. Long-term administration of L-Cysteine has anxiolytic, antidepressant, and memory-improving effects. L-Cysteine depletion can lead to increased oxidative stress in the brain. This review delves into the potential mechanisms of L-Cysteine and its main products, glutathione (GSH) and hydrogen sulfide (H2S) in the management of anxiety and related diseases.


Subject(s)
Anxiety Disorders , Cysteine , Dietary Supplements , Cysteine/pharmacology , Humans , Anxiety Disorders/drug therapy , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/therapeutic use , Glutathione/metabolism , Antioxidants/pharmacology , Antioxidants/administration & dosage , Oxidative Stress/drug effects
13.
Parasit Vectors ; 17(1): 342, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148111

ABSTRACT

BACKGROUND: Artemisinin (ART) analogs, such as dihydroartemisinin, arteether, artemether, and artesunate, all featuring an endoperoxide bridge, have demonstrated efficacy against schistosomiasis. Artemisitene (ATT), which contains an additional α, ß-unsaturated carbonyl structure, has shown enhanced biological activities. This study aims to evaluate the anti-schistosomaiasis japonica activity of ATT and compare it with ART. METHODS: We assessed liver inflammation and fibrosis in mice using hematoxylin and eosin staining and Sirius red staining, respectively. RNA sequencing analyzed transcriptomics in female and male Schistosoma japonicum (S. japonicum) adult worms and mice livers, with cytokine profiling and flow cytometry to study immune responses under ART or ATT treatment. RESULTS: ATT exhibits a marked reduction in female S. japonicum adult worms and egg numbers, damaging the adult worms' surface. It also influences the transcription of genes related to cellular anatomical structures. Notably, ATT treatment resulted in significant reductions in liver granuloma size and collagen area, alongside lowering serum levels of glutamic pyruvic and glutamic oxaloacetic transaminase more effectively than ART. Both ART and ATT markedly decreased neutrophil frequency in the liver and elevated eosinophil counts. However, only ATT treatment significantly reduced the M1/M2 and Th1/Th2 indices, indicating a pronounced shift in immune response profiles. ATT-affected host immunity correlated with the extent of liver fibrosis and the count of single males more strongly than ART. CONCLUSION: ATT, as a novel preventive strategy for schistosomiasis japonica in mice, significantly outperforms ART.


Subject(s)
Artemisinins , Liver , Schistosoma japonicum , Schistosomiasis japonica , Animals , Artemisinins/pharmacology , Artemisinins/therapeutic use , Schistosomiasis japonica/drug therapy , Schistosomiasis japonica/prevention & control , Schistosomiasis japonica/parasitology , Mice , Schistosoma japonicum/drug effects , Female , Male , Liver/parasitology , Liver/pathology , Liver/drug effects , Cytokines/metabolism , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Disease Models, Animal
14.
BMC Cardiovasc Disord ; 24(1): 421, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39134935

ABSTRACT

BACKGROUND: Idiopathic ventricular arrhythmias (IVAs) arising from different portions of the communicating vein of the left ventricular summit (summit-CV) are not a rare phenomenon. Whereas its electrocardiographic (ECG) and electrophysiological characteristics are not fully investigated. OBJECTIVE: This study aimed to identify distinct ECG and electrophysiological features of IVAs originating from different portions of summit-CV. METHODS: Nineteen patients confirmed arising from summit-CV were included in this study. RESULTS: The 19 patients were divided into proximal and distal portion groups based on their target sites in summit-CV. In the proximal portion group, 100% (11/11) VAs showed dominant negative (rs or QS) waves in lead I, while in the distal portion group, 87.5% (7/8) showed dominant positive waves (R, Rs or r) (p < 0.000). In lead V1, 100% (11/11) of the proximal portion group showed dominant positive waves (R or Rs), while 62.50% (5/8) of the distal portion group showed positive and negative bidirectional or negative waves (RS or rS) (p < 0.005). RI>4mV, SI<3.5mV, RV1<13mV, SV1>3.5mV, RI/SI>0.83, and RV1/SV1< 2.6 indicated a distal portion of summit-CV with the predictive value of 0.909, 1.000, 0.653, 0.972, 0.903, 0.966, respectively. A more positive wave in lead I and a more negative wave in lead V1 indicated more distal origin in summit-CV. Target sites in proximal and distal summit-CV groups showed similar electrophysiological characteristics during mapping. CONCLUSIONS: There were significant differences in ECG characteristics of VAs at different portions of summit-CV, which could aid pre-procedure planning and facilitate radiofrequency catheter ablation (RFCA) procedures.


Subject(s)
Action Potentials , Catheter Ablation , Electrocardiography , Heart Rate , Heart Ventricles , Predictive Value of Tests , Humans , Catheter Ablation/adverse effects , Female , Male , Middle Aged , Adult , Treatment Outcome , Heart Ventricles/physiopathology , Heart Ventricles/surgery , Tachycardia, Ventricular/physiopathology , Tachycardia, Ventricular/surgery , Tachycardia, Ventricular/diagnosis , Electrophysiologic Techniques, Cardiac , Retrospective Studies , Aged
15.
ACS Appl Mater Interfaces ; 16(32): 41828-41842, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39088848

ABSTRACT

The bacterium Pseudomonas aeruginosa is an exceptionally resilient opportunistic pathogen, presenting formidable challenges for treatment due to its proclivity for developing drug resistance. To address this predicament, we have devised a self-assembled supramolecular antibiotic known as dHTSN1@pHPplus, which can circumvent the drug resistance mechanism of Pseudomonas aeruginosa and effectively combat Pseudomonas aeruginosa infection by impeding the secretion of key virulence factors through the inhibition of the type III secretion system while simultaneously mobilizing immune cells to eradicate Pseudomonas aeruginosa. Furthermore, dHTSN1@pHPplus was ingeniously engineered with infection-targeting capabilities, enabling it to selectively concentrate precisely at the site of infection. As anticipated, the administration of dHTSN1@pHPplus exhibited a remarkable therapeutic efficacy in combating dual resistance to Meropenem and imipenem in a mouse model of P. aeruginosa lung infection. The results obtained from metagenomic detection further confirmed these findings, demonstrating a significant reduction in the proportion of Pseudomonas aeruginosa compared to untreated mice with Pseudomonas aeruginosa-infected lungs. Additionally, no notable acute toxicity was observed in the acute toxicity experiments. The present study concludes that the remarkable efficacy of dHTSN1@pHPplus in treating drug-resistant P. aeruginosa infection confirms its immense potential as a groundbreaking antibiotic agent for combating drug-resistant P. aeruginosa.


Subject(s)
Anti-Bacterial Agents , Pseudomonas Infections , Pseudomonas aeruginosa , Virulence Factors , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Pseudomonas Infections/drug therapy , Pseudomonas Infections/immunology , Pseudomonas Infections/microbiology , Adaptive Immunity/drug effects , Microbial Sensitivity Tests , Humans , Drug Resistance, Bacterial/drug effects , Mice, Inbred BALB C , Female
16.
Heliyon ; 10(15): e34975, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39144956

ABSTRACT

Selenium (Se), a component of selenoproteins and selenocompounds in the human body, is crucial for the development of male reproductive organs, DNA synthesis, thyroid hormone, metabolism, and defence against infections and oxidative damage. In the testis, it must exceed a desirable level since either a shortage or an overabundance causes aberrant growth. The antioxidant properties of selenium are essential for preserving human reproductive health. Selenoproteins, which have important structural and enzymatic properties, control the biological activities of Se primarily. These proteins specifically have a role in metabolism and a variety of cellular processes, such as the control of selenium transport, thyroid hormone metabolism, immunity, and redox balance. Selenium nanoparticles (SeNPs) are less hazardous than selenium-based inorganic and organic materials. Upon being functionalized with active targeting ligands, they are both biocompatible and capable of efficiently delivering combinations of payloads to particular cells. In this review, we discuss briefly the chemistry, structure and functions of selenium and milestones of selenium and selenoproteins. Next we discuss the various factors influences male infertility, biological functions of selenium and selenoproteins, and role of selenium and selenoproteins in spermatogenesis and male fertility. Furthermore, we discuss the molecular mechanism of selenium transport and protective effects of selenium on oxidative stress, apoptosis and inflammation. We also highlight critical contribution of selenium nanoparticles on male fertility and spermatogenesis. Finally ends with conclusion and future perspectives.

17.
BMC Med Educ ; 24(1): 893, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160533

ABSTRACT

INTRODUCTION: The COVID-19 pandemic in the past few years led to major adjustments in the provision of healthcare. This study aimed to investigate trainees' perception of impact of the pandemic on specialty training in Obstetrics & Gynaecology (O&G) in Hong Kong. METHODS: A cross-sectional questionnaire survey was performed on all the O&G trainees and the young fellows of the Hong Kong College of Obstetricians and Gynaecologists (HKCOG). The questionnaires included 5 parts: demographic data, impact on clinical activities, redeployment, educational activities and career progression. RESULTS: A total of 104 questionnaires (92.9%) were received for final analysis. The majority of the participants had reductions in elective and emergency operations, as well as exposure to in-patient admissions and out-patient clinics in both obstetrics and gynaecology. The reduction was most significant in elective gynaecology operations. One-third (34.6%) of the participants had been redeployed to other departments, and educational activities were reduced during the pandemic. Around 58% of the trainees were concerned with the reduction in clinical exposure, and 78% worried they would not be able to log sufficient number of surgical procedures. Basic trainees were significantly more worried than higher trainees. Around half of the trainees had doubts or regrets about choosing to undergo O&G specialty training. CONCLUSION: The O&G trainees in Hong Kong perceived that the COVID-19 pandemic had significant negative impacts on their training. Many trainees were worried they would not be able to attain the required level of competence when they complete their specialist training.


Subject(s)
COVID-19 , Gynecology , Obstetrics , Humans , COVID-19/epidemiology , Gynecology/education , Hong Kong/epidemiology , Obstetrics/education , Cross-Sectional Studies , Female , Male , Adult , Surveys and Questionnaires , Pandemics , SARS-CoV-2 , Education, Medical, Graduate , Internship and Residency
18.
Carbohydr Polym ; 343: 122478, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39174101

ABSTRACT

Lentinula edodes (Shiitake) is an important edible mushroom and polysaccharides are its major constituents with proven health benefits. The study was to investigate the gut bacterial fermentation and subsequent effects on gut barrier function of a glucan-rich polysaccharide, LePS40 precipitated from the mushroom water extract with 40 % (v/v) ethanol. LePS40 consisted of a ß-(1→3)-glucan main chain with substitution in the C-6 position with side chains mainly composed of (1 → 6)-linked ß-Glcp residues, (1 → 6)-linked α-Galp residues and terminal residues of ß-Glcp. LePS40 was found highly resistant to digestive enzymes and gastric acid in simulated human gastrointestinal tract, but highly fermentable during in vitro human fecal fermentation. The fecal fermentation degradation of LePS40 appeared to selectively break the glucoside linkage in view of the dramatic decrease in the glucose molar ratio (12.68 to 1.07). Compared with the prebiotic reference FOS, LePS40 led to much higher levels of butyric, and propionic acid and a lower level of acetic acid. Moreover, LePS40 enhanced the abundance of some beneficial bacterial populations, but decreased the bacteria possibly linked with fatty-liver disease and colorectal cancer. Furthermore, the fecal fermentation products of LePS40 showed a potential protective effect on intestinal barrier function against inflammatory damage in Caco-2/Raw264.7 co-culture model. These findings suggest the potential of LePS40 for improvement of gut health through modulation of gut microbiota.


Subject(s)
Fermentation , Gastrointestinal Microbiome , Shiitake Mushrooms , Shiitake Mushrooms/chemistry , Shiitake Mushrooms/metabolism , Humans , Gastrointestinal Microbiome/drug effects , Caco-2 Cells , Animals , Feces/microbiology , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/metabolism , Digestion/drug effects , Molecular Weight , Mice , Intestinal Mucosa/metabolism , Prebiotics
19.
Biomed Pharmacother ; 179: 117342, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39182321

ABSTRACT

Myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide, and endoplasmic reticulum stress (ERS) and mitochondrial Ca2+ overload have been involved in apoptotic cardiomyocyte death during MI. 13-Methylpalmatine (13-Me-PLT) is a natural isoquinoline alkaloid isolated from Coptis chinensis and has not been systematically studied for their potential pharmacological effects in cardiovascular diseases. We conducted the present study to elucidate whether 13-Me-PLT modulates MI pathology in animal MI and cellular hypoxic models, employing state-of-the-art molecular techniques. The results demonstrated that 13-Me-PLT preserved post-ischemic cardiac function and alleviated cardiomyocyte apoptosis. 13-Me-PLT decreased ERS and the communication between ER and mitochondria, which serves as a protective mechanism against mitochondrial Ca2+ overload and structural and functional injuries to mitochondria. Our data revealed mitigating mitochondrial Ca2+ overload and apoptosis by inhibiting CHOP-mediated Ca2+ transfer between inositol 1,4,5-trisphosphate receptor (IP3R) in ER and VDAC1 in mitochondria as an underlying mechanism for 13-Me-PLT action. Furthermore, 13-Me-PLT produced superior effects in alleviating cardiac dysfunction and apoptosis post-MI to diltiazem and palmatine. Collectively, our research suggests that the CHOP/IP3R/VDAC1 signaling pathway mediates ER-mitochondrial Ca2+ transfer and 13-Me-PLT activates this axis to maintain cellular and organellar Ca2+ homeostasis, protecting against ischemic myocardial injury. These findings may offer an opportunity to develop new agents for the therapy of ischemic heart disease.

20.
Poult Sci ; 103(11): 104122, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39190998

ABSTRACT

Automatically identifying abnormal behaviors of caged laying hens in a thermal environment improves manual management efficiency. It also provides reference indicators for breeding heat-tolerant hens. In this study, we propose a deep learning-based method for automatic recognition and evaluation of typical heat stress behaviors in hens. We developed a lightweight object detection algorithm, YOLO-HGP, based on the YOLOv8n as the baseline model. YOLO-HGP achieves Precision (P), Recall (R), and mean average precision (mAP) of 95.952%, 94.127%, and 97.667%, respectively, effectively detecting typical heat stress behaviors in hens. Compared to the original YOLO v8n, YOLO-HGP improves R, and mAP by 6.257%, and 1.963%, respectively. The FLOPs (floating point operations) and parameter count of YOLO-HGP are 4.3G and 1.729M, reducing by 47.56% and 42.58% compared to the original model. Additionally, we introduce the "ORC-ratio" (The ratio of the combined frequency of open-beak breathing and retching behaviors to the frequency of closed-beak behaviors.) as an evaluation indicator for the frequency of typical heat stress behaviors in hens and combine it with the Hybrid-SORT multiobject tracking algorithm to achieve tracking detection of individual hens. The study demonstrates that the proposed model effectively identifies and quantitatively evaluates typical behaviors of hens in a thermal environment, providing an effective approach for the automated recognition of heat stress behaviors in hens.

SELECTION OF CITATIONS
SEARCH DETAIL