Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Genes Genomics ; 40(11): 1181-1197, 2018 11.
Article in English | MEDLINE | ID: mdl-30315521

ABSTRACT

Tropical plant rubber tree (Hevea brasiliensis) is the sole source of commercial natural rubber and low-temperature stress is the most important limiting factor for its cultivation. To characterize the gene expression profiles of H. brasiliensis under the cold stress and discover the key cold stress-induced genes. Three cDNA libraries, CT (control), LT2 (cold treatment at 4 °C for 2 h) and LT24 (cold treatment at 4 °C for 24 h) were constructed for RNA sequencing (RNA-Seq) and gene expression profiling. Quantitative real time PCR (qRT-PCR) was conducted to validate the RNA-Seq and gene differentially expression results. A total of 1457 and 2328 differentially expressed genes (DEGs) in LT2 and LT24 compared with CT were respectively detected. Most significantly enriched KEGG pathways included flavonoid biosynthesis, phenylpropanoid biosynthesis, plant hormone signal transduction, cutin, suberine and wax biosynthesis, Pentose and glucuronate interconversions, phenylalanine metabolism and starch and sucrose metabolism. A total of 239 transcription factors (TFs) were differentially expressed following 2 h or/and 24 h of cold treatment. Cold-response transcription factor families included ARR-B, B3, BES1, bHLH, C2H, CO-like, Dof, ERF, FAR1, G2-like, GRAS, GRF, HD-ZIP, HSF, LBD, MIKC-MADS, M-type MADS, MYB, MYB-related, NAC, RAV, SRS, TALE, TCP, Trihelix, WOX, WRKY, YABBY and ZF-HD. The genome-wide transcriptional response of rubber tree to the cold treatments were determined and a large number of DEGs were characterized including 239 transcription factors, providing important clues for further elucidation of the mechanisms of cold stress responses in rubber tree.


Subject(s)
Cold-Shock Response/genetics , Gene Expression Regulation, Plant , Hevea/genetics , Gene Expression Profiling , Gene Ontology , Hevea/metabolism , Sequence Analysis, RNA , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Physiol Mol Biol Plants ; 24(3): 349-358, 2018 May.
Article in English | MEDLINE | ID: mdl-29692543

ABSTRACT

The phytohomorne methyl jasmonate (MeJA) is known to trigger extensive reprogramming of gene expression leading to transcriptional activation of many secondary metabolic pathways. However, natural rubber is a commercially important secondary metabolite and little is known about the genetic and genomic basis of jasmonate-elicited rubber biosynthesis in rubber tree (Hevea brasiliensis). RNA sequencing (RNA-seq) of H. brasiliensis bark treated with 1 g lanolin paste containing 0.02% w/w MeJA for 24 h (M2) and 0.04% w/w MeJA for 24 h (M4) was performed. A total of 2950 and 2850 differentially expressed genes in M2 and M4 compared with control (C) were respectively detected. Key genes involved in 2-C-methyl-D-erythritol 4-phosphate, rubber biosynthesis, glycolysis and carbon fixation (Calvin cycle) pathway were found to be up-regulated by MeJA treatment. Particularly, the expression of 3-hydroxy-3-metylglutaryl coenzyme A reductase in MVA pathway was down-regulated by MeJA treatment, but the expression of farnesyl diphosphate synthase (FPS) and cis-prenyltransferase (CPT, or rubber transferase) in rubber biosynthesis pathway were up-regulated by MeJA treatment. Up-regulation of critical genes in JA biosynthesis in response to MeJA treatment exhibited the self-activation of JA biosynthesis. In addition, up-regulated genes of great regulatory importance in cross-talk between JA and other hormone signaling, and of transcriptional regulation were identified. The increased expression levels of FPS and CPT in rubber biosynthesis pathway possibly resulted in an increased latex production in rubber tree treated with MeJA. The present results provide insights into the mechanism by which MeJA activates the rubber biosynthesis and the transcriptome data can also serve as the foundation for future research into the molecular basis for MeJA regulation of other cellular processes.

SELECTION OF CITATIONS
SEARCH DETAIL