Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
J Nanobiotechnology ; 22(1): 396, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965546

ABSTRACT

Failed skin wound healing, through delayed wound healing or wound dehiscence, is a global public health issue that imposes significant burdens on individuals and society. Although the application of growth factor is an effective method to improve the pace and quality of wound healing, the clinically approved factors are limited. Parathyroid hormone (PTH) demonstrates promising results in wound healing by promoting collagen deposition and cell migration, but its application is limited by potentially inhibitory effects when administered continuously and locally. Through partially replacing and repeating the amino acid domains of PTH(1-34), we previously designed a novel PTH analog, PTH(3-34)(29-34) or MY-1, and found that it avoided the inhibitory effects of PTH while retaining its positive functions. To evaluate its role in wound healing, MY-1 was encapsulated in liposomes and incorporated into the methacryloyl gelatin (GelMA) hydrogel, through which an injectable nanocomposite hydrogel (GelMA-MY@Lipo, or GML) was developed. In vitro studies revealed that the GML had similar properties in terms of the appearance, microstructure, functional groups, swelling, and degradation capacities as the GelMA hydrogel. In vitro drug release testing showed a relatively more sustainable release of MY-1, which was still detectable in vivo 9 days post-application. When the GML was topically applied to the wound areas of rat models, wound closure as well as tensile strength were improved. Further studies showed that the effects of GML on wound repair and tensile strength were closely related to the promotion of fibroblast migration to the wound area through the controlled release of MY-1. Mechanically, MY-1 enhanced fibroblast migration by activating PI3K/AKT signaling and its downstream molecule, Rac1, by which it increased fibroblast aggregation in the early stage and resulting in denser collagen deposition at a later time. Overall, these findings demonstrated that the nanocomposite hydrogel system promoted skin wound healing and increased tensile strength, thus offering new potential in the treatment of wound healing.


Subject(s)
Cell Movement , Fibroblasts , Hydrogels , Liposomes , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Tensile Strength , Wound Healing , Wound Healing/drug effects , Animals , Liposomes/chemistry , Fibroblasts/drug effects , Fibroblasts/metabolism , Cell Movement/drug effects , Hydrogels/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Rats , Phosphatidylinositol 3-Kinases/metabolism , rac1 GTP-Binding Protein/metabolism , Rats, Sprague-Dawley , Male , Mice , Gelatin/chemistry , Skin/drug effects , Skin/metabolism
2.
Eur Spine J ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38844587

ABSTRACT

PURPOSE: This study aimed to develop and validate a new model that focused on the risk of imminent vertebral fractures in women with osteoporosis. METHODS: Data from 2,048 patients were extracted from three hospitals, of which 1,720 patients passed the inclusion and exclusion screen. The patients from Nanfang Hospital (NFH) were randomized at a 2:1 ratio to create a training cohort (n = 709) and an internal validation cohort (n = 355), with the patients from the other two hospitals (n = 656) used for external validation. The risk factors included in the imminent osteoporotic vertebral compression fractures (OVCFs) prediction model (labelled TVF) were sorted by the least absolute shrinkage and selection operator and constructed by logistic regression. The area under the receiver operating characteristic curve (AUC), the decision curve, and the clinical impact curves of the optimal model were analyzed to verify the model. RESULTS: There were 138 and 161 fresh fractures in NFH and the other two hospitals, respectively. The lowest BMD T value and the history of vertebral fracture were integrated into the TVF model. The prediction power of TVF was demonstrated by the AUCs of 0.788 (95% confidence interval [CI], 0.728-0.849) in the training cohort and 0.774 (95% CI, 0.705-0.842) in the internal validation cohort, and 0.790 (95% CI, 0.742-0.839) and 0.741 (95% CI, 0.668-0.813) in the external validation cohorts. CONCLUSION: The TVF model demonstrated good discrimination to stratify the imminent risk of OVCFs. We therefore consider the model as a pertinent commencement in the search for more accurate imminent OVCFs prediction.

3.
J Org Chem ; 89(11): 7521-7530, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38753574

ABSTRACT

This study reports a protocol for the highly regioselective photocatalyzed C-H nitrosylation of imidazo[1,2-a]pyridine scaffolds at the C3 position under a combination of visible-light irradiation and continuous flow without any external photocatalyst. This protocol involves mild and safe conditions and shows good tolerance to air and water along with excellent functional group compatibility and site selectivity, generating various 3-nitrosoimidazo[1,2-a]pyridines in excellent yields under photocatalyst-, oxidant-, and additive-free conditions.Notably, the proposed nitrosylation reaction, which introduces the chromophore NO into imidazo[1,2-a]pyridine scaffolds, occurs efficiently under visible-light irradiation without any additional photocatalyst owing to the intense light-absorption characteristics of the nitrosylation products. This study could guide future studies on the development of green organic-synthesis strategies with a wide variety of potential applications.

4.
ACS Nano ; 18(11): 7688-7710, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38436232

ABSTRACT

Extracellular matrix (ECM) remodeling is accompanied by the continuous synthesis and degradation of the ECM components. This dynamic process plays an important role in guiding cell adhesion, migration, proliferation, and differentiation, as well as in tissue development, body repair, and maintenance of homeostasis. Nanomaterials, due to their photoelectric and catalytic properties and special structure, have garnered much attention in biomedical fields for use in processes such as tissue engineering and disease treatment. Nanomaterials can reshape the cell microenvironment by changing the synthesis and degradation of ECM-related proteins, thereby indirectly changing the behavior of the surrounding cells. This review focuses on the regulatory role of nanomaterials in the process of cell synthesis of different ECM-related proteins and extracellular protease. We discuss influencing factors and possible related mechanisms of nanomaterials in ECM remodeling, which may provide different insights into the design and development of nanomaterials for the treatment of ECM disorder-related diseases.


Subject(s)
Extracellular Matrix , Nanostructures , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/analysis , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/metabolism , Tissue Engineering , Cell Adhesion
5.
Langmuir ; 40(9): 4966-4977, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38393830

ABSTRACT

Utilizing metal-organic framework (MOF) materials for the extraction of bromide ions (Br-) from aqueous solutions, as an alternative to chlorine gas oxidation technology, holds promising potential for future applications. However, the limitations of powdered MOFs, such as low utilization efficiency, ease of aggregation in water, and challenging recovery processes, have hindered their practical application. Shaping MOF materials into application-oriented forms represents an effective but challenging approach to address these drawbacks. In this work, a novel Ag-UiO-66-(OH)2@delignified wood cellulose aerogel (CA) adsorbent is synthesized using an oil bath impregnation method, involving the deposition of UiO-66-(OH)2 nanoparticles onto CA and the uniform dispersion of Ag0 nanoparticles across its surface. CA, characterized by the intertwined cellulose nanofiber structure and a highly hydrophilic surface, serves as an ideal substrate for the uniform growth of UiO-66-(OH)2 nanoparticles, which, in turn, spontaneously reduce Ag+ to form distributed Ag0 nanoparticles due to the abundant hydroxyl groups provided. Leveraging the well-defined biological structure of CA, which offers excellent mass transfer channels, and the highly dispersed Ag adsorption sites, Ag-UiO-(OH)2/CA exhibits remarkable adsorption capacity (642 mg/gAg) under optimized conditions. Furthermore, an integrated device is constructed by interconnecting Ag-UiO-(OH)2/CA adsorbents in series, affirming its potential application in the continuous recovery of Br-. This study not only presents an efficient Ag-UiO-(OH)2/CA adsorbent for Br- recovery but also sheds light on the extraction of other valuable elements from various liquid ores.

6.
Nanomaterials (Basel) ; 14(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38392704

ABSTRACT

With the integration and miniaturization of chips, there is an increasing demand for improved heat dissipation. However, the low thermal conductivity (TC) of polymers, which are commonly used in chip packaging, has seriously limited the development of chips. To address this limitation, researchers have recently shown considerable interest in incorporating high-TC fillers into polymers to fabricate thermally conductive composites. Hexagonal boron nitride (h-BN) has emerged as a promising filler candidate due to its high-TC and excellent electrical insulation. This review comprehensively outlines the design strategies for using h-BN as a high-TC filler and covers intrinsic TC and morphology effects, functionalization methods, and the construction of three-dimensional (3D) thermal conduction networks. Additionally, it introduces some experimental TC measurement techniques of composites and theoretical computational simulations for composite design. Finally, the review summarizes some effective strategies and possible challenges for the design of h-BN fillers. This review provides researchers in the field of thermally conductive polymeric composites with a comprehensive understanding of thermal conduction and constructive guidance on h-BN design.

7.
Interv Neuroradiol ; : 15910199231217769, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38192118

ABSTRACT

OBJECTIVE: To investigate the therapeutic effect of intra-arterial microguidewire electrocoagulation on intracranial vascular diseases. METHODS: Data from 10 patients with cerebral aneurysms between May 2018 and September 2022 were analysed. Patients were treated with endovascular coil embolisation and microguidewire electrocoagulation. XperCT scans were conducted to identify new intracranial haemorrhage, infarction and hydrocephalus. Follow-up examinations were conducted 1, 3, 6 and 12 months after discharge. RESULTS: After the patients received electrocoagulation for different durations, Raymond Grade 1 embolisation was achieved in all 10 patients. No complications, such as haemorrhage, infarction or hydrocephalus, were found during or after surgery. Ten patients were followed up for 6-12 months, and none had any symptoms or new neurological dysfunction 1 month after their operation. Among them, nine were followed up for 12 months, and digital subtraction angiography showed no recurrence of aneurysms or occlusion of parent arteries. CONCLUSION: Intra-arterial microguidewire electrocoagulation can be used as a supplementary treatment for cerebral aneurysms. In cases of incomplete lesion embolisation and cases where tamponade treatment cannot continue, immediate thrombosis may occur. Thus, intra-arterial microguidewire electrocoagulation can help achieve patients' treatment goals.

8.
Poult Sci ; 103(3): 103427, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262334

ABSTRACT

Riemerella anatipestifer (RA) causes epizootic infectious polyserositis in ducks with high mortality and leads to huge economic losses worldwide. Bacterial resistance poses a challenge for the control of the disease, vaccines failed to provide ideal cross-protection. Thus, the preparation of vaccines based on popular serotypes is important. In this study, we collected 700 brain and liver tissues of dead ducks from 8 provinces in southern China from 2016 to 2022 and obtained 195 RA isolates with serotypes 1, 2, 7, and 10. Serotypes 1 and 2 were the most prevalent (82%). A novel bivalent inactivated vaccine WZX-XT5 containing propolis adjuvant was prepared, we chose XT5 (serotype 1) and WZX (serotype 2) as vaccine strains and evaluated WZX-XT5-induced immune response and protective efficacy in ducks. Results showed that the XT5 (LD50, 3.5 × 103 CFU) exhibited high virulence and provided better protection against RA compared with ZXP, DCR and LCF1 (LD50, 108 CFU). Notably, the dose of 109 CFU provided ideal protection compared with 108 CFU, propolis and oil emulsion adjuvants induced stronger protective efficacy compared with aluminum hydroxide adjuvant. Importantly, WZX-XT5 immunization induced high levels of RA-specific IgY, IFN-γ, IL-2, and IL-4 in serum and offered over 90% protection against RA with ultra-high lethal dose in ducks. Additionally, no clinical signs of RA infection or obvious pathological damage in tissues were observed in protected ducks. Overall, this study first reports the identification, serotyping and virulence of RA in ducks of southern China and the preparation of a novel bivalent inactivated vaccine, providing useful scientific information to prevent and control RA infection.


Subject(s)
Flavobacteriaceae Infections , Poultry Diseases , Propolis , Riemerella , Animals , Ducks/microbiology , Serogroup , Poultry Diseases/microbiology , Flavobacteriaceae Infections/prevention & control , Flavobacteriaceae Infections/veterinary , Vaccines, Combined , Chickens , Adjuvants, Immunologic/pharmacology , Vaccines, Inactivated
9.
Insect Biochem Mol Biol ; 167: 104075, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38278280

ABSTRACT

Uric acid is the end-product of nitrogen metabolism of the silkworm and other lepidopterans. The accumulation of uric acid particles in the epidermis causes the larval silkworm to appear white and opaque. However, the mechanism of uric acid granule formation is still unclear. Silkworm epidermis color is linked to the genes responsible for uric acid particle formation. We first identified two genes in the Bombyx mori genome that encode subunits of the Bloc-1 (Biogenesis of Lysosome-related Organelles Complex-1) by homology to these genes in other eukaryotes, Bmpali and Bmb1. Mutation in these genes caused a transparent phenotype in the silkworm larvae, and the loss of BmBloc-1 subunit gene Bmcap resulted in the same phenotype. These three genes are highly conserved between human and silkworm. We discovered that Bmpali, Bmcap, and Bmb1 localize in the cytoplasm of BmN cells. Yeast two-hybrid assays demonstrated that the Bmpali physically interacts with both Bmcap and Bmb1. Investigating the roles of Bmpali, Bmb1, and Bmcap is essential for uric acid granule formation understanding in Bombyx mori. These mutants present a valuable silkworm model for studying the biogenesis of lysosome-related organelles (LROs).


Subject(s)
Bombyx , Animals , Humans , Bombyx/genetics , Bombyx/metabolism , Uric Acid/metabolism , Larva/genetics , Larva/metabolism , Epidermis , Mutation
10.
Insect Sci ; 31(1): 147-156, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37358054

ABSTRACT

After a millennium of domestication, numerous silkworm mutants have emerged that exhibit transparent epidermis, which is caused by abnormally low levels of uric acid. We identified the Bombyx mori gene Bmcap (BMSK0003832) as the homolog of cappuccino, a subunit of the biogenesis of lysosome-related organelles complex-1 (BLOC-1) that has been extensively characterized in human, mouse, and insect species, by analyzing the amino acid sequences of putative purine metabolism genes. Using the clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9 system, we disrupted Bmcap, resulting in decreased uric acid levels in the silkworm epidermis and a translucent skin phenotype. In the Bmcap mutant, the purine metabolism, nitrogen metabolism, pyrimidine metabolism, and membrane system were altered compared to the wild type. Biogenesis of lysosome-related organelle complex genes play a role in the pigmentation and biogenesis of lysosome-related organelles (LROs) in platelets, melanocytes, and megakaryocytes. LROs exhibit unique morphologies and functions in various tissues and cells. Investigation of the Bmcap mutant will enhance our understanding of the uric acid metabolic pathway in silkworms, and this mutant offers a valuable silkworm model for LRO studies.


Subject(s)
Bombyx , Animals , Humans , Mice , Bombyx/genetics , Bombyx/metabolism , Uric Acid/metabolism , Epidermis/metabolism , Insecta/metabolism , Phenotype , Insect Proteins/genetics
11.
PLoS Genet ; 19(12): e1011073, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38048348

ABSTRACT

The reproductive process in various species has undergone evolutionary adaptations at both the physiological and molecular levels, playing a significant role in maintaining their populations. In lepidopteran insects, the spermatophore is a unique structure formed in the female reproductive system, in which sperm storage and activation take place. It is known that the formation of the spermatophore is regulated by seminal fluid proteins derived from males. However, studies investigating the genetic mechanisms behind spermatophore formation in lepidopterans have been limited. In this study, our focus was on SPSL1, a gene that encodes a trypsin-type seminal fluid protein in Spodoptera frugiperda, a pest species with global invasive tendencies. Our findings revealed that SPSL1 expression was predominantly observed in the male reproductive tracts, and the disruption of this gene resulted in male sterility. Surprisingly, fluorescence analysis indicated that the absence of SPSL1 did not affect spermatogenesis or sperm migration within the male reproductive system. However, when females mated with SPSL1-mutant males, several defects were observed. These included disruptions in spermatophore formation, sperm activation in the copulatory bursae, and sperm migration into the spermathecae. Additionally, mass spectrometry analysis highlighted reduced levels of energy-related metabolites, suggesting that SPSL1 plays an essential role in promoting hydrolysis reactions during copulation. Consequently, our study demonstrates that SPSL1 is crucial for male fertility due to its functions in spermatophore formation and sperm activation. This research provides valuable insights into the genetic factors underlying reproductive processes in lepidopteran insects and sheds light on potential strategies for controlling invasive pest populations.


Subject(s)
Semen , Spermatogonia , Animals , Male , Female , Spermatogonia/physiology , Spodoptera/genetics , Spermatozoa/physiology , Spermatogenesis/genetics , Insecta
12.
J Environ Sci (China) ; 134: 11-20, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37673526

ABSTRACT

Photocatalytic Fenton reactions combined the advantages from both photocatalysis and Fenton reaction in mineralizing organic pollutants. The key problems are the efficiency and recycling stability. Herein, we reported a novel Fe2O3/TiO2/reduced graphene oxide (FTG) nanocomposite synthesized by a facile solvothermal method. The TiO2 in FTG degraded organic pollutants and mineralized intermediates via photocatalysis under visible light irradiation, which could also promote Fenton reaction by accelerating Fe3+-Fe2+ recycle. Meanwhile, the Fe2O3 rapidly degraded organic pollutants via Fenton reactions, which also promoted photocatalysis by enhancing visible light absorbance and diminishing photoelectron-hole recombination. The high distribution of TiO2 and Fe2O3 on rGO, together with their strong interaction resulted in enhanced synergetic cooperation between photocatalysis and Fenton reactions, leading to the high mineralization efficiency of organic pollutants. More importantly, it could also inhibit the leaching of Fe species, leading to the long lifetime of FTG during photocatalytic Fenton reactions in a wide pH range from 3.4 to 9.2.


Subject(s)
Environmental Pollutants , Graphite , Hydrogen-Ion Concentration
14.
Molecules ; 28(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37687208

ABSTRACT

With the swift advancement of the wearable electronic devices industry, the energy storage components of these devices must possess the capability to maintain stable mechanical and chemical properties after undergoing multiple bending or tensile deformations. This circumstance has expedited research efforts toward novel electrode materials for flexible energy storage devices. Nonetheless, among the numerous materials investigated to date, the incorporation of metal current collectors or insulative adhesives remains requisite, which entails additional costs, unnecessary weight, and high contact resistance. At present, biomass-derived flexible architectures stand out as a promising choice in electrochemical energy device applications. Flexible self-supporting properties impart a heightened mechanical performance, obviating the need for additional binders and lowering the contact resistance. Renewable, earth-abundant biomass endows these materials with cost-effectiveness, diversity, and modulable chemical properties. To fully exploit the application potential in biomass-derived flexible carbon architectures, understanding the latest advancements and the comprehensive foundation behind their synthesis assumes significance. This review delves into the comprehensive analysis of biomass feedstocks and methods employed in the synthesis of flexible self-supporting carbon electrodes. Subsequently, the advancements in their application in energy storage devices are elucidated. Finally, an outlook on the potential of flexible carbon architectures and the challenges they face is provided.

15.
Cell Commun Signal ; 21(1): 217, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37612710

ABSTRACT

BACKGROUND: Re-epithelialization is important in the process of wound healing. Various methods have been identified to expedite the process, but their clinical application remains limited. While parathyroid hormone (PTH) has shown promising results in wound healing due to its role in promoting collagen deposition and cell migration, application is limited by its potentially inhibitive effects when being continuously and locally administrated. Herein, we developed a novel PTH analog, Human parathyroid hormone (hPTH) (3-34/29-34) (henceforth MY-1), by partially replacing and repeating the amino acid sequences of hPTH (1-34), and evaluated its effect on skin wound re-epithelialization. METHODS: CCK-8, colony formation unit assay, and Ki67 immunofluorescent staining were performed to evaluate the effect of MY-1 on HaCaT cell proliferation. Then, wound scratch assay, Transwell assay and lamellipodia staining were carried out to evaluate the effect of MY-1 on cell migration. Moreover, the epithelial-mesenchymal transition (EMT) markers were measured using qPCR and western blot analysis. For in-vivo drug delivery, gelatin methacryloyl (GelMA) hydrogel was employed to load the MY-1, with the physicochemical characteristics evaluated prior to its application in wound models. Then, MY-1's role in wound healing was determined via acute skin wound models. Finally, the mechanism that MY-1 activated was also detected on HaCaT cells and in-vivo wound models. RESULTS: In-vitro, MY-1 accelerated the migration and EMT of HaCaT cells, while having little effect on cell proliferation. GelMA and MY-1-incorporated GelMA hydrogels showed similar physicochemical characteristics and were used in the in-vivo studies, where the results revealed that MY-1 led to a stronger re-epithelialization by inducing basal keratinocyte migration and EMT. Further studies on in-vivo wound models and in-vitro HaCaT cells revealed that MY-1 regulated cell migration and EMT through activating PI3K/AKT signaling. The parathyroid hormone type 1 receptor (PTHR1), the main receptor of PTH, was found to be the upstream of PI3K/AKT signaling, through interfering PTHR1 expression with a small interference RNA following detection of the PI3K/AKT activation. CONCLUSION: Collectively, our study demonstrated that MY-1 accelerates skin wound re-epithelialization by inducing keratinocyte migration and EMT via PTHR1-PI3K/AKT axis activation. Video Abstract.


Subject(s)
Phosphatidylinositol 3-Kinases , Re-Epithelialization , Humans , Proto-Oncogene Proteins c-akt , Epithelial-Mesenchymal Transition , Cell Movement , HaCaT Cells
16.
J Transl Med ; 21(1): 457, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37434156

ABSTRACT

Each step in angiogenesis is regulated by the extracellular matrix (ECM). Accumulating evidence indicates that ageing-related changes in the ECM driven by cellular senescence lead to a reduction in neovascularisation, reduced microvascular density, and an increased risk of tissue ischaemic injury. These changes can lead to health events that have major negative impacts on quality of life and place a significant financial burden on the healthcare system. Elucidating interactions between the ECM and cells during angiogenesis in the context of ageing is neceary to clarify the mechanisms underlying reduced angiogenesis in older adults. In this review, we summarize ageing-related changes in the composition, structure, and function of the ECM and their relevance for angiogenesis. Then, we explore in detail the mechanisms of interaction between the aged ECM and cells during impaired angiogenesis in the older population for the first time, discussing diseases caused by restricted angiogenesis. We also outline several novel pro-angiogenic therapeutic strategies targeting the ECM that can provide new insights into the choice of appropriate treatments for a variety of age-related diseases. Based on the knowledge gathered from recent reports and journal articles, we provide a better understanding of the mechanisms underlying impaired angiogenesis with age and contribute to the development of effective treatments that will enhance quality of life.


Subject(s)
Cellular Senescence , Quality of Life , Extracellular Matrix , Knowledge
17.
Front Neurol ; 14: 1133259, 2023.
Article in English | MEDLINE | ID: mdl-37143994

ABSTRACT

Objectives: This study aimed to discuss the clinical characteristics and emergent endovascular treatment of carotid cavernous fistulas presenting as intracranial hemorrhage. Methods: The clinical data of five patients with carotid cavernous fistulas, who presented with intracranial hemorrhage and who were admitted from January 2010 to April 2017, were analyzed retrospectively, and the diagnoses were confirmed by head computed tomography. Digital subtraction angiography was carried out in all the patients for the diagnosis and further emergent endovascular procedures. All patients were followed up to assess the clinical outcomes. Results: In total, five patients harbored five mono-lateral lesions; two of them were obliterated by detachable balloons, two by detachable coils, and one by detachable coils and Onyx glue. Only one patient was cured by another detachable balloon in the second session, and the other four patients were cured in the first session. At the 3- to 10-year follow-up, there was no intracranial re-hemorrhage in any of the patients; there was no recurrence of symptoms; and delayed occlusion of the parent artery was noted in one case. Conclusion: Emergent endovascular therapy is indicated for carotid cavernous fistulas presenting as intracranial hemorrhage. Individualized treatment according to the characteristics of different lesions is safe and effective.

18.
ACS Appl Mater Interfaces ; 15(13): 17009-17018, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36947663

ABSTRACT

With the development of science and technology, human-machine interaction has brought great benefits to the society. Here, we design a voice and gesture signal translator (VGST), which can translate natural actions into electrical signals and realize efficient communication in human-machine interface. By spraying silk protein on the copper of the device, the VGST can achieve improved output and a wide frequency response of 20-2000 Hz with a high sensitivity of 167 mV/dB, and the resolution of frequency detection can reach 0.1 Hz. By designing its internal structure, its resonant frequency and output voltage can be adjusted. The VGST can be used as a high-fidelity platform to effectively recover recorded music and can also be combined with machine learning algorithms to realize the function of speech recognition with a high accuracy rate of 97%. It also has good antinoise performance to recognize speech correctly even in noisy environments. Meanwhile, in gesture recognition, the triboelectric translator is able to recognize simple hand gestures and to judge the distance between hand and the VGST based on the principle of electrostatic induction. This work demonstrates that triboelectric nanogenerator (TENG) technology can have great application prospects and significant advantages in human-machine interaction and high-fidelity platforms.


Subject(s)
Gestures , Voice , Humans , Speech , Algorithms , Machine Learning
19.
Nanoscale ; 15(14): 6709-6721, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36938843

ABSTRACT

Efficient removal of air pollution caused by volatile organic compounds (VOCs) and particulate matter (PM) through distributed energy collected from the environment is an effective strategy to achieve both energy conservation and better air quality. Herein, a curtain purification system based on a rabbit fur-based rotary triboelectric nanogenerator (RR-TENG) and a collaborative photocatalysis technology was designed for indoor air purification. The high electrostatic field from RR-TENG enhances formaldehyde adsorption, while it can also efficiently adsorb PM2.5 simultaneously. More interestingly, the ultrahigh electric field provided by RR-TENG promotes the separation of photogenerated electron-hole pairs of the g-C3N4/TiO2 composite photocatalyst, generating more superoxide radicals (⋅O2-), hydroxyl radicals (⋅OH), and holes (h+) and thereby improving the photocatalytic efficiency. In a simulated reaction chamber of 9 L, the formaldehyde removal rate of the system can reach 79.2% within 90 min and RR-TENG rapidly reduces PM2.5 from 999 µg m-3 to 50 µg m-3 within 60 s. This study proposes a curtain purification system integrating the function of energy collection and photocatalytic purification, which can be applied for improving air quality and human health.

20.
Insect Sci ; 30(5): 1309-1324, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36763354

ABSTRACT

MicroRNAs (miRNAs) are important regulators of nearly all aspects of biological processes in eukaryotes. During the biogenesis of miRNAs, the RNase III enzyme Dicer processes double-strand precursor miRNAs into mature miRNAs and promotes the assembly of RNA-induced silencing complexes (RISCs). Dicer has been reported to participate in a wide range of physiological processes, including development and immunity, in some insect species. However, the physiological roles of Dicer in lepidopterans remain poorly understood. In this study, we investigated the function of Bombyx mori Dicer1. We first performed sequence alignment and found that the sequence of functional domains of Dicer1 are varied among Lepidoptera, Diptera, Coleoptera, Blattaria, and Orthoptera. Using a binary clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9 genome editing approach, we showed that BmDicer1 mutants have arrested development from the 3rd instar into the 4th instar. RNA sequencing analysis indicated that the defects in BmDicer1 mutants are due to dysregulation of genes that encode proteins involved in metabolism, protein degradation, absorption, and renin-angiotensin pathways. Analysis using quantitative real-time polymerase chain reaction showed that mutation of BmDicer1 altered expression of miRNAs and their target genes. Therefore, our study demonstrates the critical roles of BmDicer1 in miRNA biogenesis and larval development in silkworm.


Subject(s)
Biological Phenomena , Bombyx , MicroRNAs , Animals , Ribonuclease III/genetics , Ribonuclease III/metabolism , Gene Editing , MicroRNAs/genetics , MicroRNAs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...