Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Int J Biol Macromol ; 272(Pt 2): 132870, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38844291

ABSTRACT

Colorectal cancer (CRC) is the second most deadly cancer worldwide. Although various treatments for CRC have made progress, they have limitations. Therefore, the search for new effective molecular targets is important for the treatment of CRC. p20BAP31 induces apoptosis through diverse pathways and exhibits greater sensitivity in CRC. Therefore, a comprehensive exploration of the molecular functions of p20BAP31 is important for its application in anti-tumor therapy. In this study, we showed that exogenous p20BAP31 was still located in the ER and significantly activated the unfolded protein response (UPR) through the PERK pathway. The activation of the PERK pathway is prominent in p20BAP31-induced reactive oxygen species (ROS) accumulation and apoptosis. We found, for the first time, that p20BAP31 leads to ER stress and markedly attenuates tumor cell growth in vivo. Importantly, mechanistic investigations indicated that p20BAP31 competitively binds to GRP78 from PERK and causes hyperactivation of the UPR. Furthermore, p20BAP31 upregulates the expression of GRP78 by promoting HSF1 nuclear translocation and enhancing its binding to the GRP78 promoter. These findings reveal p20BAP31 as a regulator of ER stress and a potential target for tumor therapy, and elucidate the underlying mechanism by which p20BAP31 mediates signal transduction between ER and mitochondria.


Subject(s)
Apoptosis , Colorectal Neoplasms , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Heat-Shock Proteins , Reactive Oxygen Species , Signal Transduction , Unfolded Protein Response , eIF-2 Kinase , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Apoptosis/drug effects , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Animals , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Mice , Cell Proliferation , Protein Binding , Gene Expression Regulation, Neoplastic
2.
Nat Nanotechnol ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740934

ABSTRACT

Nutrient avidity is one of the most distinctive features of tumours. However, nutrient deprivation has yielded limited clinical benefits. In Gaucher disease, an inherited metabolic disorder, cells produce cholesteryl-glucoside which accumulates in lysosomes and causes cell damage. Here we develop a nanoparticle (AbCholB) to emulate natural-lipoprotein-carried cholesterol and initiate Gaucher disease-like damage in cancer cells. AbCholB is composed of a phenylboronic-acid-modified cholesterol (CholB) and albumin. Cancer cells uptake the nanoparticles into lysosomes, where CholB reacts with glucose and generates a cholesteryl-glucoside-like structure that resists degradation and aggregates into microscale crystals, causing Gaucher disease-like damage in a glucose-dependent manner. In addition, the nutrient-sensing function of mTOR is suppressed. It is observed that normal cells escape severe damage due to their inferior ability to compete for nutrients compared with cancer cells. This work provides a bioinspired strategy to selectively impede the metabolic action of cancer cells by taking advantage of their nutrient avidity.

3.
Nat Prod Bioprospect ; 14(1): 26, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691189

ABSTRACT

Seven undescribed compounds, including three flavones (1-3), one phenylpropanoid (19), three monoaromatic hydrocarbons (27-29), were isolated from the twigs of Mosla chinensis Maxim together with twenty-eight known compounds. The structures were characterized by HRESIMS, 1D and 2D NMR, and ECD spectroscopic techniques. Compound 20 displayed the most significant activity against A/WSN/33/2009 (H1N1) virus (IC50 = 20.47 µM) compared to the positive control oseltamivir (IC50 = 6.85 µM). Further research on the anti-influenza mechanism showed that compound 20 could bind to H1N1 virus surface antigen HA1 and inhibit the early attachment stage of the virus. Furthermore, compounds 9, 22, 23, and 25 displayed moderate inhibitory effects on the NO expression in LPS inducing Raw 264.7 cells with IC50 values of 22.78, 20.47, 27.66, and 30.14 µM, respectively.

4.
APMIS ; 132(8): 571-580, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38798084

ABSTRACT

The clinical data from 118 CTD patients with bronchiectasis were collected and categorized into two groups: pulmonary infection present (n = 67) and absent (n = 51), for comparative analysis of characteristics and risk factors. Then, we analyzed and compared their demographics, disease characteristics, and risk factors for infection. Among the whole cohort (n = 118), the incidence of pulmonary infections was 56.78%. The occurrence of rheumatoid arthritis, systemic lupus erythematosus, and vasculitis was found to be associated with an increased risk of pulmonary infection. Sputum culture identified Pseudomonas aeruginosa and Klebsiella pneumoniae as the predominant pathogens in the infected group. Notably, symptoms such as joint pains (p = 0.018) and morning stiffness (p = 0.017) were significantly more common in the infected group compared to the noninfected group. Moreover, our findings revealed that elevated levels of C-reactive protein and complement C3, along with bronchial expansion observed on high-resolution computed tomography (HRCT), were significant independent factors in the infection group. Conversely, pulmonary interstitial changes identified through HRCT (OR: 0.135, 95% CI: 0.030-0.612, p = 0.009) were significantly associated with the non-infection group. Overall, this study provides valuable insights into managing CTD patients with bronchiectasis, emphasizing early detection and tailored approaches to prevent and treat pulmonary infections for better outcomes.


Subject(s)
Bronchiectasis , Connective Tissue Diseases , Humans , Bronchiectasis/complications , Male , Female , Risk Factors , Middle Aged , Connective Tissue Diseases/complications , Adult , Aged , Tomography, X-Ray Computed , C-Reactive Protein/analysis , C-Reactive Protein/metabolism , Pseudomonas aeruginosa/isolation & purification , Incidence , Sputum/microbiology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/complications , Retrospective Studies , Complement C3/analysis , Complement C3/metabolism
5.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791141

ABSTRACT

B-cell receptor-associated protein 31 (BAP31) is an endoplasmic reticulum (ER) membrane protein involved in apoptosis and autophagy by communication with ER and mitochondria. BAP31 is cleaved by caspase-8 and generates a proapoptotic fragment, p20BAP31, which has shown to induce ER stress and apoptosis through multiple pathways. In this study, we found that p20BAP31 significantly increased the agglomeration of LC3 puncta, suggesting the occurrence of autophagy. Therefore, it is meaningful to explore the mechanism of p20BAP31-induced autophagy, and further analyze the relationships among p20BAP31-induced autophagy, ER stress and apoptosis. The data showed that p20BAP31 induced autophagy by inhibition of the PI3K/AKT/mTOR signaling in colorectal cells. ER stress inhibitor 4-PBA and PERK siRNA alleviated p20BAP31-induced autophagy; in turn, autophagy inhibitors 3-MA and CQ did not affect p20BAP31-induced ER stress, suggesting that p20BAP31-induced ER stress is the upstream of autophagy. We also discovered that ROS inhibitor NAC inhibited p20BAP31-induced autophagy. Furthermore, inhibition of autophagy by CQ suppressed p20BAP31-induced apoptosis and ameliorated cell proliferation. Importantly, p20BAP31 markedly reduced the tumor size in vivo, and significantly enhanced the autophagy levels in the tumor tissues. Collectively, p20BAP31 initiates autophagy by inhibiting the PI3K/AKT/mTOR signaling and activating the PERK-mediated ROS accumulation, further promotes p20BAP31-induced apoptosis and ultimately results in cell death. This study comprehensively reveals the potential mechanism of p20BAP31-induced cell death, which may provide new strategies for antitumor therapy.


Subject(s)
Apoptosis , Autophagy , Colorectal Neoplasms , Endoplasmic Reticulum Stress , Signal Transduction , eIF-2 Kinase , Endoplasmic Reticulum Stress/drug effects , Autophagy/drug effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Humans , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Animals , Mice , Signal Transduction/drug effects , Apoptosis/drug effects , Cell Line, Tumor , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mice, Nude , Membrane Proteins/metabolism , Membrane Proteins/genetics
6.
PLoS One ; 19(5): e0302574, 2024.
Article in English | MEDLINE | ID: mdl-38820361

ABSTRACT

BACKGROUND: Post-stroke fatigue is a typical complication following stroke. However, existing research primarily focused on its underlying mechanisms, and its impact on rehabilitation outcomes has yet to be uncovered. OBJECTIVE: This study aims to explore the impact of post-stroke fatigue on rehabilitation outcomes during hospitalization. METHOD: This was a prospective multicenter observational study including 46 stroke patients receiving comprehensive rehabilitation treatment. Patients' basic information was recorded upon admission and patients' functional independence was assessed with Functional Independence Measure (FIM) both upon admission and discharge. One week after rehabilitation treatment, fatigue, positivity in daily activity, attention, and memory were assessed. Serum biochemical indicators and levels of C-reactive protein (CRP) were assessed weekly following admission. The pain scores were assessed during the first week of hospitalization to calculate the average. Correlation analysis, linear regression and propensity score matching (PSM) were used to analyze the impact of fatigue on FIM scores at discharge and length of hospital stay. RESULT: The proportion of patients with low fatigue was 39.13% and significant improvement was revealed in FIM scores upon admissions and discharge [(50.67±18.61) vs. (75.13±21.04), P<0.05]. Positivity in daily activity, attention, and age are factors that influence post-stroke fatigue. After PSM, low-fatigue group (Fatigue score< 3) showed significant higher motor function independence at discharge [(54.39 ± 15.42) vs. (41.89 ± 14.90), P<0.05] and shorter hospital stay [(28.54±9.13)d vs. (37.32 ± 9.81)d, P<0.05] than high-fatigue group. There was a significant difference (P<0.05) in level of CRP between the first inpatient week and the third week, with declining trend. CONCLUSION: Post-stroke fatigue can affect the rehabilitation outcomes regarding motor function independence and length of hospital stay.


Subject(s)
Fatigue , Stroke Rehabilitation , Stroke , Humans , Fatigue/etiology , Fatigue/physiopathology , Stroke Rehabilitation/methods , Male , Female , Middle Aged , Aged , Prospective Studies , Stroke/complications , Stroke/physiopathology , Treatment Outcome , Inpatients , Length of Stay , Recovery of Function , C-Reactive Protein/metabolism , C-Reactive Protein/analysis
7.
Planta ; 259(6): 131, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652171

ABSTRACT

MAIN CONCLUSION: The anatomical structures of Carex moorcroftii roots showing stronger plasticity during drought had a lower coefficient of variation in cell size in the same habitats, while those showing weaker plasticity had a higher coefficient of variation. The complementary relationship between these factors comprises the adaptation mechanism of the C. moorcroftii root to drought. To explore the effects of habitat drought on root anatomy of hygrophytic plants, this study focused on roots of C. moorcroftii. Five sample plots were set up along a soil moisture gradient in the Western Sichuan Plateau to collect experimental materials. Paraffin sectioning was used to obtain root anatomy, and one-way ANOVA, correlation analysis, linear regression analysis, and RDA ranking were applied to analyze the relationship between root anatomy and soil water content. The results showed that the root transverse section area, thickness of epidermal cells, exodermis and Casparian strips, and area of aerenchyma were significantly and positively correlated with soil moisture content (P < 0.01). The diameter of the vascular cylinder and the number and total area of vessels were significantly and negatively correlated with the soil moisture content (P < 0.01). The plasticity of the anatomical structures was strong for the diameter and area of the vascular cylinder and thickness of the Casparian strip and epidermis, while it was weak for vessel diameter and area. In addition, there was an asymmetrical relationship between the functional adaptation of root anatomical structure in different soil moisture and the variation degree of root anatomical structure in the same soil moisture. Therefore, the roots of C. moorcroftii can shorten the water transport distance from the epidermis to the vascular cylinder, increase the area of the vascular cylinder and the number of vessels, and establish a complementary relationship between the functional adaptation of root anatomical structure in different habitats and the variation degree of root anatomical structure in the same habitat to adapt to habitat drought. This study provides a scientific basis for understanding the response of plateau wetland plants to habitat changes and their ecological adaptation strategies. More scientific experimental methods should be adopted to further study the mutual coordination mechanisms of different anatomical structures during root adaptation to habitat drought for hygrophytic plants.


Subject(s)
Carex Plant , Droughts , Ecosystem , Plant Roots , Soil , Water , Plant Roots/anatomy & histology , Plant Roots/physiology , China , Carex Plant/physiology , Carex Plant/anatomy & histology , Water/physiology , Water/metabolism , Adaptation, Physiological
8.
Expert Rev Vaccines ; 23(1): 523-534, 2024.
Article in English | MEDLINE | ID: mdl-38682812

ABSTRACT

BACKGROUND: Traditional vaccine development, often a lengthy and costly process of three separated phases. However, the swift development of COVID-19 vaccines highlighted the critical importance of accelerating the approval of vaccines. This article showcases a seamless phase 2/3 trial design to expedite the development process, particularly for multi-valent vaccines. RESEARCH DESIGN AND METHODS: This study utilizes simulation to compare the performance of seamless phase 2/3 design with that of conventional trial design, specifically by re-envisioning a 9-valent HPV vaccine trial. Across three cases, several key performance metrics are evaluated: overall power, type I error rate, average sample size, trial duration, the percentage of early stop, and the accuracy of dose selection. RESULTS: On average, when the experimental vaccine was assumed to be effective, the seamless design that performed interim analyses based solely on efficacy saved 555.73 subjects, shortened trials by 10.29 months, and increased power by 3.70%. When the experimental vaccine was less effective than control, it saved an average of 887.73 subjects while maintaining the type I error rate below 0.025. CONCLUSION: The seamless design proves to be a compelling strategy for vaccine development, given its versatility in early stopping, re-estimating sample sizes, and shortening trial durations.


Subject(s)
COVID-19 Vaccines , COVID-19 , Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic , Research Design , Vaccine Development , Humans , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Vaccine Development/methods , Sample Size , Papillomavirus Vaccines/administration & dosage , Papillomavirus Vaccines/immunology , Computer Simulation
9.
J Mol Cell Biol ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429982

ABSTRACT

Gestational diabetes mellitus (GDM) is a pregnancy-related metabolic disorder associated with short-term and long-term adverse health outcomes, but its pathogenesis has not been clearly elucidated. Investigations of the dynamic changes in metabolomic markers in different trimesters may reveal the underlying pathophysiology of GDM progression. Therefore, in the present study, we analyzed the metabolic profiles of 75 women with GDM and 75 women with normal glucose tolerance (NGT) throughout the three trimesters. We found that the variation trends of 38 metabolites were significantly different during GDM development. Specifically, longitudinal analyses revealed that cysteine (Cys) levels significantly decreased over the course of GDM progression. Further study showed that Cys alleviated GDM in female mice at gestational day 14.5 possibly by inhibiting phosphoenolpyruvate carboxykinase to suppress hepatic gluconeogenesis. Taken together, these findings suggest that the Cys metabolic pathway might play a crucial role in GDM and that Cys supplementation represents a potential new treatment strategy for GDM patients.

10.
J Pharm Biomed Anal ; 243: 116069, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38460275

ABSTRACT

Fuke Qianjin capsules (FKQJ) exhibit obvious advantages and characteristics in the treatment of pelvic inflammatory disease. At present, information regarding the in vivo process of FKQJ is lacking, which has become a bottleneck in further determining the therapeutic effect of this traditional Chinese medicine. In the present study, a sensitive, simple and reliable method was developed and validated for the simultaneous quantification of 12 main components (4 flavonoids, 4 alkaloids, 2 phthalides and 2 diterpene lactones) in plasma and seven tissues of rats to study the pharmacokinetic and distribution characteristics of these components in vivo by using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for the first time. Plasma and tissue were prepared by protein precipitation with acetonitrile and methanol, followed by its separation on a Waters Acquity UPLC BEH C18 column. The quantification was performed via multiple reaction monitoring (MRM) by a triple quadrupole mass spectrometer under positive electrospray ionization (ESI) mode. The method was validated to demonstrate its selectivity, linearity, accuracy, precision, recovery, matrix effect and stability. For 12 analytes, the low limit of quantification (LLOQs) reached 0.005-2.44 ng/mL, and all calibration curves showed good linearity (r2 ≥ 0.990) in linear ranges. The intra-day and inter-day precision (relative standard deviation) for all analytes was less than 14.96%, and the accuracies were in the range of 85.29%-114.97%. Extraction recoveries and matrix effects of analytes were acceptable. The pharmacokinetic results showed that the main components could be absorbed quickly, had a short residence time, and were eliminated quickly in vivo. At different time points, the 12 components were widely distributed with uneven characteristics in the body, which tended to be distributed in the liver, kidney and lung and to a lesser extent in the uterus, brain and heart. The pharmacokinetic process and tissue distribution characteristics of FKQJ were expounded in this study, which can provide a scientific theory for in-depth development of FKQJ and guide FKQJ use in the clinic.


Subject(s)
Drugs, Chinese Herbal , Female , Rats , Animals , Chromatography, Liquid/methods , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/analysis , Tandem Mass Spectrometry/methods , Tissue Distribution , Reproducibility of Results
11.
Nat Commun ; 15(1): 2512, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38509084

ABSTRACT

Linear bosonic modes offer a hardware-efficient alternative for quantum information processing but require access to some nonlinearity for universal control. The lack of nonlinearity in photonics has led to encoded measurement-based quantum computing, which relies on linear operations but requires access to resourceful ('nonlinear') quantum states, such as cubic phase states. In contrast, superconducting microwave circuits offer engineerable nonlinearities but suffer from static Kerr nonlinearity. Here, we demonstrate universal control of a bosonic mode composed of a superconducting nonlinear asymmetric inductive element (SNAIL) resonator, enabled by native nonlinearities in the SNAIL element. We suppress static nonlinearities by operating the SNAIL in the vicinity of its Kerr-free point and dynamically activate nonlinearities up to third order by fast flux pulses. We experimentally realize a universal set of generalized squeezing operations, as well as the cubic phase gate, and exploit them to deterministically prepare a cubic phase state in 60 ns. Our results initiate the experimental field of polynomial quantum computing, in the continuous-variables notion originally introduced by Lloyd and Braunstein.

12.
Int J Mol Sci ; 25(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38474195

ABSTRACT

Neuroblastoma (NB) is one of the highly vascularized childhood solid tumors, and understanding the molecular mechanisms underlying angiogenesis in NB is crucial for developing effective therapeutic strategies. B-cell receptor-associated protein 31 (BAP31) has been implicated in tumor progression, but its role in angiogenesis remains unexplored. This study investigated BAP31 modulation of pro-angiogenic factors in SH-SY5Y NB cells. Through protein overexpression, knockdown, antibody blocking, and quantification experiments, we demonstrated that overexpression of BAP31 led to increased levels of vascular endothelial growth factor A (VEGFA) and Galectin-3 (GAL-3), which are known to promote angiogenesis. Conditioned medium derived from BAP31-overexpressing neuroblastoma cells stimulated migration and tube formation in endothelial cells, indicating its pro-angiogenic properties. Also, we demonstrated that BAP31 enhances capillary tube formation by regulating hypoxia-inducible factor 1 alpha (HIF-1α) and its downstream target, GAL-3. Furthermore, GAL-3 downstream proteins, Jagged 1 and VEGF receptor 2 (VEGFR2), were up-regulated, and blocking GAL-3 partially inhibited the BAP31-induced tube formation. These findings suggest that BAP31 promotes angiogenesis in NB by modulating GAL-3 and VEGF signaling, thereby shaping the tumor microenvironment. This study provides novel insights into the pro-angiogenic role of BAP31 in NB.


Subject(s)
Neuroblastoma , Vascular Endothelial Growth Factor A , Child , Humans , Angiogenesis , Cell Line, Tumor , Endothelial Cells/metabolism , Galectin 3/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neovascularization, Pathologic/pathology , Neuroblastoma/metabolism , Tumor Microenvironment , Up-Regulation , Vascular Endothelial Growth Factor A/metabolism
13.
Brain Res Bull ; 210: 110933, 2024 May.
Article in English | MEDLINE | ID: mdl-38508469

ABSTRACT

OBJECTIVE: This study aimed to elucidate brain areas mediated by oral anti-parkinsonian medicine that consistently show abnormal resting-state activation in PD and to reveal their functional connectivity profiles using meta-analytic approaches. METHODS: Searches of the PubMed, Web of Science databases identified 78 neuroimaging studies including PD OFF state (PD-OFF) versus (vs.) PD ON state (PD-ON) or PD-ON versus healthy controls (HCs) or PD-OFF versus HCs data. Coordinate-based meta-analysis and functional meta-analytic connectivity modeling (MACM) were performed using the activation likelihood estimation algorithm. RESULTS: Brain activation in PD-OFF vs. PD-ON was significantly changed in the right putamen and left inferior parietal lobule (IPL). Contrast analysis indicated that PD-OFF vs. HCs had more consistent activation in the right paracentral lobule, right middle frontal gyrus, right thalamus, left superior parietal lobule and right putamen, whereas PD-ON vs. HCs elicited more consistent activation in the bilateral middle temporal gyrus, left occipital gyrus, right inferior frontal gyrus and right caudate. MACM revealed coactivation of the right putamen in the direct contrast of PD-OFF vs. PD-ON. Subtraction analysis of significant coactivation clusters for PD-OFF vs. PD-ON with the medium of HCs showed effects in the sensorimotor, top-down control, and visual networks. By overlapping the MACM maps of the two analytical strategies, we demonstrated that the coactivated brain region focused on the right putamen. CONCLUSIONS: The convergence of local brain regions and co-activation neural networks are involved the putamen, suggesting its potential as a specific imaging biomarker to monitor treatment efficacy. SYSTEMATIC REVIEW REGISTRATION: [https://www.crd.york.ac.uk/PROSPERO/], identifier [CRD CRD42022304150].


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/drug therapy , Putamen/diagnostic imaging , Dopamine , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Neuroimaging
14.
Viruses ; 16(3)2024 02 24.
Article in English | MEDLINE | ID: mdl-38543719

ABSTRACT

H4 avian influenza viruses (AIVs) have been widely detected in live poultry markets in China. However, the potential public health impact of H4 AIVs remains largely uncertain. Here, we fully analyzed the distribution and phylogenetic relationship of H4 AIVs in China. We obtained 31 isolates of H4 viruses in China during 2009-2022 through surveillance in poultry-associated environments, such as live poultry markets and poultry farms. Genomic sequence analysis together with publicly available data revealed that frequent reassortment and introduction of H4 AIV from wild birds to poultry may have occurred. We identified 62 genotypes among 127 whole genome sequences of H4 viruses in China, indicating that H4 AIVs had great genetic diversity in China. We also investigated molecular markers and found that drug resistance mutations frequently occurred in the M2 protein and a few mutations related to receptor binding and the host signature in H4 AIVs. Our study demonstrates the cross-species transmission potential of H4 AIVs in China and provides some reference significance for its risk assessment.


Subject(s)
Influenza A virus , Influenza in Birds , Animals , Phylogeny , Genome, Viral , Influenza A virus/genetics , Biological Evolution , Poultry , China/epidemiology
15.
Environ Res ; 251(Pt 1): 118613, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38432570

ABSTRACT

The contamination of sediments by toxic metals poses a significant threat to both river ecosystems and human health. In this study, the geo-accumulation index (Igeo), biotoxicity evaluation method, and potential ecological risk index (RI) were employed to analyze the contamination level, biotoxicity risk, and potential ecological risk of toxic metals in surface sediments of the Xiaoqing River. To identify toxic metal sources, Spearman correlation and principal component analysis with multiple linear regression analysis (PCA-MLR) were employed. Additionally, redundancy analysis (RDA) was utilized to investigate potential driving factors affecting toxic metal accumulation in sediments. The results revealed that the levels of the five investigated metals (Cr, Pb, As, Hg, and Cd) showed constant fluctuations during the period 1996-2020. The midstream was found to be more polluted than the upstream and downstream. In the research area, Hg was identified as the primary contaminant with high levels of contamination, posing a biotoxicity risk and potential ecological risk. Pollution sources were identified for two periods: A (1996-2010) and B (2011-2020), with industrial, agricultural, traffic, and natural sources being the main contributors. During period A, industrial sources accounted for the highest proportion (40.8%), followed by agricultural sources (36.6%), and geological natural sources (22.6%). During period B, agricultural sources accounted for the highest proportion (42%), followed by industrial and traffic sources (32.4%), and geological natural sources (25.6%). The distribution of toxic metals in the basin was significantly influenced by water pH, sediment organic matter, population density, and per capita GDP. The study results provide fundamental data for preventing pollution and managing water resources contaminated with toxic metals in the sediments of the Xiaoqing River in Jinan. Additionally, it serves as a reference for analyzing related ecological and environmental issues in the basin.


Subject(s)
Environmental Monitoring , Geologic Sediments , Rivers , Water Pollutants, Chemical , Geologic Sediments/analysis , Geologic Sediments/chemistry , Rivers/chemistry , Water Pollutants, Chemical/analysis , China , Risk Assessment , Metals, Heavy/analysis
16.
Int J Biol Macromol ; 260(Pt 1): 129501, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38224803

ABSTRACT

Wound infection and adhesion are important factors affecting wound healing. Early detection of pathogen infection and reduction of wound-to-dressing adhesion are critical for improving wound healing. Herein, Ester-J, which can rapidly respond to lipase secreted by bacteria, was designed and synthesized. Then, Ester-J was co-spun with poly(lactic-co-glycolic acid) (PLGA) and polydimethylsiloxane (PDMS) to prepare a PP-EsJ hydrophobic anti-adhesion dressing with a contact angle of 140.7°. When the PP-EsJ membrane came into contact with the bacteria, the loaded Ester-J was hydrolyzed to Tph-TSF-OH, releasing bright cyan-blue fluorescence, thus providing a fluorescence switch for an early warning of infection. The detection limits of PP-EsJ for Pseudomonas aeruginosa and Staphylococcus aureus were 1.0 × 105 and 1.0 × 106 CFU/mL, respectively. Subsequently, Tph-TSF-OH released 1O2 through light irradiation, which rapidly killed P. aeruginosa and S. aureus, and accelerated wound healing. Compared with the control group, enhanced wound closure (up to 99.80 ± 1.10 %) was observed in mice treated with the PP-EsJ membrane. The PP-EsJ membrane not only effectively reduced the risk of external infection but also reduced adhesions to the skin during dressing changes. These characteristics make PP-EsJ membranes potentially useful for clinical treatment.


Subject(s)
Anti-Infective Agents , Staphylococcal Infections , Mice , Animals , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Staphylococcus aureus , Glycols , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/therapeutic use , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Tissue Adhesions , Bacteria , Bandages , Dimethylpolysiloxanes , Esters
17.
BMC Med Res Methodol ; 24(1): 12, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233758

ABSTRACT

Seamless phase 2/3 design has become increasingly popular in clinical trials with a single endpoint. Trials that define success based on the achievement of all co-primary endpoints (CPEs) encounter the challenge of inflated type 2 error rates, often leading to an overly large sample size. To tackle this challenge, we introduced a seamless phase 2/3 design strategy that employs Bayesian predictive power (BPP) for futility monitoring and sample size re-estimation at interim analysis. The correlations among multiple CPEs are incorporated using a Dirichlet-multinomial distribution. An alternative approach based on conditional power (CP) was also discussed for comparison. A seamless phase 2/3 vaccine trial employing four binary endpoints under the non-inferior hypothesis serves as an example. Our results spotlight that, in scenarios with relatively small phase 2 sample sizes (e.g., 50 or 100 subjects), the BPP approach either outperforms or matches the CP approach in terms of overall power. Particularly, with n1 = 50 and ρ = 0, BPP showcases an overall power advantage over CP by as much as 8.54%. Furthermore, when the phase 2 stage enrolled more subjects (e.g., 150 or 200), especially with a phase 2 sample size of 200 and ρ = 0, the BPP approach evidences a peak difference of 5.76% in early stop probability over the CP approach, emphasizing its better efficiency in terminating futile trials. It's noteworthy that both BPP and CP methodologies maintained type 1 error rates under 2.5%. In conclusion, the integration of the Dirichlet-Multinominal model with the BPP approach offers improvement in certain scenarios over the CP approach for seamless phase 2/3 trials with multiple CPEs.


Subject(s)
Medical Futility , Research Design , Humans , Bayes Theorem , Sample Size , Probability
18.
J Diabetes ; 16(1): e13466, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37670495

ABSTRACT

OBJECTIVE: This study investigated the association of economic status with metabolic index control in type 2 diabetes mellitus (T2DM) patients. METHODS: In total, 37 454 T2DM patients from 10 National Metabolic Management Centers in China were recruited and categorized into two groups: a high-gross domestic product (GDP) group (n = 23 993) and a low-GDP group (n = 13 461). Sociodemographic characteristics, medical histories, and lifestyle factors were recorded. Logistic regression and interaction analysis were performed to evaluate the association of economic status and healthy lifestyle with metabolic control. RESULTS: Compared to the low-GDP group, there were fewer patients with glycated hemoglobin (HbA1c) levels ≥7% in the high-GDP group. Fewer patients with a high GDP had an abnormal metabolic state (HbA1c ≥ 7%, blood pressure [BP] ≥130/80 mm Hg, total cholesterol [TCH] ≥4.5 mmol/L or body mass index [BMI] ≥24 kg/m2 ). The risks of developing HbA1c ≥ 7% (odds ratios [OR] = 0.545 [95% CI: 0.515-0.577], p < .001), BP ≥ 130/80 mm Hg (OR = 0.808 [95% CI: 0.770-0.849], p < .001), BMI ≥ 24 kg/m2 (OR = 0.840 [95% CI: 0.799-0.884], p < .001), and an abnormal metabolic state (OR = 0.533 [95% CI: 0.444-0.636], p < .001) were significantly lower in the high-GDP group even after adjustment for confounding factors. Younger participants; those with a family history of diabetes, normal weight, and a physical activity level up to standard; and those who did not drink alcohol in the high-GDP group were predisposed to better glycemic levels. CONCLUSIONS: T2DM patients in economically developed regions had better metabolic control, especially glycemic control. A healthy lifestyle had an additive effect on achieving glycemic goals, even among high-GDP patients.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Glycated Hemoglobin , Blood Glucose/metabolism , Economic Status , China/epidemiology
19.
CNS Neurosci Ther ; 30(2): e14354, 2024 02.
Article in English | MEDLINE | ID: mdl-37452488

ABSTRACT

BACKGROUND: The thalamus is an important relay station for the motor circuit of human. Levodopa can reverse the clinical manifestations by modulating the function of motor circuits, but its detailed mechanisms are still not fully understood. We aimed to explore (1) the mechanism by which levodopa modulates the functional connectivity (FC) in the subregions of the thalamus; (2) the relationship between the changed FC and the improvement of motor symptoms in Parkinson's disease (PD) patients. METHODS: Resting-state functional MRI was used to scan 36 PD patients and 37 healthy controls. The FC between the subregions in the thalamus and the whole brain was measured and compared under different medication states of PD patients. The correlation between the improvement of motor symptoms and changes in FC in the thalamus subregions was examined. RESULTS: The PD on state exhibited decreased FC between the right pre-motor thalamus and the right postcentral gyrus, as well as the right lateral pre-frontal thalamus and the right postcentral gyrus. These decreases were positively correlated with the improvement of resting tremor. The PD on state also exhibited decreased FC between the left lateral pre-frontal thalamus and right paracentral lobule, which was positively correlated with the improvement of bradykinesia. CONCLUSIONS: This study demonstrates that levodopa treats PD by decreasing the FC between the thalamus subregions and pre/post-central cortex. Our results provide a basis for further exploration of the functional activity of thalamic subregions and offer new insights into the precision treatment in PD patients.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/drug therapy , Levodopa/therapeutic use , Magnetic Resonance Imaging/methods , Neural Pathways/diagnostic imaging , Thalamus/diagnostic imaging
20.
Comput Biol Med ; 168: 107745, 2024 01.
Article in English | MEDLINE | ID: mdl-38064851

ABSTRACT

OBJECTIVE: We aim to accurately distinguish ubiquitin-specific proteases (USPs) from other members within the deubiquitinating enzyme families based on protein sequences. Additionally, we seek to elucidate the specific regulatory mechanisms through which USP26 modulates Krüppel-like factor 6 (KLF6) and assess the subsequent effects of this regulation on both the proliferation and migration of cervical cancer cells. METHODS: All the deubiquitinase (DUB) sequences were classified into USPs and non-USPs. Feature vectors, including 188D, n-gram, and 400D dimensions, were extracted from these sequences and subjected to binary classification via the Weka software. Next, thirty human USPs were also analyzed to identify conserved motifs and ascertained evolutionary relationships. Experimentally, more than 90 unique DUB-encoding plasmids were transfected into HeLa cell lines to assess alterations in KLF6 protein levels and to isolate a specific DUB involved in KLF6 regulation. Subsequent experiments utilized both wild-type (WT) USP26 overexpression and shRNA-mediated USP26 knockdown to examine changes in KLF6 protein levels. The half-life experiment was performed to assess the influence of USP26 on KLF6 protein stability. Immunoprecipitation was applied to confirm the USP26-KLF6 interaction, and ubiquitination assays to explore the role of USP26 in KLF6 deubiquitination. Additional cellular assays were conducted to evaluate the effects of USP26 on HeLa cell proliferation and migration. RESULTS: 1. Among the extracted feature vectors of 188D, 400D, and n-gram, all 12 classifiers demonstrated excellent performance. The RandomForest classifier demonstrated superior performance in this assessment. Phylogenetic analysis of 30 human USPs revealed the presence of nine unique motifs, comprising zinc finger and ubiquitin-specific protease domains. 2. Through a systematic screening of the deubiquitinase library, USP26 was identified as the sole DUB associated with KLF6. 3. USP26 positively regulated the protein level of KLF6, as evidenced by the decrease in KLF6 protein expression upon shUSP26 knockdown in both 293T and Hela cell lines. Additionally, half-life experiments demonstrated that USP26 prolonged the stability of KLF6. 4. Immunoprecipitation experiments revealed a strong interaction between USP26 and KLF6. Notably, the functional interaction domain was mapped to amino acids 285-913 of USP26, as opposed to the 1-295 region. 5. WT USP26 was found to attenuate the ubiquitination levels of KLF6. However, the mutant USP26 abrogated its deubiquitination activity. 6. Functional biological assays demonstrated that overexpression of USP26 inhibited both proliferation and migration of HeLa cells. Conversely, knockdown of USP26 was shown to promote these oncogenic properties. CONCLUSIONS: 1. At the protein sequence level, members of the USP family can be effectively differentiated from non-USP proteins. Furthermore, specific functional motifs have been identified within the sequences of human USPs. 2. The deubiquitinating enzyme USP26 has been shown to target KLF6 for deubiquitination, thereby modulating its stability. Importantly, USP26 plays a pivotal role in the modulation of proliferation and migration in cervical cancer cells.


Subject(s)
Uterine Cervical Neoplasms , Female , Humans , Kruppel-Like Factor 6/genetics , HeLa Cells , Uterine Cervical Neoplasms/genetics , Phylogeny , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism , Cell Proliferation , Cysteine Endopeptidases
SELECTION OF CITATIONS
SEARCH DETAIL