Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 456
2.
Food Chem ; 454: 139832, 2024 May 28.
Article En | MEDLINE | ID: mdl-38820641

Mesoporous silica microspheres (MSMs) possess poor biocompatibility. This study focuses on integrating MSMs with polymers to obtain hybrid materials with superior performance compared to the individual components and responsive release in specific environments. The synthesized MSMs were aminated, and subsequently, soybean hull polysaccharide (SHPs) was modified onto MSMs-NH2 to produce MSMs-NH2@SHPs nanoparticles. The encapsulation rate, loading rate of curcumin (Cur), and in vitro release behavior were investigated. Results indicated that the encapsulation efficiency of Cur by MSMs-NH2@SHPs nanoparticles reached 75.58%, 6.95 times that of MSMs-NH2 with a load capacity of 35.12%. It is noteworthy that these nanoparticles exhibit pH-responsive release capacity in vitro. The cumulative release rate of the three nanoparticles at pH 5.0 was higher than that at pH 7.4. MSMs-NH2@SHPs had a cumulative release rate of 56.55% at pH 7.4, increasing to 76.21% at pH 5.0. In vitro experiments have shown that MSMs-based nanoparticles have high delivery efficiency and can achieve pH-sensitive drug release, with a high release rate in a slightly acidic acid, highlighting the potential for controlled release of Cur.

3.
Int J Biol Macromol ; : 132668, 2024 May 29.
Article En | MEDLINE | ID: mdl-38821305

As the most abundant and renewable natural resource, cellulose has attracted significant attention and research interest for the production of hydrogels (HGs). To address environmental issues and emerging demands, the benefits of naturally produced HGs include excellent mechanical properties and superior biocompatibility. HGs are three-dimensional networks created by chemical or physical cross-linking of linear or branched hydrophilic polymers and have high capacity for absorption of water and biological fluids. Although widely used in the food and biomedical fields, most HGs are not biodegradable. Nanocellulose hydrogels (NC-HGs) have been extensively applied in the food industry for detection of freshness, chemical additives, and substitutes, as well as the biomedical field for use as bioengineering scaffolds and drug delivery systems owing to structural interchangeability and stimuli-responsive properties. In this review article, the sources, structures, and preparation methods of NC-HGs are described, applications in the food and biomedical industries are summarized, and current limitations and future trends are discussed.

4.
Behav Brain Res ; : 115064, 2024 May 20.
Article En | MEDLINE | ID: mdl-38777261

Post-stroke depression (PSD) is one of the most common mental sequelae after a stroke and can damage the brain. Although PSD has garnered increasing attention in recent years, the precise mechanism remains unclear. Studies have indicated that the expression of DAPK1 is elevated in various neurodegenerative conditions, including depression, ischemic stroke, and Alzheimer's disease. However, the specific molecular mechanism of DAPK1-mediated cognitive dysfunction and neuronal apoptosis in PSD rats is unclear. In this study, we established a rat model of PSD, and then assessed depression-like behaviors and cognitive dysfunction in rats using behavioral tests. In addition, we detected neuronal apoptosis and analyzed the expression of DAPK1 protein and proteins related to the ERK/CREB/BDNF signaling pathway. The findings revealed that MCAO combined with CUMS can induce more severe depression-like behaviors and cognitive dysfunction in rats, while overexpression of DAPK1 may hinder the downstream ERK/CREB/BDNF signaling pathways, resulting in neuronal loss and exacerbation of brain tissue damage. In this study, we will focus on DAPK1 and explore its role in PSD.

5.
Tree Physiol ; 2024 May 22.
Article En | MEDLINE | ID: mdl-38775231

Plant biomass is a highly promising renewable feedstock for the production of biofuels, chemicals, and materials. By enhancing the content of plant biomass through endophyte symbiosis, it can effectively reduce economic and technological barriers in industrial production. In this study, we found that symbiosis with the dark septate endophyte (DSE) Anteaglonium sp. T010 significantly promoted the growth of poplar trees and increased plant biomass, including cellulose, lignin and starch. To further investigate whether plant biomass was related to sucrose metabolism, we analyzed the levels of relevant sugars and enzyme activities. During the symbiosis of Anteaglonium sp. T010, sucrose, fructose and glucose levels in the stem of poplar decreased, while the content of intermediates such as glucose-6-phosphate (G6P), fructose-6-phosphate (F6P) and UDP-glucose (UDPG) and the activity of enzymes related to sucrose metabolism, including sucrose synthase (SUSY), cell wall invertase (CWINV), fructokinase (FRK) and hexokinase (HxK), increased. In addition, the contents of glucose, fructose, starch and their intermediates G6P, F6P and UDPG, as well as the enzyme activities of SUSY, CWINV, neutral invertase (NINV) and FRK in roots were increased, which ultimately led to the increase of root biomass. Besides that, during the symbiotic process of Anteaglonium sp. T010, there were significant changes in the expression levels of root-related hormones, which may promote changes in sucrose metabolism and consequently increase the plant biomass. Therefore, this study suggested that DSE fungi can increase the plant biomass synthesis capacity by regulating the carbohydrate allocation and sink strength in poplar.

6.
J Hum Genet ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38730005

Mitochondrial diseases are a group of genetic diseases caused by mutations in mitochondrial DNA and nuclear DNA. However, the genetic spectrum of this disease is not yet complete. In this study, we identified a novel variant m.4344T>C in mitochondrial tRNAGln from a patient with developmental delay. The mutant loads of m.4344T>C were 95% and 89% in the patient's blood and oral epithelial cells, respectively. Multialignment analysis showed high evolutionary conservation of this nucleotide. TrRosettaRNA predicted that m.4344T>C variant would introduce an additional hydrogen bond and alter the conformation of the T-loop. The transmitochondrial cybrid-based study demonstrated that m.4344T>C variant impaired the steady-state level of mitochondrial tRNAGln and decreased the contents of mitochondrial OXPHOS complexes I, III, and IV, resulting in defective mitochondrial respiration, elevated mitochondrial ROS production, reduced mitochondrial membrane potential and decreased mitochondrial ATP levels. Altogether, this is the first report in patient carrying the m.4344T>C variant. Our data uncover the pathogenesis of the m.4344T>C variant and expand the genetic mutation spectrum of mitochondrial diseases, thus contributing to the clinical diagnosis of mitochondrial tRNAGln gene variants-associated mitochondrial diseases.

7.
Cell Death Dis ; 15(4): 257, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605011

SARS-CoV-2 has spread rapidly worldwide and infected hundreds of millions of people worldwide. With the increasing number of COVID-19 patients discharged from hospitals, the emergence of its associated complications, sequelae, has become a new global health crisis secondary to acute infection. For the time being, such complications and sequelae are collectively called "Post-acute sequelae after SARS-CoV-2 infection (PASC)", also referred to as "long COVID" syndrome. Similar to the acute infection period of COVID-19, there is also heterogeneity in PASC. This article reviews the various long-term complications and sequelae observed in multiple organ systems caused by COVID-19, pathophysiological mechanisms, diagnosis, and treatment of PASC, aiming to raise awareness of PASC and optimize management strategies.


COVID-19 , Humans , COVID-19/complications , SARS-CoV-2 , Disease Progression
8.
Food Sci Nutr ; 12(4): 2619-2633, 2024 Apr.
Article En | MEDLINE | ID: mdl-38628216

The present study aimed to prepare and evaluate a new probiotic functional beverage, using single-probiotic and compound probiotic fermentation on okara. Four different forms of fermentation microorganisms used were Lacticaseibacillus rhamnosus S24 (Lr), Lacticaseibacillus paracasei 6244 (Lp), Lactobacillus acidophilus 11,073 (La), and mixed fermentation (Lr + Lp + La). The physicochemical properties, antioxidant activity, flavor change, and storage period of fermented okara beverages with probiotics were investigated. The results showed that different fermentation schemes could significantly improve the physicochemical properties, antioxidant activity, and sensory quality of the okara beverages. The number of viable bacteria in the Lp group (3.53 × 108 CFU/mL), isoflavone content (0.514 µg/mL) were the highest; total phenol and flavonoid content were 3.32 and 5.68 times higher than in the CK group, respectively. DPPH and ABTS+ free radical scavenging rates were increased by 11.32% and 20%, respectively (p < .05). Through SPME/GC-MS analysis, 44 volatile compounds were identified in the Lr + Lp + La groups, mainly as a result of changes in alcohols and aldehydes produced by fermentation metabolism. It enhances the floral and fruity aroma of the okara beverage. All probiotic-fermented okara beverages can be stored at 4°C for 15 days, with probiotic activity greater than 107 CFU/mL. This study can obtain a probiotic okara beverage rich in soybean isoflavones and with good flavor. Overall, okara can be used to develop functional beverages containing probiotics and contribute to a zero-waste approach in the food industry.

9.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1335-1342, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38621981

This study aims to investigate the regulatory effect of the Spatholobi Caulis extract from ethyl acetate(SEA) on natural killer(NK) cells under physiological conditions and elucidate the underlying mechanism. The C57BL/6 mice were randomized into NC and SEA groups, and NK-92 cells were respectively treated with 0, 25, 50, and 100 µg·mL~(-1) SEA. The body weight and immune organ index of the mice were compared between groups. The lactate dehydrogenase(LDH) assay was employed to examine the cytotoxicity of NK-92 cells treated with SEA and the killing activity of mouse NK cells against YAC-1 cells. The cell-counting kit-8(CCK-8) was used to examine the impact of SEA on the proliferation of NK-92 cells. Flow cytometry was employed to measure the number of NK cells in the peripheral blood as well as the expression levels of natural killer group 2 member A(NKG2A) and natural killer group 2 member D(NKG2D). The enzyme-linked immunosorbent assay(ELISA) was performed to determine the interferon(IFN)-γ secretion in the serum. Semi-quantitative PCR was conducted to determine the mRNA levels of NKG2A, NKG2D, and IFN-γ in spleen cells. Western blot was employed to investigate the involvement of phosphoinositide 3-kinase(PI3K)/extracellular regulated protein kinase 1(ERK1) signaling pathway. The results showed that SEA exhibited no adverse effects on the body, while significantly enhance the number of NK cells and augment the cytotoxicity of NK-92 cells against YAC-1 cells. Moreover, it suppressed the expression of NKG2A, enhanced the expression of NKG2D, promoted IFN-γ secretion, and upregulated the protein levels of PI3K and ERK. The findings suggest that SEA has the potential to enhance the immune recognition and effector function of NK cells by increasing the cell number, modulating the expression of functional receptors, and promoting IFN-γ secretion via the PI3K/ERK signaling pathway.


Acetates , NK Cell Lectin-Like Receptor Subfamily K , Phosphatidylinositol 3-Kinases , Mice , Animals , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mice, Inbred C57BL , Killer Cells, Natural
10.
Cell Death Discov ; 10(1): 187, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649381

The Tetraspanins (Tspan) protein family, also known as the tetraspanin family, contains 33 family members that interact with other protein molecules such as integrins, adhesion molecules, and T cell receptors by forming dimers or heterodimers. The Tspan protein family regulates cell proliferation, cell cycle, invasion, migration, apoptosis, autophagy, tissue differentiation, and immune response. More and more studies have shown that Tspan proteins are involved in tumorigenesis, epithelial-mesenchymal transition, thrombosis, tumor stem cell, and exosome signaling. Some drugs and microRNAs can inhibit Tspan proteins, thus providing new strategies for tumor therapy. An in-depth understanding of the functions and regulatory mechanisms of the Tspan protein family, which can promote or inhibit tumor development, will provide new strategies for targeted interventions in the future.

11.
Eur J Pharmacol ; 972: 176569, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38593930

In our previous study, we uncovered that ghrelin promotes angiogenesis in human umbilical vein endothelial cells (HUVECs) in vitro by activating the Jagged1/Notch2/VEGF pathway in preeclampsia (PE). However, the regulatory effects of ghrelin on placental dysfunction in PE are unclear. Therefore, we applied Normal pregnant Sprague-Dawley (SD) rats, treated with lipopolysaccharide (LPS), to establish a PE-like rat model. The hematoxylin-eosin (HE) staining method and immunohistochemistry (IHC) technology were used to detect morphological features of the placenta. IHC and Western blot were applied to examine Bax and Bcl-2 expression levels. The concentrations of serum soluble fms-like tyrosine kinase-1 (sFlt1) and placental growth factor (PIGF) were assessed by enzyme-linked immunosorbent assay (ELISA) kit. In addition, the apoptosis rates of JEG-3 and HTR-8/SVneo trophoblast cells were determined by Annexin V-FITC/PI apoptosis detection kit. Cell migratory capacities were assessed by scratch-wound assay, and RNA-sequencing assay was used to determine the mechanism of ghrelin in regulating trophoblast apoptosis. It has been found that ghrelin significantly reduced blood pressure, urinary protein, and urine creatinine in rats with PE, at the meanwhile, ameliorated placental and fetal injuries. Second, ghrelin clearly inhibited placental Bax expression and circulating sFlt-1 as well as elevated placental Bcl-2 expression and circulating PIGF, restored apoptosis and invasion deficiency of trophoblast cells caused by LPS in vitro. Finally, transcriptomics indicated that nuclear factor kappa B (NF-κB) was the potential downstream pathway of ghrelin. Our findings illustrated that ghrelin supplementation significantly improved LPS-induced PE-like symptoms and adverse pregnancy outcomes in rats by alleviating placental apoptosis and promoting trophoblast migration.


Apoptosis , Disease Models, Animal , Ghrelin , Lipopolysaccharides , NF-kappa B , Placenta , Pre-Eclampsia , Rats, Sprague-Dawley , Animals , Ghrelin/pharmacology , Female , Pre-Eclampsia/drug therapy , Pre-Eclampsia/metabolism , Pregnancy , Placenta/metabolism , Placenta/drug effects , NF-kappa B/metabolism , Rats , Apoptosis/drug effects , Humans , Phosphorylation/drug effects , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics , Down-Regulation/drug effects , Placenta Growth Factor/metabolism , Placenta Growth Factor/genetics , Trophoblasts/metabolism , Trophoblasts/drug effects , Cell Movement/drug effects , bcl-2-Associated X Protein/metabolism , Signal Transduction/drug effects
12.
Int J Biol Macromol ; 268(Pt 1): 131602, 2024 May.
Article En | MEDLINE | ID: mdl-38626836

The use of biopolymers as matrices and anthocyanins as pH-sensing indicators has generated increasing interest in freshness detection. Nevertheless, the weak mechanical properties and color stability of biopolymer-based smart packaging systems restrict their practicality. In this study, a nanocellulose hydrogel colorimetric film with enhanced stretchability, antifatigue properties, and color stability was prepared using soy hull nanocellulose (SHNC), polyvinyl alcohol (PVA), sodium alginate (SA), and anthocyanin (Anth) as raw materials. This hydrogel colorimetric film was used to detect beef freshness. The structure and properties (e.g., mechanical, thermal stability and hydrophobicity) of these hydrogel colorimetric films were characterized using different techniques. Fourier-transform infrared spectroscopy revealed the presence of hydrogen and ester bonds in the hydrogel colorimetric films, whereas scanning electron microscopy revealed the fish scale-like and honeycomb network structure of the hydrogel colorimetric films. Mechanical testing demonstrated that the SHNC/PVA/SA/Anth-2 hydrogel colorimetric film exhibited excellent tensile properties (elongation = 261 %), viscoelasticity (storage modulus of 11.25 kPa), and mechanical strength (tensile strength = 154 kPa), and the hydrogel colorimetric film exhibited excellent mechanical properties after repeated tensile tests. Moreover, the hydrogel colorimetric film had high transparency, excellent anti-UV linearity, thermal stability and hydrophobicity, and had displayed visually discernible color response to pH buffer solution and volatile NH3 by naked eyes, which was highly correlated with the TVB-N and pH values. Notably, the release of anthocyanin in distilled water decreased from 81.23 % to 19.87 %. The designed SHNC/PVA/SA/Anth hydrogel colorimetric films exhibited potential application as smart packaging film or gas-sensing labels in monitoring the freshness of meat products.


Cellulose , Colorimetry , Red Meat , Cellulose/chemistry , Colorimetry/methods , Red Meat/analysis , Animals , Cattle , Food Packaging , Anthocyanins/chemistry , Anthocyanins/analysis , Hydrogels/chemistry , Polyvinyl Alcohol/chemistry , Tensile Strength , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Nanostructures/chemistry
13.
Biomed Pharmacother ; 175: 116672, 2024 Jun.
Article En | MEDLINE | ID: mdl-38677249

Diabetic nephropathy (DN) is one of the most common microvascular complications in diabetic patients, with its incidence continuously increasing in recent years. DN causes renal tissue damage and functional decline, expedites the aging process of the kidneys, and may ultimately progress leading to end-stage renal disease, severely impacting the patient's quality of life and prognosis. Mesenchymal stem cells (MSCs) are highly valued for their multipotent differentiation, paracrine functions, immunomodulatory effects, and capacity for tissue repair. Particularly, exosomes (Exo) derived from MSCs (MSCs-Exo) are rich in bioactive molecules and facilitate intercellular communication, participating in various physiological and pathological processes. MSCs and MSCs-Exo, in particular, have been demonstrated to have therapeutic effects in DN treatment research by encouraging tissue repair, fibrosis inhibition, and inflammation reduction. Research has shown that MSCs and MSCs-Exo have therapeutic effects in DN treatment by promoting tissue repair, inhibiting fibrosis, and reducing inflammation. Recent studies underscore the potential of MSCs and MSCs-Exo, highlighting their broad applicability in DN treatment. This review aims to provide a comprehensive summary of the scientific developments in treating DN using MSCs and MSCs-Exo from diverse sources, while also exploring their future therapeutic possibilities in detail.


Diabetic Nephropathies , Exosomes , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Exosomes/metabolism , Exosomes/transplantation , Diabetic Nephropathies/therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Mesenchymal Stem Cells/metabolism , Animals , Mesenchymal Stem Cell Transplantation/methods , Fibrosis
14.
Cell Biochem Biophys ; 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38438751

Drp1 (Dynamin-Related Protein 1) is a cytoplasmic GTPase protein encoded by the DNM1L gene that influences mitochondrial dynamics by mediating mitochondrial fission processes. Drp1 has been demonstrated to play an important role in a variety of life activities such as cell survival, proliferation, migration, and death. Drp1 has been shown to play different physiological roles under different physiological conditions, such as normal and inflammation. Recently studies have revealed that Drp1 plays a critical role in the occurrence, development, and aggravation of a series of diseases, thereby it serves as a potential therapeutic target for them. In this paper, we review the structure and biological properties of Drp1, summarize the biological processes that occur in the inflammatory response to Drp1, discuss its role in various cancers triggered by the mitochondrial pathway and investigate effective methods for targeting Drp1 in cancer treatment. We also synthesized the phenomena of Drp1 involving in the triggering of other diseases. The results discussed herein contribute to our deeper understanding of mitochondrial kinetic pathway-induced diseases and their therapeutic applications. It is critical for advancing the understanding of the mechanisms of Drp1-induced mitochondrial diseases and preventive therapies.

15.
Trials ; 25(1): 166, 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38439027

BACKGROUND: Endovascular thrombectomy (EVT) is a standard treatment for acute ischemic stroke (AIS) with large vessel occlusion. Hypertension and increased blood pressure variability within the first 24 h after successful reperfusion are related to a higher risk of symptomatic intracerebral hemorrhage and higher mortality. AIS patients might suffer from ischemia-reperfusion injury following reperfusion, especially within 24 h. Dexmedetomidine (DEX), a sedative commonly used in EVT, can stabilize hemodynamics by inhibiting the sympathetic nervous system and alleviate ischemia-reperfusion injury through anti-inflammatory and antioxidative properties. Postoperative prolonged sedation for 24 h with DEX might be a potential pharmacological approach to improve long-term prognosis after EVT. METHODS: This single-center, open-label, prospective, randomized controlled trial will include 368 patients. The ethics committee has approved the protocol. After successful reperfusion (modified thrombolysis in cerebral infarction scores 2b-3, indicating reperfusion of at least 50% of the affected vascular territory), participants are randomly assigned to the intervention or control group. In the intervention group, participants will receive 0.1~1.0 µg/kg/h DEX for 24 h. In the control group, participants will receive an equal dose of saline for 24 h. The primary outcome is the functional outcome at 90 days, measured with the categorical scale of the modified Rankin Scale, ranging from 0 (no symptoms) to 6 (death). The secondary outcome includes (1) the changes in stroke severity between admission and 24 h and 7 days after EVT, measured by the National Institute of Health Stroke Scale (ranging from 0 to 42, with higher scores indicating greater severity); (2) the changes in ischemic penumbra volume/infarct volume between admission and 7 days after EVT, measured by neuroimaging scan; (3) the length of ICU/hospital stay; and (4) adverse events and the all-cause mortality rate at 90 days. DISCUSSION: This randomized clinical trial is expected to verify the hypothesis that postoperative prolonged sedation with DEX after successful reperfusion may promote the long-term prognosis of patients with AIS and may reduce the related socio-economic burden. TRIAL REGISTRATION: ClinicalTrials.gov NCT04916197. Prospectively registered on 7 June 2021.


Dexmedetomidine , Ischemic Stroke , Reperfusion Injury , Stroke , Humans , Ischemic Stroke/diagnosis , Ischemic Stroke/surgery , Dexmedetomidine/adverse effects , Prospective Studies , Reperfusion , Thrombectomy/adverse effects , Stroke/diagnosis , Stroke/therapy , Reperfusion Injury/etiology , Reperfusion Injury/prevention & control , Prognosis , Randomized Controlled Trials as Topic
16.
Int J Biol Macromol ; 266(Pt 1): 131261, 2024 May.
Article En | MEDLINE | ID: mdl-38556231

Polysaccharides impact intestinal fermentation and regulate interfacial properties which affect absorption and transportation. Short-chain fatty acids (SCFAs), the main metabolites of soy hull polysaccharide lysate, are readily absorbed by the body and perform various physiological functions. We analysed the interfacial properties and transport of soy hull polysaccharide-derived SCFAs in the Caco-2 cell model to clarify the transmembrane transport mechanism. The results showed that the interfacial properties of the co-culture system were influenced by both transit time and concentration of SCFAs, the uptake and transit rates of SCFAs at 1-3 h increased significantly with time (P < 0.05). With increasing transit time and concentration, the transit rates of SCFAs on the apical side (AP) â†’ basolateral side (BL) and BL â†’ AP sides increased and then stabilised, the transit rate of the AP â†’ BL side was higher than that of the BL â†’ AP side. Proteomic analysis showed that soy hull polysaccharide-derived SCFAs resulted in the differential expression of 285 upregulated and 501 downregulated after translocation across Caco-2 cells. The differentially expressed proteins were mainly enriched in ribosomes, oxidative phosphorylation, nuclear transport, and SNARE vesicular transport. This study lays the theoretical foundation for understanding the structure-activity relationship of soy hull polysaccharides in the intestine.


Fatty Acids, Volatile , Glycine max , Polysaccharides , Caco-2 Cells , Humans , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/metabolism , Glycine max/chemistry , Fatty Acids, Volatile/metabolism , Biological Transport/drug effects , Cell Membrane/metabolism , Cell Membrane/drug effects , Proteomics/methods
17.
J Int Med Res ; 52(3): 3000605241233953, 2024 Mar.
Article En | MEDLINE | ID: mdl-38534077

We report the case of a woman nearing 70 years old who was admitted to the hospital with a complaint of "epigastric distension for 1 month". Her main signs and symptoms were progressive abdominal distension and occasional abdominal pain. Computed tomography suggested an abdominal mass. She had a surgical history of synovial sarcoma (SS) of the lungs. After admission, she was diagnosed with jejunal SS following a puncture biopsy and laparoscopic surgery. This disease usually occurs in the soft tissues of the limbs, and it is extremely rare for SS to originate in the jejunum. The morphologic heterogeneity of SS overlaps with other tumors and makes the diagnosis particularly difficult. Imaging studies usually lack specificity; however, measuring multiple immunohistochemical markers can greatly assist in the diagnosis and differential diagnosis of SS. This case not only enriches our understanding of SS and describes a rare site of origin, but also emphasizes the importance and challenges of achieving an accurate diagnosis. Immunohistochemical and molecular biological testing have important roles in the definitive diagnosis, highlighting the need for precise and innovative diagnostic and therapeutic approaches in SS.


Sarcoma, Synovial , Humans , Female , Aged , Sarcoma, Synovial/diagnosis , Sarcoma, Synovial/pathology , Sarcoma, Synovial/surgery , Jejunum/pathology , Viscera/pathology , Abdominal Pain , Lung/pathology
18.
BMC Ecol Evol ; 24(1): 36, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38494489

BACKGROUND: Sequence variation produced by mutation provides the ultimate source of natural selection for species adaptation. Unlike nonsynonymous mutation, synonymous mutations are generally considered to be selectively neutral but accumulating evidence suggests they also contribute to species adaptation by regulating the flow of genetic information and the development of functional traits. In this study, we analysed sequence characteristics of ATP6, a housekeeping gene from 139 Phytophthora infestans isolates, and compared the fitness components including metabolic rate, temperature sensitivity, aggressiveness, and fungicide tolerance among synonymous mutations. RESULTS: We found that the housekeeping gene exhibited low genetic variation and was represented by two major synonymous mutants at similar frequency (0.496 and 0.468, respectively). The two synonymous mutants were generated by a single nucleotide substitution but differed significantly in fitness as well as temperature-mediated spatial distribution and expression. The synonymous mutant ending in AT was more common in cold regions and was more expressed at lower experimental temperature than the synonymous mutant ending in GC and vice versa. CONCLUSION: Our results are consistent with the argument that synonymous mutations can modulate the adaptive evolution of species including pathogens and have important implications for sustainable disease management, especially under climate change.


Fungicides, Industrial , Phytophthora infestans , Silent Mutation , Phytophthora infestans/genetics , Mutation/genetics , Selection, Genetic
19.
Int J Biol Macromol ; 264(Pt 2): 130727, 2024 Apr.
Article En | MEDLINE | ID: mdl-38460645

Enormous amounts of food resources are annually wasted because of microbial contamination, highlighting the critical role of effective food packaging in preventing such losses. However, traditional food packaging faces several limitations, such as low mechanical strength, poor fatigue resistance, and low water retention. In this study, we aimed to prepare nanocellulose hydrogels with enhanced stretchability, fatigue resistance, high water retention, and antibacterial properties using soy hull nanocellulose (SHNC), polyvinyl alcohol (PVA), sodium alginate (SA), and tannic acid (TA) as raw materials. These hydrogels were applied in food packaging to extend the shelf life of refrigerated chicken. The structure and properties (e.g., mechanical, antibacterial, and barrier properties) of these hydrogels were characterized using different techniques. Fourier-transform infrared spectroscopy revealed the presence of hydrogen and ester bonds in the hydrogels, whereas scanning electron microscopy revealed the three-dimensional network structure of the hydrogels. Mechanical testing demonstrated that the SHNC/PVA/SA/TA-2 hydrogel exhibited excellent tensile properties (elongation = 160 %), viscoelasticity (storage modulus of 1000 Pa), and mechanical strength (compressive strength = 10 kPa; tensile strength = 0.35 MPa). Moreover, under weak acidic and alkaline conditions, the ester bonds of the hydrogel broke down with an increase in pH, improving its swelling and release properties. The SHNC/PVA/SA/TA-2 hydrogel displayed an equilibrium swelling ratio exceeding 300 %, with a release rate of >80 % for the bioactive substance TA. Notably, antibacterial testing showed that the SHNC/PVA/SA/TA-2 hydrogel effectively deactivated Staphylococcus aureus and Escherichia coli, prolonging the shelf life of refrigerated chicken to 10 d. Therefore, the SHNC/PVA/SA/TA hydrogels can be used in food packaging to extend the shelf life of refrigerated meat products. Their cost-effectiveness and simple preparation make them suitable for various applications in the food industry.


Chickens , Hydrogels , Polyphenols , Animals , Hydrogels/pharmacology , Hydrogels/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Water , Esters , Polyvinyl Alcohol/pharmacology , Polyvinyl Alcohol/chemistry
20.
Cancer Cell Int ; 24(1): 93, 2024 Mar 02.
Article En | MEDLINE | ID: mdl-38431606

BACKGROUND: Novel therapeutic targets are urgently needed for treating drug-resistant non-small cell lung cancer (NSCLC) and overcoming drug resistance to molecular-targeted therapies. Regulator of G protein signaling 20 (RGS20) is identified as an upregulated factor in many cancers, yet its specific role and the mechanism through which RGS20 functions in NSCLC remain unclear. Our study aimed to identify the role of RGS20 in NSCLC prognosis and delineate associated cellular and molecular pathways. METHODS: Immunohistochemistry and lung cancer tissue microarray were used to verify the expression of RGS20 between NSCLC patients. CCK8 and cell cloning were conducted to determine the proliferation ability of H1299 and Anip973 cells in vitro. Furthermore, Transcriptome sequencing was performed to show enrichment genes and pathways. Immunofluorescence was used to detect the translocation changes of YAP to nucleus. Western blotting demonstrated different expressions of autophagy and the Hippo-PKA signal pathway. In vitro and in vivo experiments verified whether overexpression of RGS20 affect the proliferation and autophagy of NSCLC through regulating the Hippo pathway. RESULTS: The higher RGS20 expression was found to be significantly correlated with a poorer five-year survival rate. Further, RGS20 accelerated cell proliferation by increasing autophagy. Transcriptomic sequencing suggested the involvement of the Hippo signaling pathway in the action of RGS20 in NSCLC. RGS20 activation reduced YAP phosphorylation and facilitated its nuclear translocation. Remarkably, inhibiting Hippo signaling with GA-017 promoted cell proliferation and activated autophagy in RGS20 knock-down cells. However, forskolin, a GPCR activator, increased YAP phosphorylation and reversed the promoting effect of RGS20 in RGS20-overexpressing cells. Lastly, in vivo experiments further confirmed role of RGS20 in aggravating tumorigenicity, as its overexpression increased NSCLC cell proliferation. CONCLUSION: Our findings indicate that RGS20 drives NSCLC cell proliferation by triggering autophagy via the inhibition of PKA-Hippo signaling. These insights support the role of RGS20 as a promising novel molecular marker and a target for future targeted therapies in lung cancer treatment.

...