Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 227
Filter
1.
Nat Commun ; 15(1): 6823, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122704

ABSTRACT

Current treatments for chronic diarrhea have limited efficacy and several side effects. Probiotics have the potential to alleviate symptoms of diarrhea. This randomized, double-blind, placebo-controlled trial evaluates the effects of administering the probiotic Lactiplantibacillus plantarum P9 (P9) strain in young adults with chronic diarrhea (Clinical Trial Registration Number: ChiCTR2000038410). The intervention period lasts for 28 days, followed by a 14-day post-intervention period. Participants are randomized into the P9 (n = 93) and placebo (n = 96) groups, with 170 individuals completing the double-blind intervention phase (n = 85 per group). The primary endpoint is the diarrhea symptom severity score. Both intention-to-treat (n = 189) and per-protocol (n = 170) analyses reveal a modest yet statistically significant reduction in diarrhea severity compared to the placebo group (20.0%, P = 0.050; 21.4%, P = 0.048, respectively). In conclusion, the results of this study support the use of probiotics in managing chronic diarrhea in young adults. However, the lack of blood parameter assessment and the short intervention period represent limitations of this study.


Subject(s)
Diarrhea , Probiotics , Humans , Diarrhea/microbiology , Diarrhea/therapy , Probiotics/therapeutic use , Probiotics/administration & dosage , Double-Blind Method , Male , Young Adult , Adult , Female , Chronic Disease , Treatment Outcome , Lactobacillus plantarum , Adolescent
2.
J Control Release ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39151829

ABSTRACT

The combination of therapy-induced immunogenic cell death (ICD) and immune checkpoint blockade can provide a mutually reinforced strategy to reverse the poor immunogenicity and immune escape behavior of tumors. In this work, a chimeric peptide-engineered immunostimulant (ER-PPB) is fabricated for endoplasmic reticulum (ER)-targeted photodynamic immunotherapy against metastatic tumors. Among which, the amphiphilic chimeric peptide (ER-PP) is composed of ER-targeting peptide FFKDEL, hydrophilic PEG8 linker and photosensitizer protoporphyrin IX (PpIX), which could be assembled with a PD-1/PD-L1 blocker (BMS-1) to prepare ER-PPB. After passively targeting at tumor tissues, ER-PPB will selectively accumulate in the ER. Next, the localized PDT of ER-PPB will produce a lot of ROS to destroy the primary tumor cells, while increasing the ER stress to initiate a robust ICD cascade. Moreover, the concomitant delivery of BMS-1 can impede the immune escape of tumor cells through PD-1/PD-L1 blockade, thus synergistically activating the immune system to combat metastatic tumors. In vitro and in vivo results demonstrate the robust immune activation and metastatic tumor inhibition characteristics of ER-PPB, which may offer a promising strategy for spatiotemporally controlled metastatic tumor therapy.

3.
Biomed Pharmacother ; 179: 117295, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39146765

ABSTRACT

Despite considerable research efforts, inflammatory diseases remain a heavy burden on human health, causing significant economic losses annually. Histone deacetylases (HDACs) play a significant role in regulating inflammation (via histone and non-histone protein deacetylation) and chromatin structure and gene expression regulation. Herein, we present a detailed description of the different HDACs and their functions and analyze the role of HDACs in inflammatory diseases, including pro-inflammatory cytokine production reduction, immune cell function modulation, and anti-inflammatory cell activity enhancement. Although HDAC inhibitors have shown broad inflammatory disease treatment potentials, their clinical applicability remains limited because of their non-specific effects, adverse effects, and drug resistance. With further research and insight, these inhibitors are expected to become important tools for the treatment of a wide range of inflammatory diseases. This review aims to explore the mechanisms and application prospects of HDACs and their inhibitors in multiple inflammatory diseases.

4.
Adv Mater ; : e2404923, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39149776

ABSTRACT

Epitaxial growth of 2D transition metal dichalcogenides (TMDCs) on sapphire substrates has been recognized as a pivotal method for producing wafer-scale single-crystal films. Both step-edges and symmetry of substrate surfaces have been proposed as controlling factors. However, the underlying fundamental still remains elusive. In this work, through the molybdenum disulfide (MoS2) growth on C/M sapphire, it is demonstrated that controlling the sulfur evaporation rate is crucial for dictating the switch between atomic-edge guided epitaxy and van der Waals epitaxy. Low-concentration sulfur condition preserves O/Al-terminated step edges, fostering atomic-edge epitaxy, while high-concentration sulfur leads to S-terminated edges, preferring van der Waals epitaxy. These experiments reveal that on a 2 in. wafer, the van der Waals epitaxy mechanism achieves better control in MoS2 alignment (≈99%) compared to the step edge mechanism (<85%). These findings shed light on the nuanced role of atomic-level thermodynamics in controlling nucleation modes of TMDCs, thereby providing a pathway for the precise fabrication of single-crystal 2D materials on a wafer scale.

5.
Mol Med ; 30(1): 113, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095693

ABSTRACT

BACKGROUND: To explore whether nobiletin has a protective effect on high-fat diet (HFD)-induced enteric nerve injury and its underlying mechanism. METHODS: An obesity model was induced by a HFD. Nobiletin (100 mg/kg and 200 mg/kg) and vehicle were administered by gastric gavage for 4 weeks. Lee's index, body weight, OGTT and intestinal propulsion assays were performed before sacrifice. After sampling, lipids were detected using Bodipy 493/503; lipid peroxidation was detected using MDA and SOD kits and the expression of PGP 9.5, Trem2, GFAP, ß-tubulin 3, Bax, Bcl2, Nestin, P75 NTR, SOX10 and EDU was detected using immunofluorescence. The GDNF, p-AKT, AKT, p-FOXO3a, FOXO3a and P21 proteins were detected using western blotting. The relative mRNA expression levels of NOS2 were detected via qPCR. Primary enteric neural stem cells (ENSCs) were cultured. After ENSCs were treated with palmitic acid (PA) and nobiletin, CCK-8 and caspase-3/7 activity assays were performed to evaluate proliferation and apoptosis. RESULTS: HFD consumption caused colon lipid accumulation and peroxidation, induced enteric nerve damage and caused intestinal motor dysfunction. However, nobiletin reduced lipid accumulation and peroxidation in the colon; promoted Trem2, ß-tubulin 3, Nestin, P75NTR, SOX10 and Bcl2 expression; inhibited Bax and GFAP expression; reduced NOS2 mRNA transcription; and regulated the GDNF/AKT/FOXO3a/P21 pathway. Nobiletin also promoted PA-induced impairment of ENSCs. CONCLUSIONS: Nobiletin restored HFD-induced enteric nerve injury, which may be associated with inhibiting enteric nerve apoptosis, promoting enteric nerve survival and regulating the GDNF/AKT/FOXO3a/P21 pathway.


Subject(s)
Diet, High-Fat , Enteric Nervous System , Flavones , Forkhead Box Protein O3 , Glial Cell Line-Derived Neurotrophic Factor , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Forkhead Box Protein O3/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Diet, High-Fat/adverse effects , Signal Transduction/drug effects , Male , Flavones/pharmacology , Flavones/therapeutic use , Enteric Nervous System/metabolism , Enteric Nervous System/drug effects , Neuroglia/metabolism , Neuroglia/drug effects , Mice , Disease Models, Animal , Rats , Obesity/metabolism , Obesity/drug therapy , Apoptosis/drug effects
6.
Exp Gerontol ; 195: 112538, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39116956

ABSTRACT

Amyotrophic lateral sclerosis as a fatal neurodegenerative disease currently lacks effective therapeutic agents. Thus, finding new therapeutic targets to drive disease treatment is necessary. In this study, we utilized brain and plasma proteins as genetic instruments obtained from genome-wide association studies to conduct a Mendelian randomization analysis to identify potential drug targets for amyotrophic lateral sclerosis. Additionally, we validated our results externally using other datasets. We also used Bayesian co-localization analysis and phenotype scanning. Furthermore, we constructed a protein-protein interaction network to elucidate potential correlations between the identified proteins and existing targets. Mendelian randomization analysis indicated that elevated levels of ANO5 (OR = 1.30; 95 % CI, 1.14-1.49; P = 1.52E-04), SCFD1 (OR = 3.82; 95 % CI, 2.39-6.10; P = 2.19E-08), and SIGLEC9 (OR = 1.05; 95% CI, 1.03-1.07; P = 4.71E-05) are associated with an increased risk of amyotrophic lateral sclerosis, with external validation supporting these findings. Co-localization analysis confirmed that ANO5, SCFD1, and SIGLEC9 (coloc.abf-PPH4 = 0.848, 0.984, and 0.945, respectively) shared the same variant with amyotrophic lateral sclerosis, further substantiating potential role of these proteins as a therapeutic target. There are interactive relationships between the potential proteins and existing targets of amyotrophic lateral sclerosis. Our findings suggested that elevated levels of ANO5, SCFD1, and SIGLEC9 are connected with an increased risk of amyotrophic lateral sclerosis and might be promising therapeutic targets. However, further exploration is necessary to fully understand the underlying mechanisms involved.

7.
Free Radic Biol Med ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39048340

ABSTRACT

Increasing evidence underscores the pivotal role of ferroptosis in Parkinson's Disease (PD) pathogenesis. Acteoside (ACT) has been reported to possess neuroprotective properties. However, the effects of ACT on ferroptosis and its molecular mechanisms remain unknown. This study aimed to explore whether ACT can regulate ferroptosis in dopaminergic (DA) neurons within both in vitro and in vivo PD models and to elucidate the underlying regulatory mechanisms. PD models were established and treated with various concentrations of ACT. Cell viability assays, Western blot, lipid peroxidation assessments, immunohistochemistry, and transmission electron microscopy were employed to confirm ACT's inhibition of ferroptosis and its protective effect on DA neurons across PD models. Immunofluorescence staining, MitoSOX staining, and confocal laser scanning microscopy further validated ACT's regulation regulatory effects on ferroptosis via the Nrf2-mitophagy pathway. Four animal behavioral tests were used to assess behavioral improvements in PD animals. ACT inhibited ferroptosis in PD models in vitro, as evidenced by increased cell viability, the upregulation of GPX4 and SLC7A11, reduced lipid peroxides, and attenuation of mitochondrial morphological alterations typical of ferroptosis. By activating the Nrf2-mitophagy axis, ACT enhanced mitochondrial integrity and reduced lipid peroxidation, mitigating ferroptosis. These in vitro results were consistent with in vivo findings, where ACT treatment significantly preserved DA neurons, curbed ferroptosis in these cells, and alleviated cognitive and behavioral deficits. This study is the first demonstration of ACT's capability to inhibit neuronal ferroptosis and protect DA neurons, thus alleviating behavioral and cognitive impairments in both in vitro and in vivo PD models. Furthermore, The suppression of ferroptosis by ACT is achieved through the activation of the Nrf2-mitophagy signaling pathway. Our results show that ACT is beneficial for both treating and preventing PD. They also offer novel therapeutic options for treating PD and molecular targets for regulating ferroptosis.

8.
Front Psychiatry ; 15: 1335554, 2024.
Article in English | MEDLINE | ID: mdl-38957739

ABSTRACT

Background: Mobile phone addiction (MPA) greatly affects the biological clock and sleep quality and is emerging as a behavioral disorder. The saliva microbiota has been linked to circadian rhythms, and our previous research revealed dysrhythmic saliva metabolites in MPA subjects with sleep disorders (MPASD). In addition, acupuncture had positive effects. However, the dysbiotic saliva microbiota in MPASD patients and the restorative effects of acupuncture are unclear. Objectives: To probe the circadian dysrhythmic characteristics of the saliva microbiota and acupunctural restoration in MPASD patients. Methods: MPASD patients and healthy volunteers were recruited by the Mobile Phone Addiction Tendency Scale (MPATS) and the Pittsburgh Sleep Quality Index (PSQI). Saliva samples were collected every 4 h for 72 h. After saliva sampling, six MPDSD subjects (group M) were acupuncturally treated (group T), and subsequent saliva sampling was conducted posttreatment. Finally, all the samples were subjected to 16S rRNA gene sequencing and bioinformatic analysis. Results: Significantly increased MPATS and PSQI scores were observed in MPDSD patients (p< 0.01), but these scores decreased (p<0.001) after acupuncture intervention. Compared with those in healthy controls, the diversity and structure of the saliva microbiota in MPASD patients were markedly disrupted. Six genera with circadian rhythms were detected in all groups, including Sulfurovum, Peptostreptococcus, Porphyromonas and Prevotella. There were five genera with circadian rhythmicity in healthy people, of which the rhythmicities of the genera Rothia and Lautropia disappeared in MPASD patients but effectively resumed after acupuncture intervention. Conclusions: This work revealed dysrhythmic salivary microbes in MPASD patients, and acupuncture, as a potential intervention, could be effective in mitigating this ever-rising behavioral epidemic.

9.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(7): 774-781, 2024 Jul 15.
Article in Chinese | MEDLINE | ID: mdl-39014956

ABSTRACT

Sepsis-induced myocardial depression (SIMD), a common complication of sepsis, is one of the main causes of death in patients with sepsis. The pathogenesis of SIMD is complicated, and the process of SIMD remains incompletely understood, with no single or definitive mechanism fully elucidated. Notably, pyroptosis, as a pro-inflammatory programmed cell death, is characterized by Gasdermin-mediated formation of pores on the cell membrane, cell swelling, and cell rupture accompanied by the release of large amounts of inflammatory factors and other cellular contents. Mechanistically, pyroptosis is mainly divided into the canonical pathway mediated by caspase-1 and the non-canonical pathway mediated by caspase-4/5/11. Pyroptosis has been confirmed to participate in various inflammation-associated diseases. In recent years, more and more studies have shown that pyroptosis is also involved in the occurrence and development of SIMD. This article reviews the molecular mechanisms of pyroptosis and its research progress in SIMD, aiming to provide novel strategies and targets for the treatment of SIMD.


Subject(s)
Pyroptosis , Sepsis , Humans , Sepsis/complications , Animals , Cardiomyopathies/etiology
10.
Nano Lett ; 24(28): 8525-8534, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38954769

ABSTRACT

Cr2(NCN)3 is a potentially high-capacity and fast-charge Li-ion anode owing to its abundant and broad tunnels. However, high intrinsic chemical instability severely restricts its capacity output and electrochemical reversibility. Herein we report an effective crystalline engineering method for optimizing its phase and crystallinity. Systematic studies reveal the relevancy between electrochemical performance and crystalline structure; an optimal Cr2(NCN)3 with high phase purity and uniform crystallinity exhibits a high reversible capacity of 590 mAh g-1 and a stable cycling performance of 478 mAh g-1 after 500 cycles. In-operando heating XRD reveals its high thermodynamical stability over 600 °C, and in-operando electrochemical XRD proves its electrochemical Li storage mechanism, consisting of the primary Li-ion intercalation and subsequent conversion reactions. This study introduces a facile and low-cost method for fabricating high-purity Cr2(NCN)3, and it also confirms that the Li storage of Cr2(NCN)3 can be further improved by tuning its phase and crystallinity.

11.
Molecules ; 29(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39064904

ABSTRACT

Carrier-free self-assembly has gradually shifted the focus of research on natural products, which effectively improve the bioavailability and the drug-loading rate. However, in spite of the existing studies, the development of self-assembled natural phytochemicals that possess pharmacological effects still has scope for further exploration and enhancement. Herein, a nano-delivery system was fabricated through the direct self-assembly of Rhein and Matrine and was identified as a self-assembled Rhein-Matrine nanoparticles (RM NPs). The morphology of RM NPs was characterized by TEM. The molecular mechanisms of self-assembly were explored using FT-IR, 1H NMR, and molecular dynamics simulation analysis. Gelatin methacryloyl (GelMA) hydrogel was used as a drug carrier for controlled release and targeted delivery of RM NPs. The potential wound repair properties of RM NPs were evaluated on a skin wound-healing model. TEM and dynamic light scattering study demonstrated that the RM NPs were close to spherical, and the average size was approximately 75 nm. 1H NMR of RM NPs demonstrated strong and weak changes in the interaction energies during self-assembly. Further molecular dynamics simulation analysis predicted the self-assembly behavior. An in vivo skin wound-healing model demonstrated that RM NPs present better protection effect against skin damages. Taken together, RM NPs are a new self-assembly system; this may provide new directions for natural product applications.


Subject(s)
Alkaloids , Anthraquinones , Matrines , Molecular Dynamics Simulation , Nanoparticles , Quinolizines , Wound Healing , Alkaloids/chemistry , Alkaloids/pharmacology , Wound Healing/drug effects , Quinolizines/chemistry , Quinolizines/pharmacology , Nanoparticles/chemistry , Anthraquinones/chemistry , Anthraquinones/pharmacology , Animals , Drug Carriers/chemistry , Mice , Hydrogels/chemistry , Humans
12.
J Chromatogr A ; 1730: 465118, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38936162

ABSTRACT

Terpenoids possess significant physiological activities and are rich in essential oils. Some terpenoids have chiral centers and could form enantiomers with distinct physiological activities. Therefore, the extraction and separation of terpenoids enantiomers are very important and have attracted extensive attention in recent years. Meanwhile, the specific distribution and enantiomer excess results (the excess of one enantiomer over the other in a mixture of enantiomers) could be used as quality markers for illegitimate adulteration, origin identification, and exploring component variations and functional interrelations across different plant tissues. In this study, an overview of the progress in the extraction of terpenoids from essential oils and the separation of their enantiomers over the past two decades has been made. Extraction methods were retrieved by the resultant network visualization findings. The results showed that the predominant methods are hydrodistillation, solvent-free microwave extraction, headspace solid-phase microextraction and supercritical fluid extraction methods. GC-MS combined with chiral chromatography columns is commonly used for the separation of enantiomers, while 2D GC is found to have stronger resolution ability. Finally, some prospects for future research directions in the extraction and separation identification of essential oils are proposed.


Subject(s)
Gas Chromatography-Mass Spectrometry , Oils, Volatile , Terpenes , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Oils, Volatile/analysis , Terpenes/chemistry , Terpenes/isolation & purification , Terpenes/analysis , Gas Chromatography-Mass Spectrometry/methods , Stereoisomerism , Chromatography, Supercritical Fluid/methods , Solid Phase Microextraction/methods
13.
Front Neurol ; 15: 1380321, 2024.
Article in English | MEDLINE | ID: mdl-38725646

ABSTRACT

Introduction: Insomnia, a common clinical disorder, significantly impacts the physical and mental well-being of patients. Currently, available hypnotic medications are unsatisfactory due to adverse reactions and dependency, necessitating the identification of new drug targets for the treatment of insomnia. Methods: In this study, we utilized 734 plasma proteins as genetic instruments obtained from genome-wide association studies to conduct a Mendelian randomization analysis, with insomnia as the outcome variable, to identify potential drug targets for insomnia. Additionally, we validated our results externally using other datasets. Sensitivity analyses entailed reverse Mendelian randomization analysis, Bayesian co-localization analysis, and phenotype scanning. Furthermore, we constructed a protein-protein interaction network to elucidate potential correlations between the identified proteins and existing targets. Results: Mendelian randomization analysis indicated that elevated levels of TGFBI (OR = 1.01; 95% CI, 1.01-1.02) and PAM ((OR = 1.01; 95% CI, 1.01-1.02) in plasma are associated with an increased risk of insomnia, with external validation supporting these findings. Moreover, there was no evidence of reverse causality for these two proteins. Co-localization analysis confirmed that PAM (coloc.abf-PPH4 = 0.823) shared the same variant with insomnia, further substantiating its potential role as a therapeutic target. There are interactive relationships between the potential proteins and existing targets of insomnia. Conclusion: Overall, our findings suggested that elevated plasma levels of TGFBI and PAM are connected with an increased risk of insomnia and might be promising therapeutic targets, particularly PAM. However, further exploration is necessary to fully understand the underlying mechanisms involved.

14.
Pediatr Neonatol ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38641441

ABSTRACT

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is the most common neurobehavioral disorder. Treatments for ADHD include pharmacological and nonpharmacological therapy. However, pharmacological treatments have side effects such as poor appetite, sleep disturbance, and headache. Moreover, nonpharmacological treatments are not effective in ameliorating core symptoms and are time-consuming. Hence, developing an alternative and effective treatment without (or with fewer) side effects is crucial. Music therapy has long been used to treat numerous neurological diseases. Although listening to music is beneficial for mood and cognitive functions in patients with ADHD, research on the effects of music and movement therapy in children with ADHD is lacking. METHODS: The present study investigated the effects of an 8-week music and movement intervention in 13 children with ADHD. The Pediatric Quality of Life Inventory (PedsQL) was used to evaluate changes in participants' quality of life. Conners' Kiddie Continuous Performance Test (K-CPT 2) and the Swanson, Nolan, and Pelham rating scale (SNAP-IV) were used to assess core symptoms. Electroencephalogram (EEG) recordings were analyzed to determine neurophysiological changes. RESULTS: The results revealed that the participants' quality of life increased significantly after the 8-week intervention. Furthermore, the participants' hit reaction times in the block 1 and block 2 tests of K-CPT 2 decreased significantly after the intervention. EEG analysis demonstrated an increase in alpha power and Higuchi's fractal dimension and a decrease in delta power in certain EEG channels. CONCLUSION: Our music and movement intervention is a potential alternative and effective tool for ADHD treatment and it can significantly improve patients' quality of life and attention.

15.
BMC Plant Biol ; 24(1): 333, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664694

ABSTRACT

BACKGROUND: The circadian clock, also known as the circadian rhythm, is responsible for predicting daily and seasonal changes in the environment, and adjusting various physiological and developmental processes to the appropriate times during plant growth and development. The circadian clock controls the expression of the Lhcb gene, which encodes the chlorophyll a/b binding protein. However, the roles of the Lhcb gene in tea plant remain unclear. RESULTS: In this study, a total of 16 CsLhcb genes were identified based on the tea plant genome, which were distributed on 8 chromosomes of the tea plant. The promoter regions of CsLhcb genes have a variety of cis-acting elements including hormonal, abiotic stress responses and light response elements. The CsLhcb family genes are involved in the light response process in tea plant. The photosynthetic parameter of tea leaves showed rhythmic changes during the two photoperiod periods (48 h). Stomata are basically open during the day and closed at night. Real-time quantitative PCR results showed that most of the CsLhcb family genes were highly expressed during the day, but were less expressed at night. CONCLUSIONS: Results indicated that CsLhcb genes were involved in the circadian clock process of tea plant, it also provided potential references for further understanding of the function of CsLhcb gene family in tea plant.


Subject(s)
Camellia sinensis , Circadian Rhythm , Photosynthesis , Photosynthesis/genetics , Camellia sinensis/genetics , Camellia sinensis/physiology , Circadian Rhythm/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Genes, Plant , Multigene Family , Chlorophyll Binding Proteins/genetics , Chlorophyll Binding Proteins/metabolism , Photoperiod
16.
ACS Nano ; 18(17): 11375-11388, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38629444

ABSTRACT

P2-NaxMnO2 has garnered significant attention due to its favorable Na+ conductivity and structural stability for large-scale energy storage fields. However, achieving a balance between high energy density and extended cycling stability remains a challenge due to the Jahn-Teller distortion of Mn3+ and anionic activity above 4.1 V. Herein, we propose a one-step in situ MgF2 strategy to synthesize a P2-Na0.76Ni0.225Mg0.025Mn0.75O1.95F0.05 cathode with improved Na-storage performance and decent water/air stability. By partially substituting cost-effective Mg for Ni and incorporating extra F for O, the optimized material demonstrates both enhanced capacity and structure stability via promoting Ni2+/Ni4+ and oxygen redox activity. It delivers a high capacity of 132.9 mA h g-1 with an elevated working potential of ≈3.48 V and maintains ≈83.0% capacity retention after 150 cycles at 100 mA g-1 within 2-4.3 V, compared to the 114.9 mA h g-1 capacity and 3.32 V discharging potential of the undoped Na0.76Ni0.25Mn0.75O2. While increasing the charging voltage to 4.5 V, 133.1 mA h g-1 capacity and 3.55 V discharging potential (vs Na/Na+) were achieved with 72.8% capacity retention after 100 cycles, far beyond that of the pristine sample (123.7 mA h g-1, 3.45 V, and 43.8%@100 cycles). Moreover, exceptional low-temperature cycling stability is achieved, with 95.0% after 150 cycles. Finally, the Na-storage mechanism of samples employing various doping strategies was investigated using in situ EIS, in situ XRD, and ex situ XPS techniques.

17.
Pharmacol Res ; 203: 107182, 2024 May.
Article in English | MEDLINE | ID: mdl-38614373

ABSTRACT

Inflammatory diseases, including infectious diseases, diabetes-related diseases, arthritis-related diseases, neurological diseases, digestive diseases, and tumor, continue to threaten human health and impose a significant financial burden despite advancements in clinical treatment. Pyroptosis, a pro-inflammatory programmed cell death pathway, plays an important role in the regulation of inflammation. Moderate pyroptosis contributes to the activation of native immunity, whereas excessive pyroptosis is associated with the occurrence and progression of inflammation. Pyroptosis is complicated and tightly controlled by various factors. Accumulating evidence has confirmed that epigenetic modifications and post-translational modifications (PTMs) play vital roles in the regulation of pyroptosis. Epigenetic modifications, which include DNA methylation and histone modifications (such as methylation and acetylation), and post-translational modifications (such as ubiquitination, phosphorylation, and acetylation) precisely manipulate gene expression and protein functions at the transcriptional and post-translational levels, respectively. In this review, we summarize the major pathways of pyroptosis and focus on the regulatory roles and mechanisms of epigenetic and post-translational modifications of pyroptotic components. We also illustrate these within pyroptosis-associated inflammatory diseases. In addition, we discuss the effects of novel therapeutic strategies targeting epigenetic and post-translational modifications on pyroptosis, and provide prospective insight into the regulation of pyroptosis for the treatment of inflammatory diseases.


Subject(s)
Epigenesis, Genetic , Inflammation , Protein Processing, Post-Translational , Pyroptosis , Humans , Pyroptosis/drug effects , Animals , Inflammation/genetics , Inflammation/metabolism , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology
18.
Adv Mater ; 36(30): e2404360, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657134

ABSTRACT

The poor bulk-phase and interphase stability, attributable to adverse internal stress, impede the cycling performance of silicon microparticles (µSi) anodes and the commercial application for high-energy-density lithium-ion batteries. In this work, a groundbreaking gradient-hierarchically ordered conductive (GHOC) network structure, ingeniously engineered to enhance the stability of both bulk-phase and the solid electrolyte interphase (SEI) configurations of µSi, is proposed. Within the GHOC network architecture, two-dimensional (2D) transition metal carbides (Ti3C2Tx) act as a conductive "brick", establishing a highly conductive inner layer on µSi, while the porous outer layer, composed of one-dimensional (1D) Tempo-oxidized cellulose nanofibers (TCNF) and polyacrylic acid (PAA) macromolecule, functions akin to structural "rebar" and "concrete", effectively preserves the tightly interconnected conductive framework through multiple bonding mechanisms, including covalent and hydrogen bonds. Additionally, Ti3C2Tx enhances the development of a LiF-enriched SEI. Consequently, the µSi-MTCNF-PAA anode presents a high discharge capacity of 1413.7 mAh g-1 even after 500 cycles at 1.0 C. Moreover, a full cell, integrating LiNi0.8Mn0.1Co0.1O2 with µSi-MTCNF-PAA, exhibits a capacity retention rate of 92.0% following 50 cycles. This GHOC network structure can offer an efficacious pathway for stabilizing both the bulk-phase and interphase structure of anode materials with high volumetric strain.

19.
Angew Chem Int Ed Engl ; 63(22): e202403753, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38523070

ABSTRACT

To meet the industrial requirements of organic photovoltaic (OPV) cells, it is imperative to accelerate the development of cost-effective materials. Thiophene-benzene-thiophene central unit-based acceptors possess the advantage of low synthetic cost, while their power conversion efficiency (PCE) is relatively low. Here, by incorporating a para-substituted benzene unit and 1st-position branched alkoxy chains with large steric hindrance, a completely non-fused non-fullerene acceptor, TBT-26, was designed and synthesized. The narrow band gap of 1.38 eV ensures the effective utilization of sunlight. The favorable phase separation morphology of TBT-26-based blend film facilitates the efficient exciton dissociation and charge transport in corresponding OPV cell. Therefore, the TBT-26-based small-area cell achieves an impressive PCE of 17.0 %, which is the highest value of completely non-fused OPV cells. Additionally, we successfully demonstrated the scalability of this design by fabricating a 28.8 cm2 module with a high PCE of 14.3 %. Overall, our work provides a practical molecular design strategy for developing high-performance and low-cost acceptors, paving the way for industrial applications of OPV technology.

20.
J Am Chem Soc ; 146(13): 9205-9215, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38523309

ABSTRACT

The nonfused thiophene-benzene-thiophene (TBT) unit offers advantages in obtaining low-cost organic photovoltaic (OPV) materials due to its simple structure. However, OPV cells, including TBT-based acceptors, exhibit significantly lower energy conversion efficiencies. Here, we introduce a novel approach involving the design and synthesis of three TBT-based acceptors by substituting different position-branched side chains on the TBT unit. In comparison to TBT-10 and TBT-11, TBT-13, which exclusively incorporates α-position branched side chains with a large steric hindrance, demonstrates a more planar and stable conformation. When blended with the donor PBQx-TF, TBT-13-based blend film achieves favorable π-π stacking and aggregation characteristics, resulting in excellent charge transfer performance in the corresponding device. Due to the simultaneous enhancements in short-circuit current density and fill factor, the TBT-13-based OPV cell obtains an outstanding efficiency of 16.1%, marking the highest value for the cells based on fully nonfused acceptors. Our work provides a practical molecular design strategy for high-performance and low-cost OPV materials.

SELECTION OF CITATIONS
SEARCH DETAIL