Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
Diabetol Metab Syndr ; 16(1): 146, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956716

ABSTRACT

BACKGROUND: Diabetic cardiomyopathy (DCM) stands as the primary cause of heart failure and mortality among patients with diabetes. Nevertheless, conventional treatment approaches are limited in their ability to effectively prevent myocardial tissue damage itself. Mesenchymal stem cell (MSC) therapy exhibits immense potential for treating DCM; however, the precise mechanisms involved in regulating inflammatory responses and pyroptosis processes, an emerging form of cellular death, within myocardial cells remain elusive. Hence, it is imperative to further elucidate the precise underlying mechanisms to facilitate the clinical implementation of MSC therapy. METHODS: In vivo, we established a DCM mouse model by administering streptozotocin and fed the mice a high-glucose and high-fat diet, followed by MSC therapy. Cardiac function and myocardial injury were evaluated through echocardiography and histological analysis. Furthermore, the levels of inflammation and pyroptosis were assessed using ELISA, Western blotting, and qRT-PCR. In vitro experiments involved inducing H9C2 myocardial cell damage with high glucose treatment, followed by coculture with MSCs to investigate their role in modulating inflammation and pyroptosis mechanisms. RESULTS: MSCs can maintain cardiac function and alleviate myocardial injury in mice with DCM. Moreover, they effectively suppress the activation of NLRP3 and reduce the release of inflammatory factors (such as IL-1ß and ROS), thereby further downregulating the expression of pyroptosis-related proteins including NLRP3, Caspase-1, and GSDMD. Additionally, we experimentally validated that MSCs exert their therapeutic effects by promoting the expression of miR-223-3p in cardiac myocytes; however, this effect can be reversed by an miR-223-3p inhibitor. CONCLUSION: MSCs effectively mitigate the release of inflammatory factors and cell lysis caused by pyroptosis through the regulation of the miR-223-3p/NLRP3 pathway, thereby safeguarding cardiomyocytes against damage in DCM. This mechanism establishes a novel theoretical foundation for the clinical treatment of cardiac conditions utilizing MSCs.

2.
Chem Asian J ; : e202400411, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719729

ABSTRACT

In this paper, we have established an operationally convenient protocol for the rapid construction of polysubstituted methyleneindene and quinoline derivatives under mild conditions. This new synthetic method is achieved through the conversion of acetyl-substituted methylenecyclopropanes with TsOH·H2O and ortho-amino-substituted methylenecyclopropanes with aromatic aldehyde and TsOH·H2O, respectively. A variety of transformations of the obtained products was demonstrated. The plausible reaction mechanisms were also proposed.

3.
Nat Commun ; 15(1): 1814, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418454

ABSTRACT

Current-induced spin torques enable the electrical control of the magnetization with low energy consumption. Conventional magnetic random access memory (MRAM) devices rely on spin-transfer torque (STT), this however limits MRAM applications because of the nanoseconds incubation delay and associated endurance issues. A potential alternative to STT is spin-orbit torque (SOT). However, for practical, high-speed SOT devices, it must satisfy three conditions simultaneously, i.e., field-free switching at short current pulses, short incubation delay, and low switching current. Here, we demonstrate field-free SOT switching at sub-ns timescales in a CoFeB/Ti/CoFeB ferromagnetic trilayer, which satisfies all three conditions. In this trilayer, the bottom magnetic layer or its interface generates spin currents with polarizations in both in-plane and out-of-plane components. The in-plane component reduces the incubation time, while the out-of-plane component realizes field-free switching at a low current. Our results offer a field-free SOT solution for energy-efficient scalable MRAM applications.

4.
PLoS One ; 19(2): e0297456, 2024.
Article in English | MEDLINE | ID: mdl-38346062

ABSTRACT

The establishment of green finance reform and innovation (GFRI) pilot zone is an important measure of the Chinese government to urge enterprises to develop green transformation. This paper explores the impact of pilot policies in the GFRI pilot zone on corporate environmental investment. Based on 819 A-share listed enterprises from 2010 to 2020, our staggered difference-in-differences (staggered DID) estimation documents revealed that enterprises in the GFRI pilot zone significantly increased the corporate environmental investment efficiency but reduced the scale of corporate environmental investment.This conclusion remained robust after Propensity Scores Matching difference-in-differences (PSM-DID), replacing dependent variables, and shortening the time window. We contend that the increased research and development (R&D) expenditure and technological innovation are the potential mechanisms at work. Heterogeneity analysis showed that the establishment of GFRI improved the environmental investment efficiency of polluting enterprises but had no effect on green enterprises.Meanwhile, the effect of GFRI exhibited heterogeneity in the type of enterprise ownership. This paper evaluates the implementation effect of GFRI from the perspective of corporate environmental investment, and provides theoretical support and an empirical basis for green finance policy to serve China's green economy.


Subject(s)
Environmental Policy , Fiscal Policy , Investments , Sustainable Development , Sustainable Growth , China , Government , Organizations , Economic Development , Sustainable Development/economics
5.
Small ; : e2311978, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38361184

ABSTRACT

Developing efficient and stable halide perovskite-based photocatalysts for highly selectivity reduction CO2 to valuable fuels remains a significant challenge due to their intrinsic instability. Herein, a novel heterostructure featuring 2D Cs3 Sb2 I9 nanosheets on a 3D flower-like mesoporous NiTiO3 framework using a top-down stepwise membrane fabrication technique is constructed. The unique bilayer heterostructure formed on the 3D mesoporous framework endowed NiTiO3 /Cs3 Sb2 I9 with sufficient and close interface contact, minimizing charge transport distance, and effectively promoting the charge transfer at the interface, thus improving the reaction efficiency of the catalyst surface. As revealed by characterization and calculation, the coupling of Cs3 Sb2 I9 with NiTiO3 facilitates the hydrogenation process during catalytic, directing reaction intermediates toward highly selective CH4 production. Furthermore, the van der Waals forces inherent in the 3D/2D heterostructure with face-to-face contact provide superior stability, ensuring the efficient realization of photocatalytic CO2 reduction to CH4 . Consequently, the optimized 3D/2D NiTiO3 /Cs3 Sb2 I9 heterostructure demonstrates an impressive CH4 yield of 43.4 µmol g-1  h-1 with a selectivity of up to 88.6%, surpassing most reported perovskite-based photocatalysts to date. This investigation contributes to overcoming the challenges of commercializing perovskite-based photocatalysts and paves the way for the development of sustainable and efficient CO2 conversion technologies.

6.
IEEE Trans Pattern Anal Mach Intell ; 46(5): 3064-3078, 2024 May.
Article in English | MEDLINE | ID: mdl-38055367

ABSTRACT

Recently, brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks. However, these SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation. Given that each neural coding scheme possesses its own merits and drawbacks, these SNNs encounter challenges in achieving optimal performance such as accuracy, response time, efficiency, and robustness, all of which are crucial for practical applications. In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes. As an initial exploration in this direction, we propose a hybrid neural coding and learning framework, which encompasses a neural coding zoo with diverse neural coding schemes discovered in neuroscience. Additionally, it incorporates a flexible neural coding assignment strategy to accommodate task-specific requirements, along with novel layer-wise learning methods to effectively implement hybrid coding SNNs. We demonstrate the superiority of the proposed framework on image classification and sound localization tasks. Specifically, the proposed hybrid coding SNNs achieve comparable accuracy to state-of-the-art SNNs, while exhibiting significantly reduced inference latency and energy consumption, as well as high noise robustness. This study yields valuable insights into hybrid neural coding designs, paving the way for developing high-performance neuromorphic systems.

7.
Chinese Pharmacological Bulletin ; (12): 181-188, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013613

ABSTRACT

Aim To analyze the differences in plasma biomarkers and metabolic pathways between Atractylodes chinensis and Atractylodes coreana after intervention in spleen deficiency rats, and discuss the spleen strengthening mechanism of the two from a non targeted metabolomics perspective. Methods A spleen deficiency model was established in SD rats using a composite factor method of improper diet, excessive fatigue, and bitter cold diarrhea. To determine the content of gastrointestinal and immunological indicators, UHPLC-QE-MS technology was used, combined with principal component analysis (PC A) and orthogonal projections to latent structures-discriminant analysis (OPLS-DA) methods to search for biomarkers in plasma of spleen deficiency rats, and metabolic pathways were induced using the Pathway database. Results After administration of Atractylodes chinensis and Atractylodes coreana, various indicators in plasma of spleen deficiency rats showed varying degrees of regression. Metabolomics analysis showed that Atractylodes chinensis and Atractylodes coreana respectively recalled 70 and 82 plasma differential metabolites. Atractylodes chinensis mainly regulated two metabolic pathways : "Glycine, serine, and threonine metabolism, and "Thiamine metabolism". Atractylodes coreana mainly regulated five metabolic pathways, "Glycine, serine, and threonine metabolism", "Thiamine metabolism, "Pyrimidine metabolism", "Butanoate metabolism", and "Riboflavin metabolism". Conclusions Both Atractylodes chinensis and Atractylodes coreana have certain regulatory effects on spleen deficiency rats, and their mechanism of action may be related to regulating metabolic pathways such as "Glycine, serine, and threonine metabolism, and "Thiamine metabolism"in spleen deficiency.

8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1012705

ABSTRACT

ObjectiveTo investigate the effects of Aconiti Coreani Radix and Typhonii Rhizoma on the urinary metabolites of gerbils with stroke by non-targeted metabolomics technique, and then to clarify the mechanism of the two, as well as their similarities and differences. MethodTwenty-four gerbils were randomly divided into control group(CG), model group(MG), Aconiti Coreani Radix group(RA) and Typhonii Rhizoma group(RT). Except for the CG, ischemic stroke model was constructed using right unilateral ligation of gerbil carotid artery in the remaining groups. Except for the CG and MG, rats in the other groups received whole powder suspension(0.586 mg·g-1) was administered for 14 days. The neurological deficit in each group was scored by Longa scoring on days 0, 3, 7 and 14. After the end of administration, the serum, brain tissue and urine of gerbils in each group were collected, and the rate of cerebral infarction was detected by 2,3,5-triphenyltetrazolium chloride(TTC), and the levels of interleukin(IL)-6, tumor necrosis factor(TNF)-α, malondialdehyde(MDA), superoxide dismutase(SOD), glutathione(GSH), and nitric oxide(NO) in serum and brain tissue were determined by enzyme-linked immunosorbent assay(ELISA). The urine metabolomics of gerbils in each group was studied by ultra performance liquid chromatography-quadrupole-electrostatic field orbitrap high resolution mass spectrometry(UPLC-Q-Orbitrap-MS), and the data were processed by multivariate statistical analysis, and differential metabolites were screened based on value of variable importance in the projection(VIP) of the first principal component>1 and t-test P<0.05. Metabolic pathway analysis of the screened differential metabolites was performed using Kyoto Encyclopedia of Genes and Genomes(KEGG) database and Metaboanalyst 5.0. ResultCompared with the CG, the neurological deficit score was significantly increased in the MG(P<0.05), compared with the MG, the neurological deficit scores in the RA and RT were significantly reduced after 7 d and 14 d(P<0.05). Compared with the CG, the rate of cerebral infarction was significantly increased in the MG(P<0.05), compared with the MG, the rates of cerebral infarction in the RA and RT were significantly reduced(P<0.05). Compared with the CG, the levels of IL-6, TNF-α, and MDA in the serum and brain tissue of gerbils from the MG were significantly increased(P<0.05), and the levels of SOD, GSH and NO were significantly reduced(P<0.05). Compared with the MG, Aconiti Coreani Radix and Typhonii Rhizoma could down-regulate the levels of IL-6, TNF-α and MDA, and up-regulated the levels of SOD, GSH and NO. A total of 112 endogenous differential metabolites were screened by urine metabolomics, of which 16 and 26 metabolites were called back by Aconiti Coreani Radix and Typhonii Rhizoma, and could be used as potential biomarkers for both treatments in stroke gerbils, respectively. The results of the pathway analysis showed that both Aconiti Coreani Radix and Typhonii Rhizoma had regulatory effects on arginine and proline metabolism, pyrimidine metabolism, and aminoacyl-tRNA biosynthesis. In addition, Aconiti Coreani Radix could also regulate riboflavin metabolism, Typhonii Rhizoma could also regulate purine metabolism, glycine, serine and threonine metabolism, arachidonic acid metabolism, biosynthesis of pantothenate and coenzyme A, and β-alanine metabolism. ConclusionBoth Aconiti Coreani Radix and Typhonii Rhizoma have better therapeutic effects on stroke, with Aconiti Coreani Radix having stronger effects. From the metabolomics results, the main metabolic pathways regulated by Aconiti Coreani Radix involve amino acid metabolism, oxidative stress and so on, while Typhonii Rhizoma mainly involve amino acid metabolism, lipid metabolism, energy metabolism, etc.

9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1011457

ABSTRACT

ObjectiveTo clarify the differences in the efficacy and mechanism of different processed products of Atractylodes chinensis rhizoma by the pharmacodynamics and metabolomics studies of raw, bran-fried and rice water-processed products on rats with spleen deficiency. MethodSixty male SD rats were randomly divided into blank group, model group, raw product group(3.75 g·kg-1), bran-fried product group(3.75 g·kg-1), rice water-processed product group(3.75 g·kg-1) and Shenling Baizhusan group(6.7 g·kg-1), with 10 rats in each group. The method of excessive fatigue+improper diet was used to establish a spleen deficiency model in rats. After the end of modeling, except for the blank and model groups, each dosing group was given the corresponding drug suspension, the immune organ coefficients of each group of rats were examined, the levels of interleukin-6(IL-6), tumor necrosis factor-α(TNF-α), immunoglobulin G(IgG), amylase(AMS), motilin(MTL), gastrin(GAS), Na+-K+-adenosine triphosphatase(ATPase), aquaporin 2(AQP2), AQP3 and AQP8 in rats were measured by enzyme-linked immunosorbent assay(ELISA). Ultra high performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS) combined with orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to search for biomarkers in the plasma samples of spleen-deficient rats by using two criteria[P<0.05 and variable importance in the projection(VIP) value>1], and to compare the different modulatory effects of the three decoction pieces on the splenic-deficient biomarkers, and metabolic pathway analysis was conducted through the Kyoto Encyclopedia of Genes and Genomes(KEGG) database. ResultCompared with the blank group, the thymus index and spleen index of rats in the model group were significantly decreased(P<0.05), the levels of IL-6, TNF-α, IgG and AQP2 were significantly increased(P<0.05), the levels of AMS, GAS, MTL, AQP3, AQP8 and Na+-K+-ATPase were significantly decreased(P<0.05). Compared with the model group, raw products, bran-fried products and rice water-processed products all increased thymus index and spleen index(P<0.05), decreased IL-6, TNF-α, IgG and AQP2 levels(P<0.05), and increased AMS, GAS, MTL, AQP3, AQP8 and Na+-K+-ATPase levels to different degrees. A total of 176 differential metabolites were screened in the model group compared with the blank group, of which 75, 72 and 84 biomarkers were called back by the raw products, bran-fried products and rice water-processed products, respectively(P<0.05, P<0.01). Raw products of A. chinensis rhizoma mainly affected glycine, serine and threonine metabolism. Bran-fried products mainly affected alanine, aspartate and glutamate metabolism, D-arginine and D-ornithine metabolism. Rice water-processed products mainly affected glycine, serine and threonine metabolism, alanine, aspartate and glutamate metabolism, citrate cycle, thiamine metabolism, D-arginine and D-ornithine metabolism. ConclusionRaw products, bran-fried products and rice water-processed products of A. chinensis rhizoma all have good spleen strengthening effects, among which the effects of bran-fried products and rice water-processed products were stronger. Meanwhile, raw products has the strongest dryness, followed by bran-fried products, and the weakest dryness of rice water-processed products. The three decoction pieces are able to significantly modulate metabolic abnormalities in spleen-deficient rats, and the mechanism may be related to amino acid metabolism such as glycine, serine and threonine metabolism as well as alanine, aspartate and glutamate metabolism.

10.
IEEE Trans Image Process ; 32: 4543-4554, 2023.
Article in English | MEDLINE | ID: mdl-37531308

ABSTRACT

Composing Text and Image to Image Retrieval (CTI-IR) aims at finding the target image, which matches the query image visually along with the query text semantically. However, existing works ignore the fact that the reference text usually serves multiple functions, e.g., modification and auxiliary. To address this issue, we put forth a unified solution, namely Hierarchical Aggregation Transformer incorporated with Cross Relation Network (CRN). CRN unifies modification and relevance manner in a single framework. This configuration shows broader applicability, enabling us to model both modification and auxiliary text or their combination in triplet relationships simultaneously. Specifically, CRN includes: 1) Cross Relation Network comprehensively captures the relationships of various composed retrieval scenarios caused by two different query text types, allowing a unified retrieval model to designate adaptive combination strategies for flexible applicability; 2) Hierarchical Aggregation Transformer aggregates top-down features with Multi-layer Perceptron (MLP) to overcome the limitations of edge information loss in a window-based multi-stage Transformer. Extensive experiments demonstrate the superiority of the proposed CRN over all three fashion-domain datasets. Code is available at github.com/yan9qu/crn.

11.
Front Bioeng Biotechnol ; 11: 1073238, 2023.
Article in English | MEDLINE | ID: mdl-36845177

ABSTRACT

Quiescence is a cellular state of reversible growth arrest required to maintain homeostasis and self-renewal. Entering quiescence allows the cells to remain in the non-dividing stage for an extended period of time and enact mechanisms to protect themselves from damage. Due to the extreme nutrient-deficient microenvironment in the intervertebral disc (IVD), the therapeutic effect of cell transplantation is limited. In this study, nucleus pulposus stem cells (NPSCs) were preconditioned into quiescence through serum starvation in vitro and transplanted to repair intervertebral disc degeneration (IDD). In vitro, we investigated apoptosis and survival of quiescent NPSCs in a glucose-free medium without fetal bovine serum. Non-preconditioned proliferating NPSCs served as controls. In vivo, the cells were transplanted into a rat model of IDD induced by acupuncture, and the intervertebral disc height, histological changes, and extracellular matrix synthesis were observed. Finally, to elucidate the mechanisms underlying the quiescent state of NPSCs, the metabolic patterns of the cells were investigated through metabolomics. The results revealed that quiescent NPSCs decreased apoptosis and increased cell survival when compared to proliferating NPSCs both in vitro and in vivo, as well as maintained the disc height and histological structure significantly better than that by proliferating NPSCs. Furthermore, quiescent NPSCs have generally downregulated metabolism and reduced energy requirements in response to a switch to a nutrient-deficient environment. These findings support that quiescence preconditioning maintains the proliferation and biological function potential of NPSCs, increases cell survival under the extreme environment of IVD, and further alleviates IDD via adaptive metabolic patterns.

12.
Chinese Journal of Pathology ; (12): 103-106, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-970141

ABSTRACT

Pathological diagnosis of lung cancer keep updating and developing, in order to meet the clinical needs in the era of precision medicine. It mainly involves the advances of histological subtype classification, molecular testing for targeted therapy, biomarkers detection for immunotherapy and the pathological evaluation for neoadjuvant therapy. Nowadays, pathological diagnosis of lung cancer present a multidisciplinary model including clinical medicine, radiology and pathology. It is gradually moving towards standardization with expection to provide better guidance for clinical treatment and prognosis.


Subject(s)
Humans , Lung Neoplasms/drug therapy , Prognosis , Immunotherapy
13.
Article in English | WPRIM (Western Pacific) | ID: wpr-971336

ABSTRACT

OBJECTIVE@#To investigate the anti-coronavirus potential and the corresponding mechanisms of the two ingredients of Reduning Injection: quercetin and luteolin.@*METHODS@#A pseudovirus system was designed to test the efficacy of quercetin and luteolin to inhibit SARS-CoV-2 infection and the corresponding cellular toxicity. Luteolin was tested for its activities against the pseudoviruses of SARS-CoV-2 and its variants. Virtual screening was performed to predict the binding sites by Autodock Vina 1.1.230 and PyMol. To validate docking results, surface plasmon resonance (SPR) was used to measure the binding affinity of the compounds with various proteins of the coronaviruses. Quercetin and luteolin were further tested for their inhibitory effects on other coronaviruses by indirect immunofluorescence assay on rhabdomyosarcoma cells infected with HCoV-OC43.@*RESULTS@#The inhibition of SARS-CoV-2 pseudovirus by luteolin and quercetin were strongly dose-dependent, with concentration for 50% of maximal effect (EC50) of 8.817 and 52.98 µmol/L, respectively. Their cytotoxicity to BHK21-hACE2 were 177.6 and 405.1 µmol/L, respectively. In addition, luetolin significantly blocked the entry of 4 pseudoviruses of SARS-CoV-2 variants, with EC50 lower than 7 µmol/L. Virtual screening and SPR confirmed that luteolin binds to the S-proteins and quercetin binds to the active center of the 3CLpro, PLpro, and helicase proteins. Quercetin and luteolin showed over 99% inhibition against HCoV-OC43.@*CONCLUSIONS@#The mechanisms were revealed of quercetin and luteolin inhibiting the infection of SARS-CoV-2 and its variants. Reduning Injection is a promising drug for COVID-19.


Subject(s)
Humans , SARS-CoV-2 , COVID-19 , Luteolin , Quercetin
14.
Nano Lett ; 22(21): 8437-8444, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36260522

ABSTRACT

Spintronics has been recently extended to neuromorphic computing because of its energy efficiency and scalability. However, a biorealistic spintronic neuron with probabilistic "spiking" and a spontaneous reset functionality has not been demonstrated yet. Here, we propose a biorealistic spintronic neuron device based on the heavy metal (HM)/ferromagnet (FM)/antiferromagnet (AFM) spin-orbit torque (SOT) heterostructure. The spintronic neuron can autoreset itself after firing due to the exchange bias of the AFM. The firing process is inherently stochastic because of the competition between the SOT and AFM pinning effects. We also implement a restricted Boltzmann machine (RBM) and stochastic integration multilayer perceptron (SI-MLP) using our proposed neuron. Despite the bit-width limitation, the proposed spintronic model can achieve an accuracy of 97.38% in pattern recognition, which is even higher than the baseline accuracy (96.47%). Our results offer a spintronic device solution to emulate biologically realistic spiking neurons.


Subject(s)
Models, Neurological , Neurons , Neurons/physiology , Neural Networks, Computer , Magnets , Torque
15.
Tissue Eng Regen Med ; 19(5): 961-968, 2022 10.
Article in English | MEDLINE | ID: mdl-35809187

ABSTRACT

Senescence is an inevitable natural life process that involves structural and functional degeneration of tissues and organs. Recently, the process of skin aging has attracted much attention. Determining a means to delay or even reverse skin aging has become a research hotspot in medical cosmetology and anti-aging. Dysfunction in the epidermis and fibroblasts and changes in the composition and content of the extracellular matrix are common pathophysiological manifestations of skin aging. Reactive oxygen species and matrix metalloproteinases play essential roles in this process. Stem cells are pluripotent cells that possess self-replication abilities and can differentiate into multiple functional cells under certain conditions. These cells also possess a strong ability to facilitate tissue repair and regeneration. Stem cell transplantation has the potential for application in anti-aging therapy. Increasing studies have demonstrated that stem cells perform functions through paracrine processes, particularly those involving exosomes. Exosomes are nano-vesicular substances secreted by stem cells that participate in cell-to-cell communication by transporting their contents into target cells. In this chapter, the biological characteristics of exosomes were reviewed, including their effects on extracellular matrix formation, epidermal cell function, fibroblast function and antioxidation. Exosomes derived from stem cells may provide a new means to reverse skin aging.


Subject(s)
Exosomes , Skin Aging , Fibroblasts , Reactive Oxygen Species , Stem Cells
16.
Int Immunopharmacol ; 109: 108779, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35490666

ABSTRACT

Dihydrosanguinarine (DS) is one of the main chemical constituents of Corydalis bungeana Turcz. which demonstrates anti-inflammatory, antioxidant, and antimicrobial in vitro. The present study aimed to investigate the anti-inflammatory effect and its underlying mechanism of DS in vivo. The network pharmacology method was used to predict the anti-inflammatory target of DS, and it was found that PI3K-AKT signal transduction pathway was the most obvious, and the anti-inflammatory effect of DS was more specific in liver. Herein, we used AKT inhibitor AZD 5363 to block PI3K-AKT signaling pathway, to carry out animal experiments to verify the predicted results of network pharmacology. The results showed that DS exerts protective effects on LPS-induced liver inflammation in mice, and the anti-inflammatory effect of DS was attenuated after inhibiting AKT. To elucidate the potential molecular mechanisms, we performed RNA-sequence analysis in liver tissues. Transcriptome analysis showed that the "TNF signaling pathway" and "IL-17 signaling pathway" had the highest enrichment of differentially expressed genes (DEGs). Then, TNF/IL-17/PI3K-AKT signal pathways were analyzed by GSEA. It was found that AKT3, CCL2, FOS, IL-17A, IL-17RA, IL-17RE, PI3KCA, TRAF3IP2, CREB5, ICAM-1, VCAM-1, IL-1ß, IL-6, TNF-α and CXCL1/2/3 were significantly regulated by DS. The results of RNA-seq immuneCC predictive showed that DS could inhibit the inflammatory response mainly by reducing the degree of macrophage infiltration induced by LPS. At the same time, we use RT-qPCR, IF, WB techniques to verify the core anti-inflammatory differential genes of DS at the gene and protein expression level, confirming that DS can regulate the inflammatory response by regulating the gene expression level of TNF/IL-17/PI3K-AKT signal pathway. We also used HPLC-Q-TOF/MS technology to explore the biotransformation products of DS in the blood and liver of mice under inflammatory conditions and established the docking model of DS and its transformed compound with TNF-α, IL-17A, AKT3 and IL-6, which is the key target from RNA-seq analysis in this study. The results showed that DS strongly interacted with four proteins in the form of prototypes and demethylated products and exhibited anti-inflammatory effects. Our research shows that DS exerts its anti-hepatitis effect mainly by inhibiting the excessive infiltration of macrophages in mice liver induced by LPS and down-regulating the expression of genes related to TNF/IL-17/PI3K-AKT pathway. This study provides a new perspective on the potential therapeutic application of DS and the plasticity of anti-LPS-induced liver inflammation in DS.


Subject(s)
Anti-Inflammatory Agents , Benzophenanthridines , Inflammation , Isoquinolines , Animals , Anti-Inflammatory Agents/pharmacology , Benzophenanthridines/pharmacology , Cytokines/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Interleukin-17/genetics , Interleukin-6/genetics , Isoquinolines/pharmacology , Lipopolysaccharides , Liver/metabolism , Mice , Network Pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA-Seq , Tumor Necrosis Factor-alpha/genetics
17.
Acta Pharmaceutica Sinica ; (12): 1465-1470, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-924751

ABSTRACT

Probe electrospray ionization (PESI) is one of the typical types of ambient ionization technology, but its application in quantitative analysis is limited due to its poor sampling stability. Previously, we developed a new micro-pen electrospray ionization tandem mass spectrometry (μPen-ESI-MS/MS) method based on PESI. In this study, a μPen-ESI-MS/MS method to measure testosterone and dextromethorphan in liver microsome samples was developed and validated to further applicate in evaluating drug metabolism stability and CYP450 enzyme activity. A μPen-ESI-MS/MS method for detecting the CYP3A4 substrate testosterone and CYP2D6 substrate dextromethorphan in the liver microsome incubation system were developed, and the linearity, precision and accuracy of the method was validated. The validated method was further used to detect the metabolic stability of testosterone in the liver microsome incubation system. The results showed that the μPen-ESI-MS/MS had high efficiency with 0.3 min spraying time of each sample. The standard curve of the testosterone and dextromethorphan has good linearity (R2 > 0.99), the intra- and inter-batch accuracy of testosterone and dextromethorphan was 95.9%-109.3% and 90.5%-107.3%, respectively; the intra- and inter-batch precision was acceptable with RSD values of 2.4%-13.5% and 3.4%-12.1%. The half-lives of testosterone and dextromethorphan in the liver microsome incubation system were 12 min and 14 min, respectively. This study provided a rapid and sensitive μPen-ESI-MS/MS method for the assay of testosterone and dextromethorphan in liver microsome samples, and provided a new strategy for the evaluation of drug metabolism stability and CYP3A4/CYP2D6 activity.

18.
Oncol Rep ; 46(3)2021 Sep.
Article in English | MEDLINE | ID: mdl-34278510

ABSTRACT

Following the publication of this paper, it was drawn to the Editors' attention by a concerned reader that certain of the western blotting data shown in Figs. 3A and 4A, and tumor images in Fig. 5A, bore unexpected similarities to data appearing in different form in other articles by different authors. Owing to the fact that some of the contentious data in the above article had already been published elsewhere, or were already under consideration for publication, prior to its submission to Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. After having been in contact with the authors, they agreed with the decision to retract the paper. The Editor apologizes to the readership for any inconvenience caused. [the original article was published in Oncology Reports 33: 2537­2544, 2015; DOI: 10.3892/or.2015.3832].

19.
Phys Chem Chem Phys ; 22(31): 17503-17512, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32716457

ABSTRACT

It is known that rare-earth manganites LnMnO3 with Ln = La to Gd are typical Mott insulators favoring the A-type antiferromagnetic (A-AFM) state. Certainly no ferroelectricity can be possible although the alternatively stacked LnO layers are both polar. Nevertheless, under the inspiration that one plus one is more than two, it is appreciated that by combining two components of this manganite series into a superlattice functionality is added. In this work, we construct a (001)-oriented LaMnO3/RMnO3 (R = Pr, Pm, Sm and Gd) superlattice and investigate the possible emergent ferroelectricity by means of first-principles calculations. It is revealed that the lattice matching in these superlattices may generate lattice distortions to each component based on the scenario of hybrid improper ferroelectricity, resulting in spontaneous ferroelectric polarization, which is larger than the traditional type II Ln'MnO3 (Ln' radius is smaller than that of Gd) polarization. In the meantime, the A-AFM state remains the magnetic ground state of these superlattices. Furthermore, it is predicted that the externally imposed in-plane compressive strain can trigger the semiconductor to half-metal transitions accompanying the A-AFM to ferromagnetic (FM) transitions. The present work sheds light on the possibility to design multiferroic materials and functionality by tailoring artificial superlattices/heterostructures from those non-ferroelectric systems, and to design electronic devices by utilizing the electronic transport properties under epitaxial strain.

20.
Zool Res ; 41(4): 381-394, 2020 Jul 18.
Article in English | MEDLINE | ID: mdl-32400977

ABSTRACT

Magnetic brain stimulation has greatly contributed to the advancement of neuroscience. However, challenges remain in the power of penetration and precision of magnetic stimulation, especially in small animals. Here, a novel combined magnetic stimulation system (c-MSS) was established for brain stimulation in mice. The c-MSS uses a mild magnetic pulse sequence and injection of superparamagnetic iron oxide (SPIO) nanodrugs to elevate local cortical susceptibility. After imaging of the SPIO nanoparticles in the left prelimbic (PrL) cortex in mice, we determined their safety and physical characteristics. Depressive-like behavior was established in mice using a chronic unpredictable mild stress (CUMS) model. SPIO nanodrugs were then delivered precisely to the left PrL cortex using in situ injection. A 0.1 T magnetic field (adjustable frequency) was used for magnetic stimulation (5 min/session, two sessions daily). Biomarkers representing therapeutic effects were measured before and after c-MSS intervention. Results showed that c-MSS rapidly improved depressive-like symptoms in CUMS mice after stimulation with a 10 Hz field for 5 d, combined with increased brain-derived neurotrophic factor (BDNF) and inactivation of hypothalamic-pituitary-adrenal (HPA) axis function, which enhanced neuronal activity due to SPIO nanoparticle-mediated effects. The c-MSS was safe and effective, representing a novel approach in the selective stimulation of arbitrary cortical targets in small animals, playing a bioelectric role in neural circuit regulation, including antidepressant effects in CUMS mice. This expands the potential applications of magnetic stimulation and progresses brain research towards clinical application.


Subject(s)
Depression/therapy , Gyrus Cinguli/physiology , Magnetic Iron Oxide Nanoparticles/administration & dosage , Animals , Magnetic Phenomena , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...